Infrared Thermography in Wound Care, Surgery, and Sports Medicine: A Review

Jose L Ramirez-GarciaLuna, Robert Bartlett, Jesus E Arriaga-Caballero, Robert D J Fraser, Gennadi Saiko, Jose L Ramirez-GarciaLuna, Robert Bartlett, Jesus E Arriaga-Caballero, Robert D J Fraser, Gennadi Saiko

Abstract

For many years, the role of thermometry was limited to systemic (core body temperature) measurements (e.g., pulmonary catheter) or its approximation using skin/mucosa (e.g., axillary, oral, or rectal) temperature measurements. With recent advances in material science and technology, thermal measurements went beyond core body temperature measurements and found their way in many medical specialties. The article consists of two primary parts. In the first part we overviewed current clinical thermal measurement technologies across two dimensions: (a) direct vs. indirect and (b) single-point vs. multiple-point temperature measurements. In the second part, we focus primarily on clinical applications in wound care, surgery, and sports medicine. The primary focus here is the thermographic imaging modality. However, other thermal modalities are included where relevant for these clinical applications. The literature review identified two primary use scenarios for thermographic imaging: inflammation-based and perfusion-based. These scenarios rely on local (topical) temperature measurements, which are different from systemic (core body temperature) measurements. Quantifying these types of diseases benefits from thermographic imaging of an area in contrast to single-point measurements. The wide adoption of the technology would be accelerated by larger studies supporting the clinical utility of thermography.

Keywords: infection; inflammation; perfusion; surgery; thermography.

Conflict of interest statement

JR-G is employed by Swift Medical Inc., as Director, Clinical Research and Validations. RB is employed by Swift Medical Inc., as Chief Medical Officer. RF is employed by Swift Medical Inc., as Director of Clinical Services – Canada. GS is employed by Swift Medical Inc., as VP Strategic Innovations. The remaining author declares that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2022 Ramirez-GarciaLuna, Bartlett, Arriaga-Caballero, Fraser and Saiko.

Figures

FIGURE 1
FIGURE 1
Reflectivity and thermal imaging. The human skin behaves almost like a blackbody with emissivity ranges close to 100%. Thus, this tissue is ideally suited for infrared thermal imaging because the surrounding infrared radiation is absorbed and the output that the camera images and measures correspond almost entirely to the radiation the skin is emitting. In contrast when imaging a reflective surface such as a mirror with an index close to 0%, it is practically impossible to differentiate the radiation emitted by the object and the surrounding radiation scattered by it. In the image above, it can be seen how the skin thermal output (Sp1) can also be seen in a mirror, and how its measurement (Sp2) differs from the output of the surrounding structures (Sp3). Also, note how glasses, despite being transparent for visible light are not under IR. Images, courtesy of JR-G, were acquired using a FLIR One Pro camera.
FIGURE 2
FIGURE 2
Dependence of the emissivity on the viewing angle for several indexes of refraction. Index of refraction n = 1.5 (red solid line), n = 2 (dashed blue line). As the angle of viewing increases, the emissivity of the surface is reduced. Thus, for images acquired obliquely, the lower emissivity can lead to a reduction in the apparent temperature of the object in the thermogram.
FIGURE 3
FIGURE 3
Comparison of the thermographic pattern of two subjects with and without diabetes. The left foot of a healthy subject (A,A1) and a patient with diabetes mellitus and vascular complications (B,B1) were imaged. Striking differences in the absolute temperature distribution pattern of the foot (A,B) can be observed. These differences are magnified when the images are scaled to present temperature gradients (A1,B1). While the healthy control presents a more or less uniform temperature pattern in the hind and mid-foot, the patient with diabetes shows extensive temperature variability that is correlated to microangiopathy and neuropathy. Note that the first toe of the diabetes patient and its medial side show signs of significant vascular compromise (arrows). Images, courtesy of JR-G, were acquired using the Skin and Wound mobile app paired to a Swift Vision camera (Swift Medical Inc., Toronto, ON, Canada).
FIGURE 4
FIGURE 4
Thermographic assessment of a patient with Raynaud’s phenomenon. Clinical photographs (A,D) and infrared thermal images (B,E) of the hand and feet of a patient with Raynaud’s phenomenon (left) and a healthy subject (right) were obtained. Color gradients of the heat maps are shown in the far-right side of (B,E). Purple/blue indicates a lower temperature, while yellow/white indicates higher temperatures. Analysis of the temperature distribution across the different structures are presented in (C,F). The patient’s temperature was significantly lower to the control and exhibited a higher degree of variation, as demonstrated by wider confidence intervals. The solid line represents the mean temperature, and the shaded area, its 95% CI. Images, courtesy of JR-G, were acquired using the Skin and Wound mobile app (Swift Medical Inc., Toronto, ON, Canada) paired to a FLIR One Pro camera. Analysis of the images was performed in Swift’s dashboard.
FIGURE 5
FIGURE 5
Pressure ulcer thermographic assessment. Infrared thermography was used to assess the severity of a sacral pressure ulcer in a bedridden patient. The wound’s temperature (crosshairs) was found to be very similar to the surrounding healthy skin (asterisk). Thermal gradients close to 0°C are highly suggestive of wounds that will re-epithelize by themselves in a relatively short term. Images, courtesy of Dr. Mario A. Martinez-Jimenez, were acquired using a FLIR One Pro camera.
FIGURE 6
FIGURE 6
Deep tissue injury thermographic assessment. Infrared thermography was used to assess the severity of deep tissue injury in a patient with a healing pressure ulcer. Thermography confirmed an extensive area of devitalized tissue underneath the wound’s eschar. In addition, it also allowed the identification of significant peri-wound inflammation and more devitalized tissue (arrow) which was not apparent at clinical inspection alone. Images, courtesy of JR-G, were acquired using the Skin and Wound mobile app (Swift Medical Inc., Toronto, ON, Canada) paired to a FLIR One Pro mobile camera.
FIGURE 7
FIGURE 7
Assessment of inflammation in a patient with hidradenitis suppurativa. Infrared thermography was used to assess the severity and area of inflammation in a patient with hidradenitis suppurativa. Assessment of the area of inflammation on regular clinical photographs (left) is challenging in patients with darker skin tones, which leads to subjective patient severity scoring. In contrast, because infrared thermography images (right) are impervious to skin color, hotspots (asterisk) can easily be used to map the extent of inflammatory changes. Previous research has demonstrated that the area of inflammation and its temperature gradient highly correlate with current clinical scores, offering a powerful insight into the underlying condition. Furthermore, thermography is able to identify open wounds (arrows) and tunneling in the dermis (arrowheads) that may not be evident to clinical inspection alone. Images, courtesy of Dr. Sheila C. Wang and JR-G, were acquired using the Skin and Wound mobile app (Swift Medical Inc., Toronto, ON, Canada) paired to a FLIR One Pro mobile camera.
FIGURE 8
FIGURE 8
Assessment of a surgical site infection. Infrared thermography was used to monitor the extent of a surgical site infection following the external reduction of an open tibial fracture. The thermogram shows an area of extensive inflammation with the maximum thermal signal in the region of interest (ROI) bounded by the box. Images, courtesy of JR-G, were acquired using the Skin and Wound mobile app (Swift Medical Inc., Toronto, ON, Canada) paired to FLIR One Pro camera.
FIGURE 9
FIGURE 9
Assessment of free flap survival. Infrared thermography was used to assess survival of free tissue flaps (arrows) 2-weeks post-surgery. Restoration of the initial negative temperature gradient between uninjured tissue and the flap has been found to be highly predictive of flap perfusion and survival (A). In contrast, failing flaps show coldspots that represent areas of malperfusion (B). Interestingly, despite the clinical images of both patients showing dermal necrosis of the flaps, the thermal images show striking differences in tissue perfusion. Images, courtesy of Dr. Mario A. Martinez-Jimenez, were acquired using a FLIR One Pro mobile camera.
FIGURE 10
FIGURE 10
Thermographic imaging of a patient after endovascular revascularization. Thermograms 24 h post-surgery of a patient with severe peripheral artery disease (PAD) who underwent endovascular revascularization show a positive gradient of temperature of 4.2°C compared to the non-revascularized limb. The hotspots (arrows) are highly predictive of a successful treatment. In this patient, reperfusion was confirmed angiographically during surgery and by Doppler ultrasound at follow-up. Images, courtesy of JA-C, were acquired using a FLIR One Pro mobile camera.

References

    1. Adibelli S., Korkmaz F. (2019). Pressure injury risk assessment in intensive care units: comparison of the reliability and predictive validity of the Braden and Jackson/Cubbin scales. J. Clin. Nurs. 28 4595–4605. 10.1111/jocn.15054
    1. Al Shakarchi J., Hodson J., Field M., Inston N. (2017). Novel use of infrared thermal imaging to predict arteriovenous fistula patency and maturation. J. Vasc. Access. 18 313–318. 10.5301/jva.5000729
    1. Alexandre D., Prieto M., Beaumont F., Taiar R., Polidori G. (2017). Wearing lead aprons in surgical operating rooms: ergonomic injuries evidenced by infrared thermography. J. Surg. Res. 209 227–233. 10.1016/j.jss.2016.10.019
    1. Astasio-Picado Á, Martínez E. E., Gómez-Martín B. (2019). Comparison of thermal foot maps between diabetic patients with neuropathic, vascular, neurovascular, and no complications. Curr. Diabetes Rev. 15 503–509. 10.2174/1573399815666190206160711
    1. Balci G. A., Basaran T., Colakoglu M. (2016). Analysing visual pattern of skin temperature during submaximal and maximal exercises. Infrared Phys. Technol. 74 57–62. 10.1016/j.infrared.2015.12.002
    1. Benbow S. J., Chan A. W., Bowsher D. R., Williams G., Macfarlane I. A. (1994). The prediction of diabetic neuropathic plantar foot ulceration by liquid-crystal contact thermography. Diabetes Care 17 835–839. 10.2337/diacare.17.8.835
    1. Bharara M., Schoess J., Armstrong D. G. (2012). Coming events cast their shadows before: detecting inflammation in the acute diabetic foot and the foot in remission. Diabetes Metab. Res. Rev. 28 15–20. 10.1002/dmrr.2231
    1. Bharara M., Schoess J., Nouvong A., Armstrong D. G. (2010). Wound inflammatory index: a “proof of concept” study to assess wound healing trajectory. J. Diabetes Sci. Technol. 4 773–779. 10.1177/193229681000400402
    1. Black J., Baharestani M. M., Cuddigan J., Dorner B., Edsberg L., Langemo D., et al. (2007). National pressure ulcer advisory Panel’s updated pressure ulcer staging system. Adv. Skin Wound Care 20 269–274. 10.1097/01.ASW.0000269314.23015.e9
    1. Bontemps B., Gruet M., Vercruyssen F., Louis J. (2021). Utilisation of far infrared-emitting garments for optimising performance and recovery in sport: real potential or new fad? A systematic review. PLoS One 16:e0251282. 10.1371/journal.pone.0251282
    1. Brands M. T., van den Bosch S. C., Dieleman F. J., Bergé S. J., Merkx M. A. W. (2010). Prevention of thrombosis after microvascular tissue transfer in the head and neck. A review of the literature and the state of affairs in Dutch Head and Neck Cancer Centers. Int. J. Oral Maxillofac. Surg. 39 101–106. 10.1016/j.ijom.2009.11.020
    1. Bridges E., Thomas K. (2009). Noninvasive measurement of body temperature in critically ill patients. Crit. Care Nurse 29 94–97. 10.4037/ccn2009132
    1. Cai F., Jiang X., Hou X., Wang D., Wang Y., Deng H., et al. (2021). Application of infrared thermography in the early warning of pressure injury: a prospective observational study. J. Clin. Nurs. 30 559–571. 10.1111/jocn.15576
    1. Capo A., Ismail E., Cardone D., Celletti E., Auriemma M., Sabatini E., et al. (2015). Joint functional impairment and thermal alterations in patients with Psoriatic Arthritis: a thermal imaging study. Microvasc. Res. 102 86–91. 10.1016/j.mvr.2015.08.008
    1. Carrière M. E., de Haas L. E. M., Pijpe A., Meij-de Vries A., Gardien K. L. M., van Zuijlen P. P. M., et al. (2020). Validity of thermography for measuring burn wound healing potential. Wound Repair. Regen. 28 347–354. 10.1111/wrr.12786
    1. Castillo-Martínez C., Valdes-Rodríguez R., Kolosovas-Machuca E. S., Moncada B., González F. J. (2013). Use of digital infrared imaging in the assessment of childhood psoriasis. Skin Res. Technol. 19 e549–e551. 10.1111/j.1600-0846.2011.00611.x
    1. Chang W.-C., Wang C.-Y., Cheng Y., Hung Y.-P., Lin T.-H., Chen W.-J., et al. (2020). Plantar thermography predicts freedom from major amputation after endovascular therapy in critical limb ischemic patients. Medicine (Baltimore) 99:e22391. 10.1097/MD.0000000000022391
    1. Childs C., Wright N., Willmott J., Davies M., Kilner K., Ousey K., et al. (2019). The surgical wound in infrared: thermographic profiles and early stage test-accuracy to predict surgical site infection in obese women during the first 30 days after caesarean section. Antimicrob. Resist. Infect. Control. 8:7. 10.1186/s13756-018-0461-7
    1. Cole R. P., Shakespeare P. G., Chissell H. G., Jones S. G. (1991). Thermographic assessment of burns using a nonpermeable membrane as wound covering. Burns 17 117–122. 10.1016/0305-4179(91)90134-3
    1. Cwajda-Białasik J., Mościcka P., Jawień A., Szewczyk M. T. (2020). Infrared thermography to prognose the venous leg ulcer healing process-preliminary results of a 12-week, prospective observational study. Wound Repair. Regen. 28 224–233. 10.1111/wrr.12781
    1. de Weerd L., Mercer J. B., Weum S. (2011). Dynamic infrared thermography. Clin. Plast. Surg. 38 277–292. 10.1016/j.cps.2011.03.013
    1. Derruau S., Renard Y., Pron H., Taiar R., Abdi E., Polidori G., et al. (2018). Combining magnetic resonance imaging (MRI) and medical infrared thermography (MIT) in the pre- and peri-operating management of severe hidradenitis suppurativa (HS). Photodiagnosis. Photodyn. Ther. 23 9–11. 10.1016/j.pdpdt.2018.05.007
    1. Dini V., Salvo P., Janowska A., Di Francesco F., Barbini A., Romanelli M. (2015). Correlation between wound temperature obtained with an infrared camera and clinical wound bed score in venous leg ulcers. Wounds 27 274–278.
    1. dos Santos Bunn P., Miranda M. E. K., Rodrigues A. I., de Souza Sodré R., Neves E. B., da Silva E. B. (2020). Infrared thermography and musculoskeletal injuries: a systematic review with meta-analysis. Infrared Phys. Technol. 109:103435. 10.1016/j.infrared.2020.103435
    1. Drzazga Z., Binek M., Pokora I., Sadowska-Krępa E. (2018). A preliminary study on infrared thermal imaging of cross-country skiers and swimmers subjected to endurance exercise. J. Therm. Anal. Calorim. 134 701–710. 10.1007/s10973-018-7311-y
    1. Erel V. K., Özkan H. S. (2017). Thermal camera as a pain monitor. J. Pain Res. 10 2827–2832. 10.2147/JPR.S151370
    1. Frykberg R. G., Gordon I. L., Reyzelman A. M., Cazzell S. M., Fitzgerald R. H., Rothenberg G. M., et al. (2017). Feasibility and efficacy of a smart mat technology to predict development of diabetic plantar ulcers. Diabetes Care 40 973–980. 10.2337/dc16-2294
    1. Fujita K., Noguchi M., Yuzuriha S., Yanagisawa D., Matsuo K. (2013). Usefulness of infrared thermal imaging camera for screening of postoperative surgical site infection after the nuss procedure. Case Rep. Surg. 2013 946156. 10.1155/2013/946156
    1. Gasim G. I., Musa I. R., Abdien M. T., Adam I. (2013). Accuracy of tympanic temperature measurement using an infrared tympanic membrane thermometer. BMC Res. Notes 6:194. 10.1186/1756-0500-6-194
    1. Geyer M. J., Jan Y.-K., Brienza D. M., Boninger M. L. (2004). Using wavelet analysis to characterize the thermoregulatory mechanisms of sacral skin blood flow. J. Rehabil. Res. Dev. 41 797–806. 10.1682/jrrd.2003.10.0159
    1. Glückert U. L., Schmidt R. (2001). “Pyrometry and thermography,” in Optical Measurements: Techniques and Applications Heat and Mass Transfer, eds Mayinger F., Feldmann O. (Berlin: Springer; ), 271–300. 10.1007/978-3-642-56443-7_14
    1. Hillen B., Pfirrmann D., Nägele M., Simon P. (2020). Infrared thermography in exercise physiology: the dawning of exercise radiomics. Sports Med. 50 263–282. 10.1007/s40279-019-01210-w
    1. Horan T. C., Andrus M., Dudeck M. A. (2008). CDC/NHSN surveillance definition of health care-associated infection and criteria for specific types of infections in the acute care setting. Am. J. Infect. Control 36 309–332. 10.1016/j.ajic.2008.03.002
    1. Houghton V. J., Bower V. M., Chant D. C. (2013). Is an increase in skin temperature predictive of neuropathic foot ulceration in people with diabetes? A systematic review and meta-analysis. J. Foot Ankle Res. 6:31. 10.1186/1757-1146-6-31
    1. Huang C.-L., Wu Y.-W., Hwang C.-L., Jong Y.-S., Chao C.-L., Chen W.-J., et al. (2011). The application of infrared thermography in evaluation of patients at high risk for lower extremity peripheral arterial disease. J. Vasc. Surg. 54 1074–1080. 10.1016/j.jvs.2011.03.287
    1. Hughes M., Wilkinson J., Moore T., Manning J., New P., Dinsdale G., et al. (2016). Thermographic abnormalities are associated with future digital ulcers and death in patients with systemic sclerosis. J. Rheumatol. 43 1519–1522. 10.3899/jrheum.151412
    1. Hughes-Riley T., Lugoda P., Dias T., Trabi C. L., Morris R. H. (2017). A Study of thermistor performance within a textile structure. Sensors (Basel) 17:1804. 10.3390/s17081804
    1. Huizenga C., Zhang H., Arens E., Wang D. (2004). Skin and core temperature response to partial- and whole-body heating and cooling. J. Therm. Biol. 29 549–558. 10.1016/j.jtherbio.2004.08.024
    1. Ilo A., Romsi P., Mäkelä J. (2020). Infrared thermography as a diagnostic tool for peripheral artery disease. Adv. Skin Wound Care 33 482–488. 10.1097/01.ASW.0000694156.62834.8b
    1. Ilo A., Romsi P., Pokela M., Mäkelä J. (2021). Infrared thermography follow-up after lower limb revascularization. J. Diabetes Sci. Technol. 15 807–815. 10.1177/1932296820912311
    1. Internationalguideline (2021). Prevention and Treatment of Pressure Ulcers/Injuries: Clinical Practice Guideline. Available Online at: (accessed December 10, 2021).
    1. Just M., Chalopin C., Unger M., Halama D., Neumuth T., Dietz A., et al. (2016). Monitoring of microvascular free flaps following oropharyngeal reconstruction using infrared thermography: first clinical experiences. Eur. Arch. Otorhinolaryngol. 273 2659–2667. 10.1007/s00405-015-3780-9
    1. Kaabouch N., Hu W.-C., Chen Y., Anderson J. W., Ames F., Paulson R. (2010). Predicting neuropathic ulceration: analysis of static temperature distributions in thermal images. J. Biomed. Opt. 15:061715. 10.1117/1.3524233
    1. Kanitakis J. (2002). Anatomy, histology and immunohistochemistry of normal human skin. Eur. J. Dermatol. 12 390–399; quiz400–401.
    1. Kolosovas-Machuca E. S., Martínez-Jiménez M. A., Ramírez-GarcíaLuna J. L., González F. J., Pozos-Guillen A. J., Campos-Lara N. P., et al. (2016). Pain measurement through temperature changes in children undergoing dental extractions. Pain Res. Manag. 2016:4372617. 10.1155/2016/4372617
    1. Koop L. K., Tadi P. (2021). “Physiology, heat loss,” in StatPearls, (Treasure Island FL: StatPearls Publishing; ).
    1. Kottner J., Cuddigan J., Carville K., Balzer K., Berlowitz D., Law S., et al. (2019). Prevention and treatment of pressure ulcers/injuries: the protocol for the second update of the international Clinical Practice Guideline 2019. J. Tissue Viability 28 51–58. 10.1016/j.jtv.2019.01.001
    1. Labeau S. O., Afonso E., Benbenishty J., Blackwood B., Boulanger C., Brett S. J., et al. (2021). Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: the DecubICUs study. Intensive Care Med. 47 160–169. 10.1007/s00134-020-06234-9
    1. Lahiri B. B., Bagavathiappan S., Jayakumar T., Philip J. (2012). Medical applications of infrared thermography: a review. Infrared Phys. Technol. 55 221–235. 10.1016/j.infrared.2012.03.007
    1. Lavery L. A., Petersen B. J., Linders D. R., Bloom J. D., Rothenberg G. M., Armstrong D. G. (2019). Unilateral remote temperature monitoring to predict future ulceration for the diabetic foot in remission. BMJ Open Diabetes Res. Care 7:e000696. 10.1136/bmjdrc-2019-000696
    1. Lawson L., Bridges E. J., Ballou I., Eraker R., Greco S., Shively J., et al. (2007). Accuracy and precision of noninvasive temperature measurement in adult intensive care patients. Am. J. Crit. Care 16 485–496.
    1. Li Z., Lin F., Thalib L., Chaboyer W. (2020). Global prevalence and incidence of pressure injuries in hospitalised adult patients: a systematic review and meta-analysis. Int. J. Nurs. Stud. 105:103546. 10.1016/j.ijnurstu.2020.103546
    1. Lim C. L. (2020). Fundamental concepts of human thermoregulation and adaptation to heat: a review in the context of global warming. Int. J. Environ. Res. Public Health 17:E7795. 10.3390/ijerph17217795
    1. Lin P. H., Saines M. (2017). Assessment of lower extremity ischemia using smartphone thermographic imaging. J. Vasc. Surg. Cases Innov. Tech. 3 205–208. 10.1016/j.jvscit.2016.10.012
    1. Martínez-Jiménez M. A., Aguilar-García J., Valdés-Rodríguez R., Metlich-Medlich M. A., Dietsch L. J. P., Gaitán-Gaona F. I., et al. (2013). Local use of insulin in wounds of diabetic patients: higher temperature, fibrosis, and angiogenesis. Plast. Reconstr. Surg. 132 1015e–1019e. 10.1097/PRS.0b013e3182a806f0
    1. Martinez-Jimenez M. A., Loza-Gonzalez V. M., Kolosovas-Machuca E. S., Yanes-Lane M. E., Ramirez-GarciaLuna A. S., Ramirez-GarciaLuna J. L. (2021). Diagnostic accuracy of infrared thermal imaging for detecting COVID-19 infection in minimally symptomatic patients. Eur. J. Clin. Invest. 51:e13474. 10.1111/eci.13474
    1. Martínez-Jiménez M. A., Ramirez-GarciaLuna J. L., Kolosovas-Machuca E. S., Drager J., González F. J. (2018a). Development and validation of an algorithm to predict the treatment modality of burn wounds using thermographic scans: prospective cohort study. PLoS One 13:e0206477. 10.1371/journal.pone.0206477
    1. Martínez-Jiménez M. A., Valadez-Castillo F. J., Aguilar-García J., Ramírez-GarciaLuna J. L., Gaitán-Gaona F. I., Pierdant-Perez M., et al. (2018b). Effects of local use of insulin on wound healing in non-diabetic patients. Plast. Surg. (Oakv) 26 75–79. 10.1177/2292550317740688
    1. Martín-Vaquero J., Hernández Encinas A., Queiruga-Dios A., José Bullón J., Martínez-Nova A., Torreblanca González J., et al. (2019). Review on wearables to monitor foot temperature in diabetic patients. Sensors (Basel) 19:776. 10.3390/s19040776
    1. Maxim L. D., Niebo R., Utell M. J. (2014). Screening tests: a review with examples. Inhal. Toxicol. 26 811–828. 10.3109/08958378.2014.955932
    1. Mayrovitz H. N., Spagna P. E., Taylor M. C. (2018). Sacral skin temperature assessed by thermal imaging: role of patient vascular attributes. J. Wound Ostomy Continence Nurs. 45 17–21. 10.1097/WON.0000000000000392
    1. McConeghy K. W., White E., Panagiotou O. A., Santostefano C., Halladay C., Feifer R. A., et al. (2020). Temperature screening for SARS-CoV-2 in nursing homes: evidence from two national cohorts. J. Am. Geriatr. Soc. 68 2716–2720. 10.1111/jgs.16876
    1. Meyer A., Roof S., Gray M. L., Fan C. J., Barber B., Miles B. A., et al. (2020). Thermal imaging for microvascular free tissue transfer monitoring: feasibility study using a low cost, commercially available mobile phone imaging system. Head Neck 42 2941–2947. 10.1002/hed.26350
    1. Moore Z. E., Patton D. (2019). Risk assessment tools for the prevention of pressure ulcers. Cochrane Database Syst. Rev. 1:CD006471. 10.1002/14651858.CD006471.pub4
    1. Moore Z., Patton D., Rhodes S. L., O’Connor T. (2017). Subepidermal moisture (SEM) and bioimpedance: a literature review of a novel method for early detection of pressure-induced tissue damage (pressure ulcers). Int. Wound J. 14 331–337. 10.1111/iwj.12604
    1. Moreira D. G., Costello J. T., Brito C. J., Adamczyk J. G., Ammer K., Bach A. J. E., et al. (2017). Thermographic imaging in sports and exercise medicine: a Delphi study and consensus statement on the measurement of human skin temperature. J. Therm. Biol. 69 155–162. 10.1016/j.jtherbio.2017.07.006
    1. Mota-Rojas D., Titto C. G., Orihuela A., Martínez-Burnes J., Gómez-Prado J., Torres-Bernal F., et al. (2021). Physiological and behavioral mechanisms of thermoregulation in mammals. Animals (Basel) 11:1733. 10.3390/ani11061733
    1. Murray A. K., Moore T. L., Manning J. B., Taylor C., Griffiths C. E. M., Herrick A. L. (2009). Noninvasive imaging techniques in the assessment of scleroderma spectrum disorders. Arthritis Rheum. 61 1103–1111. 10.1002/art.24645
    1. Nagase T., Sanada H., Takehara K., Oe M., Iizaka S., Ohashi Y., et al. (2011). Variations of plantar thermographic patterns in normal controls and non-ulcer diabetic patients: novel classification using angiosome concept. J. Plast. Reconstr. Aesthet. Surg. 64 860–866. 10.1016/j.bjps.2010.12.003
    1. Oe M., Yotsu R. R., Sanada H., Nagase T., Tamaki T. (2012). Thermographic findings in a case of type 2 diabetes with foot ulcer and osteomyelitis. J. Wound Care 21 276–278. 10.12968/jowc.2012.21.6.274
    1. Pearce J. M. S. (2002). A brief history of the clinical thermometer. QJM Int. J. Med. 95 251–252. 10.1093/qjmed/95.4.251
    1. Pearce J. M. S. (2003). Sir Thomas clifford allbutt. J. Neurol. Neurosurg. Psychiatry 74 1443–1443. 10.1136/jnnp.74.10.1443
    1. Polidori G., Renard Y., Lorimier S., Pron H., Derruau S., Taiar R. (2017). Medical infrared thermography assistance in the surgical treatment of axillary hidradenitis suppurativa: a case report. Int. J. Surg. Case Rep. 34 56–59. 10.1016/j.ijscr.2017.03.015
    1. Priego Quesada J. I., Sampaio L. T., Bini R. R., Rossato M., Cavalcanti V. (2017). Multifactorial cycling performance of Cyclists and Non-Cyclists and their effect on skin temperature. J. Therm. Anal. Calorim. 127 1479–1489. 10.1007/s10973-016-5971-z
    1. Raghav A., Khan Z. A., Labala R. K., Ahmad J., Noor S., Mishra B. K. (2018). Financial burden of diabetic foot ulcers to world: a progressive topic to discuss always. Ther. Adv. Endocrinol. Metab. 9 29–31. 10.1177/2042018817744513
    1. Rahbek O., Husum H.-C., Fridberg M., Ghaffari A., Kold S. (2021). Intrarater reliability of digital thermography in detecting pin site infection: a proof of concept study. Strategies Trauma Limb. Reconstr. 16 1–7. 10.5005/jp-journals-10080-1522
    1. Ramirez-GarciaLuna J. L., Vera-Bañuelos L. R., Guevara-Torres L., Martínez-Jiménez M. A., Ortiz-Dosal A., Gonzalez F. J., et al. (2020). Infrared thermography of abdominal wall in acute appendicitis: proof of concept study. Infrared Phys. Technol. 105:103165. 10.1016/j.infrared.2019.103165
    1. Ramirez-GarciaLuna J. L., Wang S. C., Yangzom T., Piguet V., Kirby J. S., Alavi A. (2021). Use of thermal imaging and a dedicated wound imaging smartphone app as an adjunct to staging hidradenitis suppurativa. Br. J. Dermatol. 10.1111/bjd.20884 [Epub ahead of print].
    1. Ramirez-GarciaLuna J., Wang S. C., Allport J., Croitoru D., Brar R., Alavi A. (2021). 27591 Quantification of the area of affection and inflammation of hidradenitis suppurativa using a dedicated mobile app. J. Am. Acad. Dermatol. 85:AB153. 10.1016/j.jaad.2021.06.626
    1. Reyzelman A. M., Koelewyn K., Murphy M., Shen X., Yu E., Pillai R., et al. (2018). Continuous temperature-monitoring socks for home use in patients with diabetes: observational study. J. Med. Internet Res. 20:e12460. 10.2196/12460
    1. Robicsek F., Masters T. N., Daugherty H. K., Cook J. W., Selle J. G., Hess P. J., et al. (1984). The value of thermography in the early diagnosis of postoperative sternal wound infections. Thorac. Cardiovasc. Surg. 32 260–265. 10.1055/s-2007-1023400
    1. Romanò C. L., Logoluso N., Dell’Oro F., Elia A., Drago L. (2012). Telethermographic findings after uncomplicated and septic total knee replacement. Knee 19 193–197. 10.1016/j.knee.2011.02.012
    1. Sae-Sia W., Wipke-Tevis D. D., Williams D. A. (2005). Elevated sacral skin temperature (T(s)): a risk factor for pressure ulcer development in hospitalized neurologically impaired Thai patients. Appl. Nurs. Res. 18 29–35. 10.1016/j.apnr.2004.03.005
    1. Sagaidachnyi A. A., Fomin A. V., Usanov D. A., Skripal A. V. (2017). Thermography-based blood flow imaging in human skin of the hands and feet: a spectral filtering approach. Physiol. Meas. 38 272–288. 10.1088/1361-6579/aa4eaf
    1. Santorio S., Gherardo C. Avicenna (1646). Commentaria in Primam fen Primi Libri CanonisAvicennae. Venetiis: Apud Marcum AntoniumBrogiollum.
    1. Saygin D., Highland K. B., Tonelli A. R. (2019). Microvascular involvement in systemic sclerosis and systemic lupus erythematosus. Microcirculation 26:e12440. 10.1111/micc.12440
    1. Seifalian A. M., Stansby G., Jackson A., Howell K., Hamilton G. (1994). Comparison of laser doppler perfusion imaging, laser doppler flowmetry, and thermographic imaging for assessment of blood flow in human skin. Eur. J. Vasc. Surg. 8 65–69. 10.1016/s0950-821x(05)80123-9
    1. Sessler D. I. (2009). Thermoregulatory defense mechanisms. Crit. Care Med. 37 S203–S210. 10.1097/CCM.0b013e3181aa5568
    1. Shen A. Y., Lonie S., Lim K., Farthing H., Hunter-Smith D. J., Rozen W. M. (2021). Free flap monitoring, salvage, and failure timing: a systematic review. J. Reconstr. Microsurg. 37 300–308. 10.1055/s-0040-1722182
    1. Siah C.-J. R., Childs C., Chia C. K., Cheng K. F. K. (2019). An observational study of temperature and thermal images of surgical wounds for detecting delayed wound healing within four days after surgery. J. Clin. Nurs. 28 2285–2295. 10.1111/jocn.14832
    1. Sibbald R. G., Mufti A., Armstrong D. G., Smart H. (2021). Nontouch infrared skin thermometry: an underutilized tool. Adv. Skin Wound Care 34 614–615. 10.1097/01.ASW.0000795248.80980.89
    1. Simman R., Angel C. (2021). Early identification of deep tissue injury using long-wave infrared thermography: a blinded, prospective cohort study. Adv. Skin Wound Care 35 95–101. 10.1097/01.ASW.0000790448.22423.b0
    1. Sjøberg T., Mercer J. B., Weum S., de Weerd L. (2020). The value of dynamic infrared thermography in pedicled thoracodorsal artery perforator flap surgery. Plast. Reconstr. Surg. Glob. Open 8:e2799. 10.1097/GOX.0000000000002799
    1. SSI, PSC, NHSN, and CDC (2021). Available online at: (accessed December 11, 2021).
    1. Staffa E., Bernard V., Kubicek L., Vlachovsky R., Vlk D., Mornstein V., et al. (2017). Infrared thermography as option for evaluating the treatment effect of percutaneous transluminal angioplasty by patients with peripheral arterial disease. Vascular 25 42–49. 10.1177/1708538116640444
    1. Steele R. J. (1986). Abdominal thermography in acute appendicitis. Scott. Med. J. 31 229–230. 10.1177/003693308603100403
    1. Tamura T., Zhou J., Mizukami H., Togawa T. (1993). A system for monitoring temperature distribution in bed and its application to the assessment of body movement. Physiol. Meas. 14 33–41. 10.1088/0967-3334/14/1/005
    1. Torreblanca González J., Gómez-Martín B., Hernández Encinas A., Martín-Vaquero J., Queiruga-Dios A., Martínez-Nova A. (2021). The use of infrared thermography to develop and assess a wearable sock and monitor foot temperature in diabetic subjects. Sensors 21:1821. 10.3390/s21051821
    1. Uleberg O., Eidstuen S., Vangberg G., Skogvoll E. (2015). Temperature measurements in trauma patients: is the ear the key to the core? Scand. J. Trauma Resusc. Emerg. Med. 23:101. 10.1186/s13049-015-0178-z
    1. Wallace G. A., Singh N., Quiroga E., Tran N. T. (2018). The use of smart phone thermal imaging for assessment of peripheral perfusion in vascular patients. Ann. Vasc. Surg. 47 157–161. 10.1016/j.avsg.2017.07.028
    1. Wang H., Kim M., Normoyle K. P., Llano D. (2016). Thermal regulation of the brain-an anatomical and physiological review for clinical neuroscientists. Front. Neurosci. 9:528. 10.3389/fnins.2015.00528
    1. Wang S. C., Anderson J. A. E., Evans R., Woo K., Beland B., Sasseville D., et al. (2017). Point-of-care wound visioning technology: reproducibility and accuracy of a wound measurement app. PLoS One 12:e0183139. 10.1371/journal.pone.0183139
    1. Wang S. C., Au Y., Ramirez-GarciaLuna J. L., Lee L., Berry G. K. (2020). The promise of smartphone applications in the remote monitoring of postsurgical wounds: a literature review. Adv. Skin Wound Care 33 489–496. 10.1097/01.ASW.0000694136.29135.02
    1. Watmough D. J., Fowler P. W., Oliver R. (1970). The thermal scanning of a curved isothermal surface: implications for clinical thermography. Phys. Med. Biol. 15 1–8. 10.1088/0031-9155/15/1/301
    1. Weigert M., Nitzsche N., Kunert F., Lösch C., Baumgärtel L., Schulz H. (2018). Acute exercise-associated skin surface temperature changes after resistance training with different exercise intensities. Int. J. Kinesiol. Sports Sci. 6 12–18. 10.7575/aiac.ijkss.v.6n.1p.12
    1. Zaïdi H., Taïar R., Fohanno S., Polidori G. (2007). The influence of swimming type on the skin-temperature maps of a competitive swimmer from infrared thermography. Acta Bioeng. Biomech. 9 47–51.
    1. Zhu T. Y., Rothenbühler M., Hamvas G., Hofmann A., Welter J., Kahr M., et al. (2021). The accuracy of wrist skin temperature in detecting ovulation compared to basal body temperature: prospective comparative diagnostic accuracy study. J. Med. Internet Res. 23:e20710. 10.2196/20710
    1. Zouboulis C. C., Nogueira da Costa A., Jemec G. B. E., Trebing D. (2019). Long-wave medical infrared thermography: a clinical biomarker of inflammation in hidradenitis suppurativa/acne inversa. Dermatology (Basel, Switzerland) 235 144–149. 10.1159/000495982

Source: PubMed

3
Abonneren