The role of non-steroidal anti-inflammatory drugs as adjuncts to periodontal treatment and in periodontal regeneration

Jianhan Ren, Melissa Rachel Fok, Yunfan Zhang, Bing Han, Yifan Lin, Jianhan Ren, Melissa Rachel Fok, Yunfan Zhang, Bing Han, Yifan Lin

Abstract

Periodontitis is the sixth most prevalent chronic disease globally and places significant burdens on societies and economies worldwide. Behavioral modification, risk factor control, coupled with cause-related therapy have been the "gold standard" treatment for managing periodontitis. Given that host inflammatory and immunological responses play critical roles in the pathogenesis of periodontitis and impact treatment responses, several adjunctive strategies aimed at modulating host responses and improving the results of periodontal therapy and maintenance have been proposed. Of the many pharmacological host modulators, we focused on non-steroidal anti-inflammatory drugs (NSAIDs), due to their long history and extensive use in relieving inflammation and pain and reducing platelet aggregation. NSAIDs have been routinely indicated for treating rheumatic fever and osteoarthritis and utilized for the prevention of cardiovascular events. Although several efforts have been made to incorporate NSAIDs into the treatment of periodontitis, their effects on periodontal health remain poorly characterized, and concerns over the risk-benefit ratio were also raised. Moreover, there is emerging evidence highlighting the potential of NSAIDs, especially aspirin, for use in periodontal regeneration. This review summarizes and discusses the use of NSAIDs in various aspects of periodontal therapy and regeneration, demonstrating that the benefits of NSAIDs as adjuncts to conventional periodontal therapy remain controversial. More recent evidence suggests a promising role for NSAIDs in periodontal tissue engineering and regeneration.

Keywords: Aspirin; Non-steroidal anti-inflammatory drug; Periodontal regeneration; Periodontitis.

Conflict of interest statement

All the authors declare no competing interests.

© 2023. The Author(s).

Figures

Fig. 1
Fig. 1
The synthesis and effects of PGE2 in periodontitis. COX-1, cyclooxygenase-1; COX-2, cyclooxygenase-2; ILs, interleukins; MMPs, matrix metalloproteinases; NSAIDs, nonsteroidal anti-inflammatory drugs; PGE synthase; PGE2, prostaglandin E2; PGES, PGH2, prostaglandin H2; PLA2, Phospholipase A2
Fig. 2
Fig. 2
A representative application of aspirin-loaded biomaterials in periodontal regeneration. Reproduced with permission from reference [137]. Copyright 2019 Elsevier

References

    1. Jin L, Lamster I, Greenspan J, Pitts N, Scully C, Warnakulasuriya S. Global burden of oral diseases: emerging concepts, management and interplay with systemic health. Oral Dis. 2016;22:609–619. doi: 10.1111/odi.12428.
    1. Highfield J. Diagnosis and classification of periodontal disease. Aust Dent J. 2009;54:S11–26. doi: 10.1111/j.1834-7819.2009.01140.x.
    1. Tonetti MS, Jepsen S, Jin L, Otomo-Corgel J. Impact of the global burden of periodontal diseases on health, nutrition and wellbeing of mankind: a call for global action. J Clin Periodontol. 2017;44:456–462. doi: 10.1111/jcpe.12732.
    1. Kornman KS. Mapping the pathogenesis of periodontitis: a new look. J Periodontol. 2008;79:1560–1568. doi: 10.1902/jop.2008.080213.
    1. Pihlstrom BL, Michalowicz BS, Johnson NW. Periodontal diseases. Lancet. 2005;366:1809–1820. doi: 10.1016/S0140-6736(05)67728-8.
    1. Tonetti MS, Greenwell H, Kornman KS. Staging and grading of periodontitis: framework and proposal of a new classification and case definition. J Periodontol. 2018;89(Suppl 1):S159–S172. doi: 10.1002/JPER.18-0006.
    1. Sanz M, Herrera D, Kebschull M, Chapple I, Jepsen S, Beglundh T, et al. Treatment of stage I-III periodontitis-The EFP S3 level clinical practice guideline. J Clin Periodontol. 2020;47(Suppl 22):4–60. doi: 10.1111/jcpe.13290.
    1. Smiley CJ, Tracy SL, Abt E, Michalowicz BS, John MT, Gunsolley J, et al. Systematic review and meta-analysis on the nonsurgical treatment of chronic periodontitis by means of scaling and root planing with or without adjuncts. J Am Dent Assoc. 2015;146:508–524.e5. doi: 10.1016/j.adaj.2015.01.028.
    1. John MT, Michalowicz BS, Kotsakis GA, Chu H. Network meta-analysis of studies included in the Clinical Practice Guideline on the nonsurgical treatment of chronic periodontitis. J Clin Periodontol. 2017;44:603–611. doi: 10.1111/jcpe.12726.
    1. Cortellini P, Stalpers G, Mollo A, Tonetti MS. Periodontal regeneration versus extraction and dental implant or prosthetic replacement of teeth severely compromised by attachment loss to the apex: a randomized controlled clinical trial reporting 10-year outcomes, survival analysis and mean cumulative cost of recurrence. J Clin Periodontol. 2020;47:768–776. doi: 10.1111/jcpe.13289.
    1. Haas AN, Furlaneto F, Gaio EJ, Gomes SC, Palioto DB, Castilho RM, et al. New tendencies in non-surgical periodontal therapy. Braz Oral Res. 2021;35:e095. doi: 10.1590/1807-3107bor-2021.vol35.0095.
    1. Salvi G, Lang N. The effects of non-steroidal anti-inflammatory drugs (selective and non-selective) on the treatment of periodontal diseases. CPD. 2005;11:1757–1769. doi: 10.2174/1381612053764878.
    1. Offenbacher S, Heasman PA, Collins JG. Modulation of host PGE 2 secretion as a determinant of periodontal disease expression. J Periodontol. 1993;64:432–444.
    1. Meek IL, van de Laar MAFJ, Vonkeman HE. Non-steroidal anti-inflammatory drugs: an overview of cardiovascular risks. Pharmaceuticals. 2010;3:2146–2162. doi: 10.3390/ph3072146.
    1. Bacchi S, Palumbo P, Sponta A, Coppolino MF. Clinical pharmacology of non-steroidal anti-inflammatory drugs: a review. Antiinflamm Antiallergy Agents Med Chem. 2012;11:52–64. doi: 10.2174/187152312803476255.
    1. Vane JR, Botting RM. Anti-inflammatory drugs and their mechanism of action. Inflamm Res. 1998;47:78–87. doi: 10.1007/s000110050284.
    1. Warner TD, Giuliano F, Vojnovic I, Bukasa A, Mitchell JA, Vane JR. Nonsteroid drug selectivities for cyclo-oxygenase-1 rather than cyclo-oxygenase-2 are associated with human gastrointestinal toxicity: a full in vitro analysis. Proc Natl Acad Sci USA. 1999;96:7563–7568. doi: 10.1073/pnas.96.13.7563.
    1. Bindu S, Mazumder S, Bandyopadhyay U. Non-steroidal anti-inflammatory drugs (NSAIDs) and organ damage: a current perspective. Biochem Pharmacol. 2020;180:114147. doi: 10.1016/j.bcp.2020.114147.
    1. Bunimov N, Laneuville O. Cyclooxygenase inhibitors: instrumental drugs to understand cardiovascular homeostasis and arterial thrombosis. Cardiovasc Hematol Disord Drug Targets. 2008;8:268–277. doi: 10.2174/187152908786786250.
    1. Moore N, Duong M, Gulmez SE, Blin P, Droz C. Pharmacoepidemiology of non-steroidal anti-inflammatory drugs. Therapies. 2019;74:271–277. doi: 10.1016/j.therap.2018.11.002.
    1. Zappavigna S, Cossu AM, Grimaldi A, Bocchetti M, Ferraro GA, Nicoletti GF, et al. Anti-inflammatory drugs as anticancer agents. Int J Mol Sci. 2020;21:2605. doi: 10.3390/ijms21072605.
    1. Johnson AG, Quinn DI, Day RO. Non-steroidal anti-inflammatory drugs. Med J Aust. 1995;163:155–158. doi: 10.5694/j.1326-5377.1995.tb127972.x.
    1. Yang W, Wang X, Xu L, Li H, Wang R. LOX inhibitor HOEC interfered arachidonic acid metabolic flux in collagen-induced arthritis rats. Am J Transl Res. 2018;10:2542–2554.
    1. Sorokin AV, Domenichiello AF, Dey AK, Yuan Z-X, Goyal A, Rose SM, et al. Bioactive lipid mediator profiles in human psoriasis skin and blood. J Invest Dermatol. 2018;138:1518–1528. doi: 10.1016/j.jid.2018.02.003.
    1. Mašek T, Filipović N, Hamzić LF, Puljak L, Starčević K. Long-term streptozotocin diabetes impairs arachidonic and docosahexaenoic acid metabolism and ∆5 desaturation indices in aged rats. Exp Gerontol. 2014;60:140–146. doi: 10.1016/j.exger.2014.10.015.
    1. Yucel-Lindberg T, Båge T. Inflammatory mediators in the pathogenesis of periodontitis. Expert Rev Mol Med. 2013;15:e7. doi: 10.1017/erm.2013.8.
    1. Okamura H, Yamaguchi M, Abiko Y. Enhancement of lipopolysaccharide-stimulated PGE2 and IL-1β production in gingival fibroblast cells from old rats. Exp Gerontol. 1999;34:379–392. doi: 10.1016/S0531-5565(99)00006-6.
    1. Kantarci A, Oyaizu K, Van Dyke TE. Neutrophil-mediated tissue injury in periodontal disease pathogenesis: findings from localized aggressive periodontitis. J Periodontol. 2003;74:66–75. doi: 10.1902/jop.2003.74.1.66.
    1. Inada M, Matsumoto C, Uematsu S, Akira S, Miyaura C. Membrane-bound prostaglandin E synthase-1-mediated prostaglandin E2 production by osteoblast plays a critical role in lipopolysaccharide-induced bone loss associated with inflammation. J Immunol. 2006;177:1879–1885. doi: 10.4049/jimmunol.177.3.1879.
    1. Inaba H, Tagashira M, Honma D, Kanda T, Kou Y, Ohtake Y, et al. Identification of hop polyphenolic components which inhibit prostaglandin E2 production by gingival epithelial cells stimulated with periodontal pathogen. Biol Pharm Bull. 2008;31:527–530. doi: 10.1248/bpb.31.527.
    1. Kang Y-G, Nam J-H, Kim K-H, Lee K-S. FAK Pathway regulates PGE 2 production in compressed periodontal ligament cells. J Dent Res. 2010;89:1444–1449. doi: 10.1177/0022034510378521.
    1. Sanchavanakit N, Saengtong W, Manokawinchoke J, Pavasant P. TNF-α stimulates MMP-3 production via PGE2 signalling through the NF-kB and p38 MAPK pathway in a murine cementoblast cell line. Arch Oral Biol. 2015;60:1066–1074. doi: 10.1016/j.archoralbio.2015.04.001.
    1. Omori K, Kida T, Hori M, Ozaki H, Murata T. Multiple roles of the PGE2-EP receptor signal in vascular permeability. Br J Pharmacol. 2014;171:4879–4889. doi: 10.1111/bph.12815.
    1. Yao C, Hirata T, Soontrapa K, Ma X, Takemori H, Narumiya S. Prostaglandin E2 promotes Th1 differentiation via synergistic amplification of IL-12 signalling by cAMP and PI3-kinase. Nat Commun. 2013;4:1685. doi: 10.1038/ncomms2684.
    1. Yao C, Sakata D, Esaki Y, Li Y, Matsuoka T, Kuroiwa K, et al. Prostaglandin E2–EP4 signaling promotes immune inflammation through TH1 cell differentiation and TH17 cell expansion. Nat Med. 2009;15:633–640. doi: 10.1038/nm.1968.
    1. Figueredo CM, Lira-Junior R, Love RM. T and B cells in periodontal disease: new functions in a complex scenario. Int J Mol Sci. 2019;20:3949. doi: 10.3390/ijms20163949.
    1. Lee J, Aoki T, Thumkeo D, Siriwach R, Yao C, Narumiya S. T cell-intrinsic prostaglandin E2-EP2/EP4 signaling is critical in pathogenic TH17 cell-driven inflammation. J Allergy Clin Immunol. 2019;143:631–643. doi: 10.1016/j.jaci.2018.05.036.
    1. Kotake S, Udagawa N, Takahashi N, Matsuzaki K, Itoh K, Ishiyama S, et al. IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. J Clin Invest. 1999;103:1345–1352. doi: 10.1172/JCI5703.
    1. Goodson JM, Dewhirst FE, Brunetti A. Prostaglandin E2 levels and human periodontal disease. Prostaglandins. 1974;6:81–85. doi: 10.1016/S0090-6980(74)80043-2.
    1. Offenbacher S, Farr DH, Goodson JM. Measurement of prostaglandin E in crevicular fluid. J Clin Periodontol. 1981;8:359–367. doi: 10.1111/j.1600-051X.1981.tb02045.x.
    1. Offenbacher S, Odle BM, Gray RC, Van Dyke TE. Crevicular fluid prostaglandin E levels as a measure of the periodontal disease status of adult and juvenile periodontitis patients. J Periodontal Res. 1984;19:1–13. doi: 10.1111/j.1600-0765.1984.tb01190.x.
    1. Sánchez GA, Miozza VA, Delgado A, Busch L. Salivary IL-1β and PGE2 as biomarkers of periodontal status, before and after periodontal treatment. J Clin Periodontol. 2013;40:1112–1117. doi: 10.1111/jcpe.12164.
    1. Bascones A, Noronha S, Gómez M, Mota P, Gónzalez Moles MA, Villarroel DM. Tissue destruction in periodontitis: bacteria or cytokines fault? Quintessence Int. 2005;36:299–306.
    1. Checchi V, Maravic T, Bellini P, Generali L, Consolo U, Breschi L, et al. The role of matrix metalloproteinases in periodontal disease. Int J Environ Res Public Health. 2020;17:4923. doi: 10.3390/ijerph17144923.
    1. Yen J-H, Kocieda VP, Jing H, Ganea D. Prostaglandin E2 induces matrix metalloproteinase 9 expression in dendritic cells through two independent signaling pathways leading to activator protein 1 (AP-1) activation. J Biol Chem. 2011;286:38913–38923. doi: 10.1074/jbc.M111.252932.
    1. Khan KMF, Kothari P, Du B, Dannenberg AJ, Falcone DJ. Matrix metalloproteinase (MMP)-dependent microsomal prostaglandin E synthase (mPGES)-1 expression in macrophages: role of TNF-α and the EP4 prostanoid receptor1. J Immunol. 2012;188:1970–1980. doi: 10.4049/jimmunol.1102383.
    1. Kim C-H, Park Y-G, Noh S-H, Kim Y-K. PGE2 induces the gene expression of bone matrix metalloproteinase-1 in mouse osteoblasts by cAMP-PKA signaling pathway. Int J Biochem Cell Biol. 2005;37:375–385. doi: 10.1016/j.biocel.2004.07.013.
    1. Shankavaram UT, Lai WC, Netzel-Arnett S, Mangan PR, Ardans JA, Caterina N, et al. Monocyte membrane type 1-matrix metalloproteinase. Prostaglandin-dependent regulation and role in metalloproteinase-2 activation. J Biol Chem. 2001;276:19027–19032. doi: 10.1074/jbc.M009562200.
    1. Oka H, Miyauchi M, Sakamoto K, Kitagawa M, Noguchi K, Somerman MJ, et al. Prostaglandin E2 inhibits mineralization and enhances matrix metalloproteinase-13 in mature cementoblasts mainly via the EP4 pathway. Arch Oral Biol. 2008;53:243–249. doi: 10.1016/j.archoralbio.2007.10.007.
    1. Noguchi K, Ishikawa I. The roles of cyclooxygenase-2 and prostaglandin E2 in periodontal disease. Periodontol. 2000;2007(43):85–101.
    1. Beklen A, Ainola M, Hukkanen M, Gürgan C, Sorsa T, Konttinen YT. MMPs, IL-1, and TNF are regulated by IL-17 in periodontitis. J Dent Res. 2007;86:347–351. doi: 10.1177/154405910708600409.
    1. Goodson JM, McClatchy K, Revell C. Prostaglandin-induced resorption of the adult rat calvarium. J Dent Res. 1974;53:670–677. doi: 10.1177/00220345740530032601.
    1. Klein DC, Raisz LG. Prostaglandins: stimulation of bone resorption in tissue culture. Endocrinology. 1970;86:1436–1440. doi: 10.1210/endo-86-6-1436.
    1. Suzawa T, Miyaura C, Inada M, Maruyama T, Sugimoto Y, Ushikubi F, et al. The role of prostaglandin E receptor subtypes (EP1, EP2, EP3, and EP4) in bone resorption: an analysis using specific agonists for the respective EPs. Endocrinology. 2000;141:1554–1559. doi: 10.1210/endo.141.4.7405.
    1. Jiang W, Jin Y, Zhang S, Ding Y, Huo K, Yang J, et al. PGE2 activates EP4 in subchondral bone osteoclasts to regulate osteoarthritis. Bone Res. 2022;10:27. doi: 10.1038/s41413-022-00201-4.
    1. Blackwell KA, Raisz LG, Pilbeam CC. Prostaglandins in bone: bad cop, good cop? Trends Endocrinol Metab. 2010;21:294–301. doi: 10.1016/j.tem.2009.12.004.
    1. Mayahara K, Yamaguchi A, Takenouchi H, Kariya T, Taguchi H, Shimizu N. Osteoblasts stimulate osteoclastogenesis via RANKL expression more strongly than periodontal ligament cells do in response to PGE(2) Arch Oral Biol. 2012;57:1377–1384. doi: 10.1016/j.archoralbio.2012.07.009.
    1. Vane JR. Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nat New Biol. 1971;231:232–235. doi: 10.1038/newbio231232a0.
    1. Goldhaber P, Rabadjija L, Beyer WR, Kornhauser A. Bone resorption in tissue culture and its relevance to periodontal disease. J Am Dent Assoc. 1973;87:1027–1033. doi: 10.14219/jada.archive.1973.0010.
    1. Nyman S, Schroeder HE, Lindhe J. Suppression of inflammation and bone resorption by indomethacin during experimental periodontitis in dogs. J Periodontol. 1979;50:450–461. doi: 10.1902/jop.1979.50.9.450.
    1. Weaks-Dybvig M, Sanavi F, Zander H, Rifkin BR. The effect of indomethacin on alveolar bone loss in experimental periodontitis. J Periodontal Res. 1982;17:90–100. doi: 10.1111/j.1600-0765.1982.tb01134.x.
    1. Williams RC, Jeffcoat MK, Kaplan ML, Goldhaber P, Johnson HG, Wechter WJ. Flurbiprofen: a potent inhibitor of alveolar bone resorption in beagles. Science. 1985;227:640–642. doi: 10.1126/science.3969553.
    1. Jeffcot MK, Williams RC, Wechter WJ, Johnson HG, Kaplan ML, Gandrup JS, et al. Flurbiprofen treatment of periodontal disease in beagles. J Periodontal Res. 1986;21:624–633. doi: 10.1111/j.1600-0765.1986.tb01499.x.
    1. Williams RC, Jeffcoat MK, Howell TH, Reddy MS, Johnson HG, Hall CM, et al. Ibuprofen: an inhibitor of alveolar bone resorption in beagles. J Periodontal Res. 1988;23:225–229. doi: 10.1111/j.1600-0765.1988.tb01363.x.
    1. Howell TH, Jeffcoat MK, Goldhaber P, Reddy MS, Kaplan ML, Johnson HG, et al. Inhibition of alveolar bone loss in beagles with the NSAID naproxen. J Periodontal Res. 1991;26:498–501. doi: 10.1111/j.1600-0765.1991.tb01801.x.
    1. Jeffcoat MK, Williams RC, Reddy MS, English R, Goldhaber P. Flurbiprofen treatment of human periodontitis: effect on alveolar bone height and metabolism. J Periodontal Res. 1988;23:381–385. doi: 10.1111/j.1600-0765.1988.tb01617.x.
    1. Williams RC, Jeffcoat MK, Howard Howell T, Rolla A, Stubbs D, Teoh KW, et al. Altering the progression of human alveolar bone loss with the non-steroidal anti-inflammatory drug flurbiprofen. J Periodontol. 1989;60:485–490. doi: 10.1902/jop.1989.60.9.485.
    1. Haffajee AD, Dibart S, Kent RL, Socransky SS. Clinical and microbiological changes associated with the use of 4 adjunctive systemically administered agents in the treatment of periodontal infections. J Clin Periodontol. 1995;22:618–627. doi: 10.1111/j.1600-051X.1995.tb00815.x.
    1. Kurtiş B, Tüter G, Serdar M, Pınar S, Demirel İ, Toyman U. Gingival crevicular fluid prostaglandin E2 and thiobarbituric acid reactive substance levels in smokers and non-smokers with chronic periodontitis following phase I periodontal therapy and adjunctive use of flurbiprofen. J Periodontol. 2007;78:104–111. doi: 10.1902/jop.2007.060217.
    1. Aras H, Çağlayan F, Güncü GN, Berberoğlu A, Kılınç K. Effect of systemically administered naproxen sodium on clinical parameters and myeloperoxidase and elastase-like activity levels in gingival crevicular fluid. J Periodontol. 2007;78:868–873. doi: 10.1902/jop.2007.060412.
    1. Yen CA, Damoulis PD, Stark PC, Hibberd PL, Singh M, Papas AS. The effect of a selective cyclooxygenase-2 inhibitor (celecoxib) on chronic periodontitis. J Periodontol. 2008;79:104–113. doi: 10.1902/jop.2008.070271.
    1. Oduncuoglu BF, Kayar NA, Haliloglu S, Serpek B, Ataoglu T, Alptekin NO. Effects of a cyclic NSAID regimen on levels of gingival crevicular fluid prostaglandin E2 and interleukin-1β: A 6-month randomized controlled clinical trial. Niger J Clin Pract. 2018;21:658–666. doi: 10.4103/njcp.njcp_221_17.
    1. Heasman PA, Benn DK, Kelly PJ, Seymour RA, Aitken D. The use of topical flurbiprofen as an adjunct to non-surgical management of periodontal disease. J Clin Periodontol. 1993;20:457–464. doi: 10.1111/j.1600-051X.1993.tb00389.x.
    1. Flemmig TF, Epp B, Funkenhauser Z, Newman MG, Kornman KS, Haubitz I, et al. Adjunctive supragingival irrigation with acetylsalicylic acid in periodontal supportive therapy. J Clin Periodontol. 1995;22:427–433. doi: 10.1111/j.1600-051X.1995.tb00173.x.
    1. Desborough MJR, Keeling DM. The aspirin story – from willow to wonder drug. Br J Haematol. 2017;177:674–683. doi: 10.1111/bjh.14520.
    1. Coimbra LS, Rossa C, Guimarães MR, Gerlach RF, Muscará MN, Spolidorio DMP, et al. Influence of antiplatelet drugs in the pathogenesis of experimental periodontitis and periodontal repair in rats. J Periodontol. 2011;82:767–777. doi: 10.1902/jop.2010.100555.
    1. Serhan CN. Lipoxins and aspirin-triggered 15-epi-lipoxins are the first lipid mediators of endogenous anti-inflammation and resolution. Prostaglandins Leukot Essent Fatty Acids. 2005;73:141–162. doi: 10.1016/j.plefa.2005.05.002.
    1. Romano M, Cianci E, Simiele F, Recchiuti A. Lipoxins and aspirin-triggered lipoxins in resolution of inflammation. Eur J Pharmacol. 2015;760:49–63. doi: 10.1016/j.ejphar.2015.03.083.
    1. Serhan CN, Fredman G, Yang R, Karamnov S, Belayev LS, Bazan NG, et al. Novel pro-resolving aspirin-triggered DHA pathway. Chem Biol. 2011;18:976–987. doi: 10.1016/j.chembiol.2011.06.008.
    1. Serhan CN, Hong S, Gronert K, Colgan SP, Devchand PR, Mirick G, et al. Resolvins: a family of bioactive products of omega-3 fatty acid transformation circuits initiated by aspirin treatment that counter proinflammation signals. J Exp Med. 2002;196:1025–1037. doi: 10.1084/jem.20020760.
    1. El-Sharkawy H, Aboelsaad N, Eliwa M, Darweesh M, Alshahat M, Kantarci A, et al. Adjunctive treatment of chronic periodontitis with daily dietary supplementation with omega-3 fatty acids and low-dose aspirin. J Periodontol. 2010;81:1635–1643. doi: 10.1902/jop.2010.090628.
    1. Castro Dos Santos NC, Andere NMRB, Araujo CF, de Marco AC, Kantarci A, Van Dyke TE, et al. Omega-3 PUFA and aspirin as adjuncts to periodontal debridement in patients with periodontitis and type 2 diabetes mellitus: randomized clinical trial. J Periodontol. 2020;91:1318–1327. doi: 10.1002/JPER.19-0613.
    1. Vane JR, Botting RM. The mechanism of action of aspirin. Thromb Res. 2003;110:255–258. doi: 10.1016/S0049-3848(03)00379-7.
    1. Patrono C. Low-dose aspirin in primary prevention: cardioprotection, chemoprevention, both, or neither? Eur Heart J. 2013;34:3403–3411. doi: 10.1093/eurheartj/eht058.
    1. Patrono C, Baigent C. Role of aspirin in primary prevention of cardiovascular disease. Nat Rev Cardiol. 2019;16:675–686. doi: 10.1038/s41569-019-0225-y.
    1. Feldman RS, Szeto B, Chauncey HH, Goldhaber P. Non-steroidal anti-inflammatory drugs in the reduction of human alveolar bone loss. J Clin Periodontol. 1983;10:131–136. doi: 10.1111/j.1600-051X.1983.tb02201.x.
    1. Faizuddin M, Tarannum F, Korla N, Swamy S. Association between long-term aspirin use and periodontal attachment level in humans: a cross-sectional investigation. Aust Dent J. 2012;57:45–50. doi: 10.1111/j.1834-7819.2011.01650.x.
    1. Kotsakis GA, Thai A, Ioannou AL, Demmer RT, Michalowicz BS. Association between low-dose aspirin and periodontal disease: results from the continuous national health and nutrition examination survey (NHANES) 2011–2012. J Clin Periodontol. 2015;42:333–341. doi: 10.1111/jcpe.12380.
    1. Schrodi J, Recio L, Fiorellini J, Howell H, Goodson M, Karimbux N. The effect of aspirin on the periodontal parameter bleeding on probing. J Periodontol. 2002;73:871–876. doi: 10.1902/jop.2002.73.8.871.
    1. Royzman D, Recio L, Badovinac RL, Fiorellini J, Goodson M, Howell H, et al. The effect of aspirin intake on bleeding on probing in patients with gingivitis. J Periodontol. 2004;75:679–684. doi: 10.1902/jop.2004.75.5.679.
    1. Tonetti MS, Pini-Prato G, Cortellini P. Effect of cigarette smoking on periodontal healing following GTR in infrabony defects. A preliminary retrospective study. J Clin Periodontol. 1995;22:229–234. doi: 10.1111/j.1600-051X.1995.tb00139.x.
    1. Tomasi C, Leyland AH, Wennström JL. Factors influencing the outcome of non-surgical periodontal treatment: a multilevel approach. J Clin Periodontol. 2007;34:682–690. doi: 10.1111/j.1600-051X.2007.01111.x.
    1. Johnson GK, Guthmiller JM. The impact of cigarette smoking on periodontal disease and treatment. Periodontol. 2000;2007(44):178–194.
    1. Drouganis A, Hirsch R. Low-dose aspirin therapy and periodontal attachment loss in ex- and non-smokers. J Clin Periodontol. 2001;28:38–45. doi: 10.1034/j.1600-051x.2001.280106.x.
    1. Shiloah J, Bland PS, Scarbecz M, Patters MR, Stein SH, Tipton DA. The effect of long-term aspirin intake on the outcome of non-surgical periodontal therapy in smokers: a double-blind, randomized pilot study. J Periodont Res. 2014;49:102–109. doi: 10.1111/jre.12085.
    1. Woo HN, Cho YJ, Tarafder S, Lee CH. The recent advances in scaffolds for integrated periodontal regeneration. Bioactive Materials. 2021;6:3328–3342. doi: 10.1016/j.bioactmat.2021.03.012.
    1. Cortellini P, Tonetti MS. A minimally invasive surgical technique with an enamel matrix derivative in the regenerative treatment of intra-bony defects: a novel approach to limit morbidity. J Clin Periodontol. 2007;34:87–93. doi: 10.1111/j.1600-051X.2006.01020.x.
    1. Trombelli L, Farina R, Franceschetti G, Calura G. Single-flap approach with buccal access in periodontal reconstructive procedures. J Periodontol. 2009;80:353–360. doi: 10.1902/jop.2009.080420.
    1. Sculean A, Nikolidakis D, Nikou G, Ivanovic A, Chapple ILC, Stavropoulos A. Biomaterials for promoting periodontal regeneration in human intrabony defects: a systematic review. Periodontol. 2000;2015(68):182–216.
    1. Nyman S. Bone regeneration using the principle of guided tissue regeneration. J Clin Periodontol. 1991;18:494–498. doi: 10.1111/j.1600-051X.1991.tb02322.x.
    1. Kao RT, Nares S, Reynolds MA. Periodontal regeneration—intrabony defects: a systematic review from the AAP regeneration workshop. J Periodontol. 2015;86:S77–104. doi: 10.1902/jop.2015.130685.
    1. Wu Y-C, Lin L-K, Song C-J, Su Y-X, Tu Y-K. Comparisons of periodontal regenerative therapies: a meta-analysis on the long-term efficacy. J Clin Periodontol. 2017;44:511–519. doi: 10.1111/jcpe.12715.
    1. Chiapasco M, Casentini P. Horizontal bone-augmentation procedures in implant dentistry: prosthetically guided regeneration. Periodontol. 2000;2018(77):213–240.
    1. Rezende ML, Consolaro A, Sant’Ana AC, Damante CA, Greghi SL, Passanezi E. Demineralization of the contacting surfaces in autologous onlay bone grafts improves bone formation and bone consolidation. J Periodontol. 2014;85:e121–129. doi: 10.1902/jop.2013.130298.
    1. Nooh N, Ramalingam S, Al-Kindi M, Al-Rasheed A, Al-Hamdan KS, Al-Hezaimi K. Real-time assessment of guided bone regeneration in standardized calvarial defects in rats using bio-oss with and without collagen membrane: an in vivo microcomputed tomographic and histologic experiment. Int J Periodontics Restorative Dent. 2016;36(Suppl):s139–149. doi: 10.11607/prd.2354.
    1. Pajnigara NG, Kolte AP, Kolte RA, Pajnigara NG. Volumetric assessment of regenerative efficacy of demineralized freeze-dried bone allograft with or without amnion membrane in grade II furcation defects: a cone beam computed tomography study. Int J Periodontics Restorative Dent. 2017;37:255–262. doi: 10.11607/prd.2901.
    1. Shen P, Chen Y, Luo S, Fan Z, Wang J, Chang J, et al. Applications of biomaterials for immunosuppression in tissue repair and regeneration. Acta Biomater. 2021;126:31–44. doi: 10.1016/j.actbio.2021.03.019.
    1. Liang Y, Luan X, Liu X. Recent advances in periodontal regeneration: a biomaterial perspective. Bioact Mater. 2020;5:297–308. doi: 10.1016/j.bioactmat.2020.02.012.
    1. Lee CH, Hajibandeh J, Suzuki T, Fan A, Shang P, Mao JJ. Three-dimensional printed multiphase scaffolds for regeneration of periodontium complex. Tissue Eng Part A. 2014;20:1342–1351. doi: 10.1089/ten.tea.2013.0386.
    1. Tonetti MS, Cortellini P, Suvan JE, Adriaens P, Baldi C, Dubravec D, et al. Generalizability of the added benefits of guided tissue regeneration in the treatment of deep intrabony defects. Evaluation in a multi-center randomized controlled clinical trial. J Periodontol. 1998;69:1183–1192. doi: 10.1902/jop.1998.69.11.1183.
    1. Chu C, Zhao X, Rung S, Xiao W, Liu L, Qu Y, et al. Application of biomaterials in periodontal tissue repair and reconstruction in the presence of inflammation under periodontitis through the foreign body response: recent progress and perspectives. J Biomed Mater Res. 2022;110:7–17. doi: 10.1002/jbm.b.34891.
    1. Lee J, Byun H, Madhurakkat Perikamana SK, Lee S, Shin H. Current advances in immunomodulatory biomaterials for bone regeneration. Adv Healthcare Mater. 2019;8:1801106.
    1. Veronese FM, Marsilio F, Lora S, Caliceti P, Passi P, Orsolini P. Polyphosphazene membranes and microspheres in periodontal diseases and implant surgery. Biomaterials. 1999;20:91–98. doi: 10.1016/S0142-9612(97)00104-X.
    1. Reynolds MA, Prudencio A, Aichelmann-Reidy ME, Woodward K, Uhrich KE. Non-Steroidal Anti-inflammatory Drug (NSAID)-derived poly(anhydrideesters) in bone and periodontal regeneration. CDD. 2007;4:233–239. doi: 10.2174/156720107781023866.
    1. Wada K, Yu W, Elazizi M, Barakat S, Ouimet MA, Rosario-Meléndez R, et al. Locally delivered salicylic acid from a poly(anhydride-ester): impact on diabetic bone regeneration. J Control Release. 2013;171:33–37. doi: 10.1016/j.jconrel.2013.06.024.
    1. Batool F, Morand D-N, Thomas L, Bugueno IM, Aragon J, Irusta S, et al. Synthesis of a novel electrospun polycaprolactone scaffold functionalized with ibuprofen for periodontal regeneration: an in vitro and in vivo study. Materials. 2018;11:580. doi: 10.3390/ma11040580.
    1. Elkhouli AM. The efficacy of host response modulation therapy (omega-3 plus low-dose aspirin) as an adjunctive treatment of chronic periodontitis (clinical and biochemical study) J Periodontal Res. 2011;46:261–268. doi: 10.1111/j.1600-0765.2010.01336.x.
    1. Sadowska JM, Ginebra M-P. Inflammation and biomaterials: role of the immune response in bone regeneration by inorganic scaffolds. J Mater Chem B. 2020;8:9404–9427. doi: 10.1039/D0TB01379J.
    1. Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 2008;8:958–969. doi: 10.1038/nri2448.
    1. Lin H-Y, Chang T-W, Peng T-K. Three-dimensional plotted alginate fibers embedded with diclofenac and bone cells coated with chitosan for bone regeneration during inflammation. J Biomed Mater Res A. 2018;106:1511–1521. doi: 10.1002/jbm.a.36357.
    1. Liu Y, Fang S, Li X, Feng J, Du J, Guo L, et al. Aspirin inhibits LPS-induced macrophage activation via the NF-κB pathway. Sci Rep. 2017;7:11549. doi: 10.1038/s41598-017-10720-4.
    1. Newman H, Shih YV, Varghese S. Resolution of inflammation in bone regeneration: from understandings to therapeutic applications. Biomaterials. 2021;277:121114. doi: 10.1016/j.biomaterials.2021.121114.
    1. Simon AM, Manigrasso MB, O’Connor JP. Cyclo-oxygenase 2 function is essential for bone fracture healing. J Bone Miner Res. 2002;17:963–976. doi: 10.1359/jbmr.2002.17.6.963.
    1. Kellinsalmi M, Parikka V, Risteli J, Hentunen T, Leskelä H-V, Lehtonen S, et al. Inhibition of cyclooxygenase-2 down-regulates osteoclast and osteoblast differentiation and favours adipocyte formation in vitro. Eur J Pharmacol. 2007;572:102–110. doi: 10.1016/j.ejphar.2007.06.030.
    1. Gao F, Lv T-R, Zhou J-C, Qin X-D. Effects of obesity on the healing of bone fracture in mice. J Orthop Surg Res. 2018;13:145. doi: 10.1186/s13018-018-0837-7.
    1. Liu Y, Wang L, Kikuiri T, Akiyama K, Chen C, Xu X, et al. Mesenchymal stem cell–based tissue regeneration is governed by recipient T lymphocytes via IFN-γ and TNF-α. Nat Med. 2011;17:1594–1601. doi: 10.1038/nm.2542.
    1. Carbone LD, Tylavsky FA, Cauley JA, Harris TB, Lang TF, Bauer DC, et al. Association between bone mineral density and the use of nonsteroidal anti-inflammatory drugs and aspirin: impact of cyclooxygenase selectivity. J Bone Miner Res. 2003;18:1795–1802. doi: 10.1359/jbmr.2003.18.10.1795.
    1. Yamaza T, Miura Y, Bi Y, Liu Y, Akiyama K, Sonoyama W, et al. Pharmacologic stem cell based intervention as a new approach to osteoporosis treatment in rodents. PLoS ONE. 2008;3:e2615. doi: 10.1371/journal.pone.0002615.
    1. Yuan M, Zhan Y, Hu W, Li Y, Xie X, Miao N, et al. Aspirin promotes osteogenic differentiation of human dental pulp stem cells. Int J Mol Med. 2018;42:1967–1976.
    1. Abd Rahman F, Mohd Ali J, Abdullah M, Abu Kasim NH, Musa S. Aspirin enhances osteogenic Potential of Periodontal Ligament Stem Cells (PDLSCs) and modulates the expression profile of growth factor-associated genes in PDLSCs. J Periodontol. 2016;87:837–847. doi: 10.1902/jop.2016.150610.
    1. Zhan Y, He Z, Liu X, Miao N, Lin F, Xu W, et al. Aspirin-induced attenuation of adipogenic differentiation of bone marrow mesenchymal stem cells is accompanied by the disturbed epigenetic modification. Int J Biochem Cell Biol. 2018;98:29–42. doi: 10.1016/j.biocel.2018.02.010.
    1. James AW, Leucht P, Levi B, Carre AL, Xu Y, Helms JA, et al. Sonic Hedgehog influences the balance of osteogenesis and adipogenesis in mouse adipose-derived stromal cells. Tissue Eng Part A. 2010;16:2605–2616. doi: 10.1089/ten.tea.2010.0048.
    1. Liu H, Li W, Liu Y, Zhang X, Zhou Y. Co-administration of aspirin and allogeneic adipose-derived stromal cells attenuates bone loss in ovariectomized rats through the anti-inflammatory and chemotactic abilities of aspirin. Stem Cell Res Ther. 2015;6:200. doi: 10.1186/s13287-015-0195-x.
    1. Jiang Y, Qin H, Wan H, Yang J, Yu Q, Jiang M, et al. Asprin-loaded strontium-containing α-calcium sulphate hemihydrate/nano-hydroxyapatite composite promotes regeneration of critical bone defects. J Cell Mol Med. 2020;24:13690–13702. doi: 10.1111/jcmm.15918.
    1. Li Y, Bai Y, Pan J, Wang H, Li H, Xu X, et al. A hybrid 3D-printed aspirin-laden liposome composite scaffold for bone tissue engineering. J Mater Chem B. 2019;7:619–629. doi: 10.1039/C8TB02756K.
    1. Zhang Y, Dou X, Zhang L, Wang H, Zhang T, Bai R, et al. Facile fabrication of a biocompatible composite gel with sustained release of aspirin for bone regeneration. Bioact Mater. 2022;11:130–139. doi: 10.1016/j.bioactmat.2021.09.033.
    1. Xu X, Gu Z, Chen X, Shi C, Liu C, Liu M, et al. An injectable and thermosensitive hydrogel: promoting periodontal regeneration by controlled-release of aspirin and erythropoietin. Acta Biomater. 2019;86:235–246. doi: 10.1016/j.actbio.2019.01.001.
    1. Zeng Y-P, Yang C, Li Y, Fan Y, Yang H-J, Liu B, et al. Aspirin inhibits osteoclastogenesis by suppressing the activation of NF-κB and MAPKs in RANKL-induced RAW264.7 cells. Mol Med Rep. 2016;14:1957–1962. doi: 10.3892/mmr.2016.5456.
    1. Wu L, Luo Z, Liu Y, Jia L, Jiang Y, Du J, et al. Aspirin inhibits RANKL-induced osteoclast differentiation in dendritic cells by suppressing NF-κB and NFATc1 activation. Stem Cell Res Ther. 2019;10:375. doi: 10.1186/s13287-019-1500-x.
    1. Heitz-Mayfield LJA, Trombelli L, Heitz F, Needleman I, Moles D. A systematic review of the effect of surgical debridement vs non-surgical debridement for the treatment of chronic periodontitis. J Clin Periodontol. 2002;29(Suppl 3):92–102. doi: 10.1034/j.1600-051X.29.s3.5.x.
    1. Mailoa J, Lin G-H, Khoshkam V, MacEachern M, Chan H-L, Wang H-L. Long-term effect of four surgical periodontal therapies and one non-surgical therapy: a systematic review and meta-analysis. J Periodontol. 2015;86:1150–1158. doi: 10.1902/jop.2015.150159.
    1. Crofford LJ. Use of NSAIDs in treating patients with arthritis. Arthritis Res Ther. 2013;15:S2. doi: 10.1186/ar4174.
    1. Sharma JN, Jawad NM. Adverse effects of COX-2 inhibitors. ScientificWorldJournal. 2005;5:629–645. doi: 10.1100/tsw.2005.82.
    1. Sostres C, Lanas A. Gastrointestinal effects of aspirin. Nat Rev Gastroenterol Hepatol. 2011;8:385–394. doi: 10.1038/nrgastro.2011.97.
    1. Kim DM, Koszeghy KL, Badovinac RL, Kawai T, Hosokawa I, Howell TH, et al. The effect of aspirin on gingival crevicular fluid levels of inflammatory and anti-inflammatory mediators in patients with gingivitis. J Periodontol. 2007;78:1620–1626. doi: 10.1902/jop.2007.070011.
    1. Elad S, Chackartchi T, Shapira L, Findler M. A critically severe gingival bleeding following non-surgical periodontal treatment in patients medicated with anti-platelet. J Clin Periodontol. 2008;35:342–345. doi: 10.1111/j.1600-051X.2008.01206.x.
    1. Yin MJ, Yamamoto Y, Gaynor RB. The anti-inflammatory agents aspirin and salicylate inhibit the activity of I(kappa)B kinase-beta. Nature. 1998;396:77–80. doi: 10.1038/23948.
    1. Kopp E, Ghosh S. Inhibition of NF-kappa B by sodium salicylate and aspirin. Science. 1994;265:956–959. doi: 10.1126/science.8052854.
    1. Hawley SA, Fullerton MD, Ross FA, Schertzer JD, Chevtzoff C, Walker KJ, et al. The ancient drug salicylate directly activates AMP-activated protein kinase. Science. 2012;336:918–922. doi: 10.1126/science.1215327.
    1. Hozain S, Cottrell J. CDllb+ targeted depletion of macrophages negatively affects bone fracture healing. Bone. 2020;138:115479. doi: 10.1016/j.bone.2020.115479.
    1. Spiller KL, Nassiri S, Witherel CE, Anfang RR, Ng J, Nakazawa KR, et al. Sequential delivery of immunomodulatory cytokines to facilitate the M1-to-M2 transition of macrophages and enhance vascularization of bone scaffolds. Biomaterials. 2015;37:194–207. doi: 10.1016/j.biomaterials.2014.10.017.
    1. Montoya C, Du Y, Gianforcaro AL, Orrego S, Yang M, Lelkes PI. On the road to smart biomaterials for bone research: definitions, concepts, advances, and outlook. Bone Res. 2021;9:12. doi: 10.1038/s41413-020-00131-z.

Source: PubMed

3
Abonneren