Microbiome Research and Multi-Omics Integration for Personalized Medicine in Asthma

Marianthi Logotheti, Panagiotis Agioutantis, Paraskevi Katsaounou, Heleni Loutrari, Marianthi Logotheti, Panagiotis Agioutantis, Paraskevi Katsaounou, Heleni Loutrari

Abstract

Asthma is a multifactorial inflammatory disorder of the respiratory system characterized by high diversity in clinical manifestations, underlying pathological mechanisms and response to treatment. It is generally established that human microbiota plays an essential role in shaping a healthy immune response, while its perturbation can cause chronic inflammation related to a wide range of diseases, including asthma. Systems biology approaches encompassing microbiome analysis can offer valuable platforms towards a global understanding of asthma complexity and improving patients' classification, status monitoring and therapeutic choices. In the present review, we summarize recent studies exploring the contribution of microbiota dysbiosis to asthma pathogenesis and heterogeneity in the context of asthma phenotypes-endotypes and administered medication. We subsequently focus on emerging efforts to gain deeper insights into microbiota-host interactions driving asthma complexity by integrating microbiome and host multi-omics data. One of the most prominent achievements of these research efforts is the association of refractory neutrophilic asthma with certain microbial signatures, including predominant pathogenic bacterial taxa (such as Proteobacteria phyla, Gammaproteobacteria class, especially species from Haemophilus and Moraxella genera). Overall, despite existing challenges, large-scale multi-omics endeavors may provide promising biomarkers and therapeutic targets for future development of novel microbe-based personalized strategies for diagnosis, prevention and/or treatment of uncontrollable asthma.

Keywords: asthma; bioinformatics; biomarkers; drug targets; gut and airway microbiota; multi-omics data integration; precision medicine; systems biology.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Main features of asthma endotypes. FeNO: fractional exhaled nitric oxide; IgE: immunoglobulin E; IL: interleukin; ICS: inhaled corticosteroids; OCS: oral corticosteroids.
Figure 2
Figure 2
Schematic representation of dysbiosis in asthma. Exposome refers to factors such as environmental microbiota, allergens, air pollution, tobacco smoke, diet, medication and early-life exposures.

References

    1. World Health Organization Asthma. [(accessed on 20 May 2021)]. Available online: .
    1. Wenzel S.E. Asthma Phenotypes: The Evolution from Clinical to Molecular Approaches. Nat. Med. 2012;18:716–725. doi: 10.1038/nm.2678.
    1. Loza M.J., Djukanovic R., Chung K.F., Horowitz D., Ma K., Branigan P., Barnathan E.S., Susulic V.S., Silkoff P.E., Sterk P.J., et al. Validated and Longitudinally Stable Asthma Phenotypes Based on Cluster Analysis of the ADEPT Study. Respir. Res. 2016;17:165. doi: 10.1186/s12931-016-0482-9.
    1. Kuruvilla M.E., Lee F.E.-H., Lee G.B. Understanding Asthma Phenotypes, Endotypes, and Mechanisms of Disease. Clin. Rev. Allergy Immunol. 2019;56:219–233. doi: 10.1007/s12016-018-8712-1.
    1. Papi A., Brightling C., Pedersen S.E., Reddel H.K. Asthma. Lancet. 2018;391:783–800. doi: 10.1016/S0140-6736(17)33311-1.
    1. Global Initiative for Asthma . GINA 2021 Asthma Management and Prevention. Global Initiative for Asthma; Fontana, WI, USA: 2021.
    1. Muraro A., Lemanske R.F., Hellings P.W., Akdis C.A., Bieber T., Casale T.B., Jutel M., Ong P.Y., Poulsen L.K., Schmid-Grendelmeier P., et al. Precision Medicine in Patients with Allergic Diseases: Airway Diseases and Atopic Dermatitis—PRACTALL Document of the European Academy of Allergy and Clinical Immunology and the American Academy of Allergy, Asthma & Immunology. J. Allergy Clin. Immunol. 2016;137:1347–1358.
    1. Chung K.F. Precision Medicine in Asthma. Curr. Opin. Pulm. Med. 2018;24:4–10. doi: 10.1097/MCP.0000000000000434.
    1. Cazzola M., Ora J., Cavalli F., Rogliani P., Matera M.G. Treatable Mechanisms in Asthma. Mol. Diagn. Ther. 2021;25:111–121. doi: 10.1007/s40291-021-00514-w.
    1. Chiu C.-J., Huang M.-T. Asthma in the Precision Medicine Era: Biologics and Probiotics. Int. J. Mol. Sci. 2021;22:4528. doi: 10.3390/ijms22094528.
    1. Silkoff P.E., Moore W.C., Sterk P.J. Three Major Efforts to Phenotype Asthma: Severe Asthma Research Program, Asthma Disease Endotyping for Personalized Therapeutics, and Unbiased Biomarkers for the Prediction of Respiratory Disease Outcome. Clin. Chest Med. 2019;40:13–28. doi: 10.1016/j.ccm.2018.10.016.
    1. Colas L., Hassoun D., Magnan A. Needs for Systems Approaches to Better Treat Individuals With Severe Asthma: Predicting Phenotypes and Responses to Treatments. Front. Med. 2020;7:98. doi: 10.3389/fmed.2020.00098.
    1. Hufnagl K., Pali-Schöll I., Roth-Walter F., Jensen-Jarolim E. Dysbiosis of the Gut and Lung Microbiome Has a Role in Asthma. Semin. Immunopathol. 2020;42:75–93. doi: 10.1007/s00281-019-00775-y.
    1. Berg G., Rybakova D., Fischer D., Cernava T., Vergès M.-C.C., Charles T., Chen X., Cocolin L., Eversole K., Corral G.H., et al. Microbiome Definition Re-Visited: Old Concepts and New Challenges. Microbiome. 2020;8:103. doi: 10.1186/s40168-020-00875-0.
    1. Escobar-Zepeda A., Vera-Ponce de León A., Sanchez-Flores A. The Road to Metagenomics: From Microbiology to DNA Sequencing Technologies and Bioinformatics. Front. Genet. 2015;6:348. doi: 10.3389/fgene.2015.00348.
    1. Davidson R.M., Epperson L.E. Microbiome Sequencing Methods for Studying Human Diseases. Methods Mol. Biol. 2018;1706:77–90.
    1. Breitwieser F.P., Lu J., Salzberg S.L. A Review of Methods and Databases for Metagenomic Classification and Assembly. Brief. Bioinform. 2019;20:1125–1136. doi: 10.1093/bib/bbx120.
    1. Holgate S.T., Wenzel S., Postma D.S., Weiss S.T., Renz H., Sly P.D. Asthma. Nat. Rev. Dis. Prim. 2015;1:15025. doi: 10.1038/nrdp.2015.25.
    1. Barnes P.J. Corticosteroid Resistance in Patients with Asthma and Chronic Obstructive Pulmonary Disease. J. Allergy Clin. Immunol. 2013;131:636–645. doi: 10.1016/j.jaci.2012.12.1564.
    1. Kiboneka A., Kibuule D. The immunology of asthma and allergic rhinitis. In: Balwant S.G., Turkalj M., editors. Rhinosinusitis. IntechOpen; London, UK: 2019.
    1. Raphael I., Nalawade S., Eagar T.N., Forsthuber T.G. T Cell Subsets and Their Signature Cytokines in Autoimmune and Inflammatory Diseases. Cytokine. 2015;74:5–17. doi: 10.1016/j.cyto.2014.09.011.
    1. Fahy J.V. Type 2 Inflammation in Asthma—Present in Most, Absent in Many. Nat. Rev. Immunol. 2015;15:57–65. doi: 10.1038/nri3786.
    1. Kaur R., Chupp G. Phenotypes and Endotypes of Adult Asthma: Moving toward Precision Medicine. J. Allergy Clin. Immunol. 2019;144:1–12. doi: 10.1016/j.jaci.2019.05.031.
    1. Akar-Ghibril N., Casale T., Custovic A., Phipatanakul W. Allergic Endotypes and Phenotypes of Asthma. J. Allergy Clin. Immunol. Pract. 2020;8:429–440. doi: 10.1016/j.jaip.2019.11.008.
    1. Katsaounou P., Buhl R., Brusselle G., Pfister P., Martínez R., Wahn U., Bousquet J. Omalizumab as Alternative to Chronic Use of Oral Corticosteroids in Severe Asthma. Respir. Med. 2019;150:51–62. doi: 10.1016/j.rmed.2019.02.003.
    1. Martinez G.J., Nurieva R.I., Yang X.O., Dong C. Regulation and Function of Proinflammatory TH17 Cells. Ann. N. Y. Acad. Sci. 2008;1143:188–211. doi: 10.1196/annals.1443.021.
    1. Newcomb D.C., Peebles R.S. Th17-Mediated Inflammation in Asthma. Curr. Opin. Immunol. 2013;25:755–760. doi: 10.1016/j.coi.2013.08.002.
    1. Zhu X., Cui J., Yi L., Qin J., Tulake W., Teng F., Tang W., Wei Y., Dong J. The Role of T Cells and Macrophages in Asthma Pathogenesis: A New Perspective on Mutual Crosstalk. Mediat. Inflamm. 2020;2020:1–14. doi: 10.1155/2020/7835284.
    1. Sze E., Bhalla A., Nair P. Mechanisms and Therapeutic Strategies for Non-T2 Asthma. Allergy. 2020;75:311–325. doi: 10.1111/all.13985.
    1. Nair P., Surette M.G., Virchow J.C. Neutrophilic Asthma: Misconception or Misnomer? Lancet Respir. Med. 2021;9:441–443. doi: 10.1016/S2213-2600(21)00023-0.
    1. Israel E., Reddel H.K. Severe and Difficult-to-Treat Asthma in Adults. N. Engl. J. Med. 2017;377:965–976. doi: 10.1056/NEJMra1608969.
    1. Chau-Etchepare F., Hoerger J.L., Kuhn B.T., Zeki A.A., Haczku A., Louie S., Kenyon N.J., Davis C.E., Schivo M. Viruses and Non-Allergen Environmental Triggers in Asthma. J. Investig. Med. 2019;67:1029–1041. doi: 10.1136/jim-2019-001000.
    1. Bardin P.G. Escalating Inhaled Glucocorticoids to Prevent Asthma Exacerbations. N. Engl. J. Med. 2018;378:950–952. doi: 10.1056/NEJMe1800152.
    1. Tyler S.R., Bunyavanich S. Leveraging -Omics for Asthma Endotyping. J. Allergy Clin. Immunol. 2019;144:13–23. doi: 10.1016/j.jaci.2019.05.015.
    1. Ivanova O., Richards L.B., Vijverberg S.J., Neerincx A.H., Sinha A., Sterk P.J., Maitland-van der Zee A.H. What Did We Learn from Multiple Omics Studies in Asthma? Allergy. 2019;74:2129–2145. doi: 10.1111/all.13833.
    1. Abdel-Aziz M.I., Neerincx A.H., Vijverberg S.J., Kraneveld A.D., Maitland-van der Zee A.H. Omics for the Future in Asthma. Semin. Immunopathol. 2020;42:111–126. doi: 10.1007/s00281-019-00776-x.
    1. Tang H.H.F., Sly P.D., Holt P.G., Holt K.E., Inouye M. Systems Biology and Big Data in Asthma and Allergy: Recent Discoveries and Emerging Challenges. Eur. Respir. J. 2020;55:1900844. doi: 10.1183/13993003.00844-2019.
    1. Shaw D.E., Sousa A.R., Fowler S.J., Fleming L.J., Roberts G., Corfield J., Pandis I., Bansal A.T., Bel E.H., Auffray C., et al. Clinical and Inflammatory Characteristics of the European U-BIOPRED Adult Severe Asthma Cohort. Eur. Respir. J. 2015;46:1308–1321. doi: 10.1183/13993003.00779-2015.
    1. Fleming L., Murray C., Bansal A.T., Hashimoto S., Bisgaard H., Bush A., Frey U., Hedlin G., Singer F., van Aalderen W.M., et al. The Burden of Severe Asthma in Childhood and Adolescence: Results from the Paediatric U-BIOPRED Cohorts. Eur. Respir. J. 2015;46:1322–1333. doi: 10.1183/13993003.00780-2015.
    1. Teague W.G., Phillips B.R., Fahy J.V., Wenzel S.E., Fitzpatrick A.M., Moore W.C., Hastie A.T., Bleecker E.R., Meyers D.A., Peters S.P., et al. Baseline Features of the Severe Asthma Research Program (SARP III) Cohort: Differences with Age. J. Allergy Clin. Immunol. Pract. 2018;6:545–554.e4. doi: 10.1016/j.jaip.2017.05.032.
    1. Moore W.C., Bleecker E.R., Curran-Everett D., Erzurum S.C., Ameredes B.T., Bacharier L., Calhoun W.J., Castro M., Chung K.F., Clark M.P., et al. Characterization of the Severe Asthma Phenotype by the National Heart, Lung, and Blood Institute’s Severe Asthma Research Program. J. Allergy Clin. Immunol. 2007;119:405–413. doi: 10.1016/j.jaci.2006.11.639.
    1. Moffatt M.F., Gut I.G., Demenais F., Strachan D.P., Bouzigon E., Heath S., von Mutius E., Farrall M., Lathrop M., Cookson W.O.C.M. A Large-Scale, Consortium-Based Genomewide Association Study of Asthma. N. Engl. J. Med. 2010;363:1211–1221. doi: 10.1056/NEJMoa0906312.
    1. Shrine N., Portelli M.A., John C., Soler Artigas M., Bennett N., Hall R., Lewis J., Henry A.P., Billington C.K., Ahmad A., et al. Moderate-to-Severe Asthma in Individuals of European Ancestry: A Genome-Wide Association Study. Lancet Respir. Med. 2019;7:20–34. doi: 10.1016/S2213-2600(18)30389-8.
    1. Ober C., Nicolae D.L. Meta-Analysis of Genome-Wide Association Studies of Asthma in Ethnically Diverse North American Populations. Nat. Genet. 2011;43:887–892. doi: 10.1038/ng.888.
    1. Farzan N., Vijverberg S.J., Hernandez-Pacheco N., Bel E.H.D., Berce V., Bønnelykke K., Bisgaard H., Burchard E.G., Canino G., Celedón J.C., et al. 17q21 Variant Increases the Risk of Exacerbations in Asthmatic Children despite Inhaled Corticosteroids Use. Allergy. 2018;73:2083–2088. doi: 10.1111/all.13499.
    1. Turner S., Francis B., Vijverberg S., Pino-Yanes M., Maitland-van der Zee A.H., Basu K., Bignell L., Mukhopadhyay S., Tavendale R., Palmer C., et al. Childhood Asthma Exacerbations and the Arg16 Β2-Receptor Polymorphism: A Meta-Analysis Stratified by Treatment. J. Allergy Clin. Immunol. 2016;138:107–113.e5. doi: 10.1016/j.jaci.2015.10.045.
    1. Slob E.M.A., Vijverberg S.J.H., Palmer C.N.A., Zazuli Z., Farzan N., Oliveri N.M.B., Pijnenburg M.W., Koppelman G.H., Maitland-van der Zee A.H. Pharmacogenetics of Inhaled Long-Acting Beta2-Agonists in Asthma: A Systematic Review. Pediatr. Allergy Immunol. 2018;29:705–714. doi: 10.1111/pai.12956.
    1. Vijverberg S.J.H., Farzan N., Slob E.M.A., Neerincx A.H., Maitland-van der Zee A.H. Treatment Response Heterogeneity in Asthma: The Role of Genetic Variation. Expert Rev. Respir. Med. 2018;12:55–65. doi: 10.1080/17476348.2018.1403318.
    1. Joubert B.R., Felix J.F., Yousefi P., Bakulski K.M., Just A.C., Breton C., Reese S.E., Markunas C.A., Richmond R.C., Xu C.-J., et al. DNA Methylation in Newborns and Maternal Smoking in Pregnancy: Genome-Wide Consortium Meta-Analysis. Am. J. Hum. Genet. 2016;98:680–696. doi: 10.1016/j.ajhg.2016.02.019.
    1. Xu C.J., Söderhäll C., Bustamante M., Baïz N., Gruzieva O., Gehring U., Mason D., Chatzi L., Basterrechea M., Llop S., et al. DNA Methylation in Childhood Asthma: An Epigenome-Wide Meta-Analysis. Lancet Respir. Med. 2018;6:379–388. doi: 10.1016/S2213-2600(18)30052-3.
    1. Reese S.E., Xu C.-J., den Dekker H.T., Lee M.K., Sikdar S., Ruiz-Arenas C., Merid S.K., Rezwan F.I., Page C.M., Ullemar V., et al. Epigenome-Wide Meta-Analysis of DNA Methylation and Childhood Asthma. J. Allergy Clin. Immunol. 2019;143:2062–2074. doi: 10.1016/j.jaci.2018.11.043.
    1. Nicodemus-Johnson J., Myers R.A., Sakabe N.J., Sobreira D.R., Hogarth D.K., Naureckas E.T., Sperling A.I., Solway J., White S.R., Nobrega M.A., et al. DNA Methylation in Lung Cells Is Associated with Asthma Endotypes and Genetic Risk. JCI Insight. 2016;1:1–15. doi: 10.1172/jci.insight.90151.
    1. Woodruff P.G., Modrek B., Choy D.F., Jia G., Abbas A.R., Ellwanger A., Arron J.R., Koth L.L., Fahy J.V. T-Helper Type 2-Driven Inflammation Defines Major Subphenotypes of Asthma. Am. J. Respir. Crit. Care Med. 2009;180:388–395. doi: 10.1164/rccm.200903-0392OC.
    1. Howrylak J.A., Moll M., Weiss S.T., Raby B.A., Wu W., Xing E.P. Gene Expression Profiling of Asthma Phenotypes Demonstrates Molecular Signatures of Atopy and Asthma Control. J. Allergy Clin. Immunol. 2016;137:1390–1397.e6. doi: 10.1016/j.jaci.2015.09.058.
    1. Lefaudeux D., De Meulder B., Loza M.J., Peffer N., Rowe A., Baribaud F., Bansal A.T., Lutter R., Sousa A.R., Corfield J., et al. U-BIOPRED Clinical Adult Asthma Clusters Linked to a Subset of Sputum Omics. J. Allergy Clin. Immunol. 2017;139:1797–1807. doi: 10.1016/j.jaci.2016.08.048.
    1. Kuo C.-H.S., Pavlidis S., Loza M., Baribaud F., Rowe A., Pandis I., Hoda U., Rossios C., Sousa A., Wilson S.J., et al. A Transcriptome-Driven Analysis of Epithelial Brushings and Bronchial Biopsies to Define Asthma Phenotypes in U-BIOPRED. Am. J. Respir. Crit. Care Med. 2017;195:443–455. doi: 10.1164/rccm.201512-2452OC.
    1. Kuo C.-H.S., Pavlidis S., Loza M., Baribaud F., Rowe A., Pandis I., Sousa A., Corfield J., Djukanovic R., Lutter R., et al. T-Helper Cell Type 2 (Th2) and Non-Th2 Molecular Phenotypes of Asthma Using Sputum Transcriptomics in U-BIOPRED. Eur. Respir. J. 2017;49:1602135. doi: 10.1183/13993003.02135-2016.
    1. Bigler J., Boedigheimer M., Schofield J.P.R., Skipp P.J., Corfield J., Rowe A., Sousa A.R., Timour M., Twehues L., Hu X., et al. A Severe Asthma Disease Signature from Gene Expression Profiling of Peripheral Blood from U-BIOPRED Cohorts. Am. J. Respir. Crit. Care Med. 2017;195:1311–1320. doi: 10.1164/rccm.201604-0866OC.
    1. Hekking P.-P., Loza M.J., Pavlidis S., de Meulder B., Lefaudeux D., Baribaud F., Auffray C., Wagener A.H., Brinkman P., Lutter R., et al. Pathway Discovery Using Transcriptomic Profiles in Adult-Onset Severe Asthma. J. Allergy Clin. Immunol. 2018;141:1280–1290. doi: 10.1016/j.jaci.2017.06.037.
    1. Takahashi K., Pavlidis S., Ng Kee Kwong F., Hoda U., Rossios C., Sun K., Loza M., Baribaud F., Chanez P., Fowler S.J., et al. Sputum Proteomics and Airway Cell Transcripts of Current and Ex-Smokers with Severe Asthma in U-BIOPRED: An Exploratory Analysis. Eur. Respir. J. 2018;51:1702173. doi: 10.1183/13993003.02173-2017.
    1. Schofield J.P.R., Burg D., Nicholas B., Strazzeri F., Brandsma J., Staykova D., Folisi C., Bansal A.T., Xian Y., Guo Y., et al. Stratification of Asthma Phenotypes by Airway Proteomic Signatures. J. Allergy Clin. Immunol. 2019;144:70–82. doi: 10.1016/j.jaci.2019.03.013.
    1. Modena B.D., Bleecker E.R., Busse W.W., Erzurum S.C., Gaston B.M., Jarjour N.N., Meyers D.A., Milosevic J., Tedrow J.R., Wu W., et al. Gene Expression Correlated with Severe Asthma Characteristics Reveals Heterogeneous Mechanisms of Severe Disease. Am. J. Respir. Crit. Care Med. 2017;195:1449–1463. doi: 10.1164/rccm.201607-1407OC.
    1. Brasier A.R., Victor S., Ju H., Busse W.W., Curran-Everett D., Bleecker E., Castro M., Chung K.F., Gaston B., Israel E., et al. Predicting Intermediate Phenotypes in Asthma Using Bronchoalveolar Lavage-Derived Cytokines. Clin. Transl. Sci. 2010;3:147–157. doi: 10.1111/j.1752-8062.2010.00204.x.
    1. Hastie A.T., Moore W.C., Meyers D.A., Vestal P.L., Li H., Peters S.P., Bleecker E.R., National Heart, Lung, and Blood Institute Severe Asthma Research Program Analyses of Asthma Severity Phenotypes and Inflammatory Proteins in Subjects Stratified by Sputum Granulocytes. J. Allergy Clin. Immunol. 2010;125:1028–1036.e13. doi: 10.1016/j.jaci.2010.02.008.
    1. Hastie A.T., Steele C., Dunaway C.W., Moore W.C., Rector B.M., Ampleford E., Li H., Denlinger L.C., Jarjour N., Meyers D.A., et al. Complex Association Patterns for Inflammatory Mediators in Induced Sputum from Subjects with Asthma. Clin. Exp. Allergy. 2018;48:787–797. doi: 10.1111/cea.13129.
    1. Kelly R.S., Dahlin A., McGeachie M.J., Qiu W., Sordillo J., Wan E.S., Wu A.C., Lasky-Su J. Asthma Metabolomics and the Potential for Integrative Omics in Research and the Clinic. Chest. 2017;151:262–277. doi: 10.1016/j.chest.2016.10.008.
    1. Montuschi P., Mores N., Trové A., Mondino C., Barnes P.J. The Electronic Nose in Respiratory Medicine. Respiration. 2013;85:72–84. doi: 10.1159/000340044.
    1. Ibrahim B., Basanta M., Cadden P., Singh D., Douce D., Woodcock A., Fowler S.J. Non-Invasive Phenotyping Using Exhaled Volatile Organic Compounds in Asthma. Thorax. 2011;66:804–809. doi: 10.1136/thx.2010.156695.
    1. Sinha A., Desiraju K., Aggarwal K., Kutum R., Roy S., Lodha R., Kabra S.K., Ghosh B., Sethi T., Agrawal A. Exhaled Breath Condensate Metabolome Clusters for Endotype Discovery in Asthma. J. Transl. Med. 2017;15:262. doi: 10.1186/s12967-017-1365-7.
    1. Van der Schee M.P., Palmay R., Cowan J.O., Taylor D.R. Predicting Steroid Responsiveness in Patients with Asthma Using Exhaled Breath Profiling. Clin. Exp. Allergy. 2013;43:1217–1225. doi: 10.1111/cea.12147.
    1. Brinkman P., Wagener A.H., Hekking P.-P., Bansal A.T., Maitland-van der Zee A.-H., Wang Y., Weda H., Knobel H.H., Vink T.J., Rattray N.J., et al. Identification and Prospective Stability of Electronic Nose (ENose)–Derived Inflammatory Phenotypes in Patients with Severe Asthma. J. Allergy Clin. Immunol. 2019;143:1811–1820.e7. doi: 10.1016/j.jaci.2018.10.058.
    1. Jung J., Kim S.H., Lee H.S., Choi G.S., Jung Y.S., Ryu D.H., Park H.S., Hwang G.S. Serum Metabolomics Reveals Pathways and Biomarkers Associated with Asthma Pathogenesis. Clin. Exp. Allergy. 2013;43:425–433. doi: 10.1111/cea.12089.
    1. Reinke S.N., Gallart-Ayala H., Gómez C., Checa A., Fauland A., Naz S., Kamleh M.A., Djukanović R., Hinks T.S.C., Wheelock C.E. Metabolomics Analysis Identifies Different Metabotypes of Asthma Severity. Eur. Respir. J. 2017;49:1601740. doi: 10.1183/13993003.01740-2016.
    1. Kelly R.S., Sordillo J.E., Lasky-Su J., Dahlin A., Perng W., Rifas-Shiman S.L., Weiss S.T., Gold D.R., Litonjua A.A., Hivert M.-F., et al. Plasma Metabolite Profiles in Children with Current Asthma. Clin. Exp. Allergy. 2018;48:1297–1304. doi: 10.1111/cea.13183.
    1. Durack J., Boushey H.A., Huang Y.J. Incorporating the Airway Microbiome into Asthma Phenotyping: Moving toward Personalized Medicine for Noneosinophilic Asthma. J. Allergy Clin. Immunol. 2018;141:82–83. doi: 10.1016/j.jaci.2017.05.026.
    1. Wang G., McDonald V.M. Contemporary Concise Review 2020: Asthma. Respirology. 2021;26:804–811. doi: 10.1111/resp.14099.
    1. Tang H.H.F., Teo S.M., Sly P.D., Holt P.G., Inouye M. The Intersect of Genetics, Environment, and Microbiota in Asthma—Perspectives and Challenges. J. Allergy Clin. Immunol. 2021;147:781–793. doi: 10.1016/j.jaci.2020.08.026.
    1. Sokolowska M., Frei R., Lunjani N., Akdis C.A., O’Mahony L. Microbiome and Asthma. Asthma Res. Pract. 2018;4:1. doi: 10.1186/s40733-017-0037-y.
    1. Huang Y.J., Marsland B.J., Bunyavanich S., O’mahony L., Leung D.Y.M., Muraro A., Fleisher T.A. The Microbiome in Allergic Disease: Current Understanding and Future Opportunities. J. Allergy Clin. Immunol. 2018;139:1099–1110. doi: 10.1016/j.jaci.2017.02.007.
    1. Stiemsma L.T., Turvey S.E. Asthma and the Microbiome: Defining the Critical Window in Early Life. Allergy Asthma Clin. Immunol. 2017;13:3. doi: 10.1186/s13223-016-0173-6.
    1. Chotirmall S.H., Gellatly S.L., Budden K.F., Mac Aogáin M., Shukla S.D., Wood D.L.A., Hugenholtz P., Pethe K., Hansbro P.M. Microbiomes in Respiratory Health and Disease: An Asia-Pacific Perspective. Respirology. 2017;22:240–250. doi: 10.1111/resp.12971.
    1. Ege M.J. The Hygiene Hypothesis in the Age of the Microbiome. Ann. Am. Thorac. Soc. 2017;14:S348–S353. doi: 10.1513/AnnalsATS.201702-139AW.
    1. Garn H., Potaczek D.P., Pfefferle P.I. The Hygiene Hypothesis and New Perspectives—Current Challenges Meeting an Old Postulate. Front. Immunol. 2021;12:637087. doi: 10.3389/fimmu.2021.637087.
    1. Sbihi H., Boutin R.C.T., Cutler C., Suen M., Finlay B.B., Turvey S.E. Thinking Bigger: How Early-Life Environmental Exposures Shape the Gut Microbiome and Influence the Development of Asthma and Allergic Disease. Allergy. 2019;74:2103–2115. doi: 10.1111/all.13812.
    1. Ege M.J., Mayer M., Normand A.-C., Genuneit J., Cookson W.O.C.M., Braun-Fahrländer C., Heederik D., Piarroux R., von Mutius E. Exposure to Environmental Microorganisms and Childhood Asthma. N. Engl. J. Med. 2011;364:701–709. doi: 10.1056/NEJMoa1007302.
    1. Hanski I., von Hertzen L., Fyhrquist N., Koskinen K., Torppa K., Laatikainen T., Karisola P., Auvinen P., Paulin L., Makela M.J., et al. Environmental Biodiversity, Human Microbiota, and Allergy Are Interrelated. Proc. Natl. Acad. Sci. USA. 2012;109:8334–8339. doi: 10.1073/pnas.1205624109.
    1. Jartti T., Bønnelykke K., Elenius V., Feleszko W. Role of Viruses in Asthma. Semin. Immunopathol. 2020;42:61–74. doi: 10.1007/s00281-020-00781-5.
    1. Vandenborght L.-E., Enaud R., Urien C., Coron N., Girodet P.-O., Ferreira S., Berger P., Delhaes L. Type 2–High Asthma Is Associated with a Specific Indoor Mycobiome and Microbiome. J. Allergy Clin. Immunol. 2021;147:1296–1305.e6. doi: 10.1016/j.jaci.2020.08.035.
    1. Du Toit A. The Gut Microbiome and Mental Health. Nat. Rev. Microbiol. 2019;17:196. doi: 10.1038/s41579-019-0163-z.
    1. Frati F., Salvatori C., Incorvaia C., Bellucci A., Di Cara G., Marcucci F., Esposito S. The Role of the Microbiome in Asthma: The Gut–Lung Axis. Int. J. Mol. Sci. 2018;20:123. doi: 10.3390/ijms20010123.
    1. Durack J., Lynch S.V. The Gut Microbiome: Relationships with Disease and Opportunities for Therapy. J. Exp. Med. 2019;216:20–40. doi: 10.1084/jem.20180448.
    1. Gu S., Chen Y., Wu Z., Chen Y., Gao H., Lv L., Guo F., Zhang X., Luo R., Huang C., et al. Alterations of the Gut Microbiota in Patients With Coronavirus Disease 2019 or H1N1 Influenza. Clin. Infect. Dis. 2020;71:2669–2678. doi: 10.1093/cid/ciaa709.
    1. Chattopadhyay I., Dhar R., Pethusamy K., Seethy A., Srivastava T., Sah R., Sharma J., Karmakar S. Exploring the Role of Gut Microbiome in Colon Cancer. Appl. Biochem. Biotechnol. 2021;193:1780–1799. doi: 10.1007/s12010-021-03498-9.
    1. Fujimura K.E., Lynch S.V. Microbiota in Allergy and Asthma and the Emerging Relationship with the Gut Microbiome. Cell Host Microbe. 2015;17:592–602. doi: 10.1016/j.chom.2015.04.007.
    1. Schirmer M., Smeekens S.P., Vlamakis H., Jaeger M., Oosting M., Franzosa E.A., ter Horst R., Jansen T., Jacobs L., Bonder M.J., et al. Linking the Human Gut Microbiome to Inflammatory Cytokine Production Capacity. Cell. 2016;167:1125–1136.e8. doi: 10.1016/j.cell.2016.10.020.
    1. Geva-Zatorsky N., Sefik E., Kua L., Pasman L., Tan T.G., Ortiz-Lopez A., Yanortsang T.B., Yang L., Jupp R., Mathis D., et al. Mining the Human Gut Microbiota for Immunomodulatory Organisms. Cell. 2017;168:928–943.e11. doi: 10.1016/j.cell.2017.01.022.
    1. Zimmermann M., Zimmermann-Kogadeeva M., Wegmann R., Goodman A.L. Mapping Human Microbiome Drug Metabolism by Gut Bacteria and Their Genes. Nature. 2019;570:462–467. doi: 10.1038/s41586-019-1291-3.
    1. Klünemann M., Andrejev S., Blasche S., Mateus A., Phapale P., Devendran S., Vappiani J., Simon B., Scott T.A., Kafkia E., et al. Bioaccumulation of Therapeutic Drugs by Human Gut Bacteria. Nature. 2021;597:533–538. doi: 10.1038/s41586-021-03891-8.
    1. Arrieta M.-C., Stiemsma L.T., Dimitriu P.A., Thorson L., Russell S., Yurist-Doutsch S., Kuzeljevic B., Gold M.J., Britton H.M., Lefebvre D.L., et al. Early Infancy Microbial and Metabolic Alterations Affect Risk of Childhood Asthma. Sci. Transl. Med. 2015;7:307ra152. doi: 10.1126/scitranslmed.aab2271.
    1. Fujimura K.E., Sitarik A.R., Havstad S., Lin D.L., Levan S., Fadrosh D., Panzer A.R., LaMere B., Rackaityte E., Lukacs N.W., et al. Neonatal Gut Microbiota Associates with Childhood Multisensitized Atopy and T Cell Differentiation. Nat. Med. 2016;22:1187–1191. doi: 10.1038/nm.4176.
    1. Stokholm J., Blaser M.J., Thorsen J., Rasmussen M.A., Waage J., Vinding R.K., Schoos A.-M.M., Kunøe A., Fink N.R., Chawes B.L., et al. Maturation of the Gut Microbiome and Risk of Asthma in Childhood. Nat. Commun. 2018;9:141. doi: 10.1038/s41467-017-02573-2.
    1. Martín-Orozco E., Norte-Muñoz M., Martínez-García J. Regulatory T Cells in Allergy and Asthma. Front. Pediatr. 2017;5:117. doi: 10.3389/fped.2017.00117.
    1. Pandiyan P., Bhaskaran N., Zou M., Schneider E., Jayaraman S., Huehn J. Microbiome Dependent Regulation of Tregs and Th17 Cells in Mucosa. Front. Immunol. 2019;10:426. doi: 10.3389/fimmu.2019.00426.
    1. McLoughlin R.M., Mills K.H.G. Influence of Gastrointestinal Commensal Bacteria on the Immune Responses That Mediate Allergy and Asthma. J. Allergy Clin. Immunol. 2011;127:1097–1107. doi: 10.1016/j.jaci.2011.02.012.
    1. Lee-Sarwar K.A., Lasky-Su J., Kelly R.S., Litonjua A.A., Weiss S.T. Gut Microbial-Derived Metabolomics of Asthma. Metabolites. 2020;10:97. doi: 10.3390/metabo10030097.
    1. MacFabe D.F. Short-Chain Fatty Acid Fermentation Products of the Gut Microbiome: Implications in Autism Spectrum Disorders. Microb. Ecol. Health Dis. 2012;23:19260. doi: 10.3402/mehd.v23i0.19260.
    1. Atarashi K., Tanoue T., Oshima K., Suda W., Nagano Y., Nishikawa H., Fukuda S., Saito T., Narushima S., Hase K., et al. Treg Induction by a Rationally Selected Mixture of Clostridia Strains from the Human Microbiota. Nature. 2013;500:232–236. doi: 10.1038/nature12331.
    1. Sefik E., Geva-Zatorsky N., Oh S., Konnikova L., Zemmour D., McGuire A.M., Burzyn D., Ortiz-Lopez A., Lobera M., Yang J., et al. MUCOSAL IMMUNOLOGY. Individual Intestinal Symbionts Induce a Distinct Population of RORγ+ Regulatory T Cells. Science. 2015;349:993–997. doi: 10.1126/science.aaa9420.
    1. Roduit C., Frei R., Ferstl R., Loeliger S., Westermann P., Rhyner C., Schiavi E., Barcik W., Rodriguez-Perez N., Wawrzyniak M., et al. High Levels of Butyrate and Propionate in Early Life Are Associated with Protection against Atopy. Allergy. 2019;74:799–809. doi: 10.1111/all.13660.
    1. Cui L., Morris A., Huang L., Beck J.M., Twigg H.L., von Mutius E., Ghedin E. The Microbiome and the Lung. Ann. Am. Thorac. Soc. 2014;11:S227–S232. doi: 10.1513/AnnalsATS.201402-052PL.
    1. Lynch S.V. The Lung Microbiome and Airway Disease. Ann. Am. Thorac. Soc. 2016;13:S462–S465. doi: 10.1513/AnnalsATS.201605-356AW.
    1. Dima E., Kyriakoudi A., Kaponi M., Vasileiadis I., Stamou P., Koutsoukou A., Koulouris N.G., Rovina N. The Lung Microbiome Dynamics between Stability and Exacerbation in Chronic Obstructive Pulmonary Disease (COPD): Current Perspectives. Respir. Med. 2019;157:1–6. doi: 10.1016/j.rmed.2019.08.012.
    1. Hakansson A.P., Orihuela C.J., Bogaert D. Bacterial-Host Interactions: Physiology and Pathophysiology of Respiratory Infection. Physiol. Rev. 2018;98:781–811. doi: 10.1152/physrev.00040.2016.
    1. Loverdos K., Bellos G., Kokolatou L., Vasileiadis I., Giamarellos E., Pecchiari M., Koulouris N., Koutsoukou A., Rovina N. Lung Microbiome in Asthma: Current Perspectives. J. Clin. Med. 2019;8:1967. doi: 10.3390/jcm8111967.
    1. Barcik W., Boutin R.C.T., Sokolowska M., Finlay B.B. The Role of Lung and Gut Microbiota in the Pathology of Asthma. Immunity. 2020;52:241–255. doi: 10.1016/j.immuni.2020.01.007.
    1. Hilty M., Burke C., Pedro H., Cardenas P., Bush A., Bossley C., Davies J., Ervine A., Poulter L., Pachter L., et al. Disordered Microbial Communities in Asthmatic Airways. PLoS ONE. 2010;5:e8578. doi: 10.1371/journal.pone.0008578.
    1. Green B.J., Wiriyachaiporn S., Grainge C., Rogers G.B., Kehagia V., Lau L., Carroll M.P., Bruce K.D., Howarth P.H. Potentially Pathogenic Airway Bacteria and Neutrophilic Inflammation in Treatment Resistant Severe Asthma. PLoS ONE. 2014;9:e100645. doi: 10.1371/journal.pone.0100645.
    1. Durack J., Lynch S.V., Nariya S., Bhakta N.R., Beigelman A., Castro M., Dyer A.-M., Israel E., Kraft M., Martin R.J., et al. Features of the Bronchial Bacterial Microbiome Associated with Atopy, Asthma, and Responsiveness to Inhaled Corticosteroid Treatment. J. Allergy Clin. Immunol. 2017;140:63–75. doi: 10.1016/j.jaci.2016.08.055.
    1. Budden K.F., Gellatly S.L., Wood D.L.A., Cooper M.A., Morrison M., Hugenholtz P., Hansbro P.M. Emerging Pathogenic Links between Microbiota and the Gut-Lung Axis. Nat. Rev. Microbiol. 2017;15:55–63. doi: 10.1038/nrmicro.2016.142.
    1. Zhang D., Li S., Wang N., Tan H.-Y., Zhang Z., Feng Y. The Cross-Talk Between Gut Microbiota and Lungs in Common Lung Diseases. Front. Microbiol. 2020;11:301. doi: 10.3389/fmicb.2020.00301.
    1. Laforest-Lapointe I., Arrieta M.-C. Patterns of Early-Life Gut Microbial Colonization during Human Immune Development: An Ecological Perspective. Front. Immunol. 2017;8:788. doi: 10.3389/fimmu.2017.00788.
    1. Van Tilburg Bernardes E., Gutierrez M.W., Arrieta M.-C. The Fungal Microbiome and Asthma. Front. Cell. Infect. Microbiol. 2020;10:583418. doi: 10.3389/fcimb.2020.583418.
    1. Guillien A., Cadiou S., Slama R., Siroux V. The Exposome Approach to Decipher the Role of Multiple Environmental and Lifestyle Determinants in Asthma. Int. J. Environ. Res. Public Health. 2021;18:1138. doi: 10.3390/ijerph18031138.
    1. Shimoda T., Obase Y., Kishikawa R., Iwanaga T. Influence of Cigarette Smoking on Airway Inflammation and Inhaled Corticosteroid Treatment in Patients with Asthma. Allergy Asthma Proc. 2016;37:50–58. doi: 10.2500/aap.2016.37.3944.
    1. Katsaounou P., Ioannou M., Hyland M.E., Odemyr M., Spranger O., Lindberg A., Gasser M., Conde L.G., Jaumont X., Kasujee I. Smoking Asthmatics, a Neglected Large Phenotype of Asthmatic Patients. Open J. Asthma. 2019;3:1–8.
    1. Chatkin J.M., Dullius C.R. The Management of Asthmatic Smokers. Asthma Res. Pract. 2016;2:1–8. doi: 10.1186/s40733-016-0025-7.
    1. Morris A., Beck J.M., Schloss P.D., Campbell T.B., Crothers K., Curtis J.L., Flores S.C., Fontenot A.P., Ghedin E., Huang L., et al. Comparison of the Respiratory Microbiome in Healthy Nonsmokers and Smokers. Am. J. Respir. Crit. Care Med. 2013;187:1067–1075. doi: 10.1164/rccm.201210-1913OC.
    1. Wu J., Peters B.A., Dominianni C., Zhang Y., Pei Z., Yang L., Ma Y., Purdue M.P., Jacobs E.J., Gapstur S.M., et al. Cigarette Smoking and the Oral Microbiome in a Large Study of American Adults. ISME J. 2016;10:2435–2446. doi: 10.1038/ismej.2016.37.
    1. Rodríguez-Rabassa M., López P., Rodríguez-Santiago R.E., Cases A., Felici M., Sánchez R., Yamamura Y., Rivera-Amill V. Cigarette Smoking Modulation of Saliva Microbial Composition and Cytokine Levels. Int. J. Environ. Res. Public Health. 2018;15:2479. doi: 10.3390/ijerph15112479.
    1. Savin Z., Kivity S., Yonath H., Yehuda S. Smoking and the Intestinal Microbiome. Arch. Microbiol. 2018;200:677–684. doi: 10.1007/s00203-018-1506-2.
    1. Huang C., Shi G. Smoking and Microbiome in Oral, Airway, Gut and Some Systemic Diseases. J. Transl. Med. 2019;17:225. doi: 10.1186/s12967-019-1971-7.
    1. Nolan-Kenney R., Wu F., Hu J., Yang L., Kelly D., Li H., Jasmine F., Kibriya M.G., Parvez F., Shaheen I., et al. The Association Between Smoking and Gut Microbiome in Bangladesh. Nicotine Tob. Res. 2020;22:1339–1346. doi: 10.1093/ntr/ntz220.
    1. Biedermann L., Zeitz J., Mwinyi J., Sutter-Minder E., Rehman A., Ott S.J., Steurer-Stey C., Frei A., Frei P., Scharl M., et al. Smoking Cessation Induces Profound Changes in the Composition of the Intestinal Microbiota in Humans. PLoS ONE. 2013;8:e59260.
    1. Çolak Y., Afzal S., Nordestgaard B.G., Lange P. Characteristics and Prognosis of Never-Smokers and Smokers with Asthma in the Copenhagen General Population Study. A Prospective Cohort Study. Am. J. Respir. Crit. Care Med. 2015;192:172–181. doi: 10.1164/rccm.201502-0302OC.
    1. Munck C., Helby J., Westergaard C.G., Porsbjerg C., Backer V., Hansen L.H. Smoking Cessation and the Microbiome in Induced Sputum Samples from Cigarette Smoking Asthma Patients. PLoS ONE. 2016;11:e0158622. doi: 10.1371/journal.pone.0158622.
    1. Wood L.G. Diet, Obesity, and Asthma. Ann. Am. Thorac. Soc. 2017;14:S332–S338. doi: 10.1513/AnnalsATS.201702-124AW.
    1. Tashiro H., Shore S.A. Obesity and Severe Asthma. Allergol. Int. 2019;68:135–142. doi: 10.1016/j.alit.2018.10.004.
    1. Mukadam S., Zacharias J., Henao M.P., Kraschnewski J., Ishmael F. Differential Effects of Obesity on Eosinophilic vs. Non-Eosinophilic Asthma Subtypes. J. Asthma. 2018;55:720–725. doi: 10.1080/02770903.2017.1365886.
    1. Miethe S., Karsonova A., Karaulov A., Renz H. Obesity and Asthma. J. Allergy Clin. Immunol. 2020;146:685–693. doi: 10.1016/j.jaci.2020.08.011.
    1. Andrianasolo R.M., Kesse-Guyot E., Adjibade M., Hercberg S., Galan P., Varraso R. Associations between Dietary Scores with Asthma Symptoms and Asthma Control in Adults. Eur. Respir. J. 2018;52:1702572. doi: 10.1183/13993003.02572-2017.
    1. Chen J., He X., Huang J. Diet Effects in Gut Microbiome and Obesity. J. Food Sci. 2014;79:R442–R451. doi: 10.1111/1750-3841.12397.
    1. Hullar M.A.J., Fu B.C. Diet, the Gut Microbiome, and Epigenetics. Cancer J. 2014;20:170–175. doi: 10.1097/PPO.0000000000000053.
    1. Khan M.J., Gerasimidis K., Edwards C.A., Shaikh M.G. Role of Gut Microbiota in the Aetiology of Obesity: Proposed Mechanisms and Review of the Literature. J. Obes. 2016;2016:7353642. doi: 10.1155/2016/7353642.
    1. Nagpal R., Kumar M., Yadav A.K., Hemalatha R., Yadav H., Marotta F., Yamashiro Y. Gut Microbiota in Health and Disease: An Overview Focused on Metabolic Inflammation. Benef. Microbes. 2016;7:181–194. doi: 10.3920/bm2015.0062.
    1. Cho Y., Shore S.A. Obesity, Asthma, and the Microbiome. Physiology. 2016;31:108–116. doi: 10.1152/physiol.00045.2015.
    1. Huang Y.J., Nariya S., Harris J.M., Lynch S.V., Choy D.F., Arron J.R., Boushey H. The Airway Microbiome in Patients with Severe Asthma: Associations with Disease Features and Severity. J. Allergy Clin. Immunol. 2015;136:874–884. doi: 10.1016/j.jaci.2015.05.044.
    1. Michalovich D., Rodriguez-Perez N., Smolinska S., Pirozynski M., Mayhew D., Uddin S., Van Horn S., Sokolowska M., Altunbulakli C., Eljaszewicz A., et al. Obesity and Disease Severity Magnify Disturbed Microbiome-Immune Interactions in Asthma Patients. Nat. Commun. 2019;10:5711. doi: 10.1038/s41467-019-13751-9.
    1. Simpson J.L., Daly J., Baines K.J., Yang I.A., Upham J.W., Reynolds P.N., Hodge S., James A.L., Hugenholtz P., Willner D., et al. Airway Dysbiosis: Haemophilus Influenzae and Tropheryma in Poorly Controlled Asthma. Eur. Respir. J. 2016;47:792–800. doi: 10.1183/13993003.00405-2015.
    1. Zhang Q., Cox M., Liang Z., Brinkmann F., Cardenas P.A., Duff R., Bhavsar P., Cookson W., Moffatt M., Chung K.F. Airway Microbiota in Severe Asthma and Relationship to Asthma Severity and Phenotypes. PLoS ONE. 2016;11:e0152724. doi: 10.1371/journal.pone.0152724.
    1. Sverrild A., Kiilerich P., Brejnrod A., Pedersen R., Porsbjerg C., Bergqvist A., Erjefält J.S., Kristiansen K., Backer V. Eosinophilic Airway Inflammation in Asthmatic Patients Is Associated with an Altered Airway Microbiome. J. Allergy Clin. Immunol. 2017;140:407–417.e11. doi: 10.1016/j.jaci.2016.10.046.
    1. Li N., Qiu R., Yang Z., Li J., Chung K.F., Zhong N., Zhang Q. Sputum Microbiota in Severe Asthma Patients: Relationship to Eosinophilic Inflammation. Respir. Med. 2017;131:192–198. doi: 10.1016/j.rmed.2017.08.016.
    1. Yang X., Li H., Ma Q., Zhang Q., Wang C. Neutrophilic Asthma Is Associated with Increased Airway Bacterial Burden and Disordered Community Composition. Biomed. Res. Int. 2018;2018:9230234. doi: 10.1155/2018/9230234.
    1. Taylor S.L., Leong L.E.X., Choo J.M., Wesselingh S., Yang I.A., Upham J.W., Reynolds P.N., Hodge S., James A.L., Jenkins C., et al. Inflammatory Phenotypes in Patients with Severe Asthma Are Associated with Distinct Airway Microbiology. J. Allergy Clin. Immunol. 2018;141:94–103.e15. doi: 10.1016/j.jaci.2017.03.044.
    1. Ghebre M.A., Pang P.H., Diver S., Desai D., Bafadhel M., Haldar K., Kebadze T., Cohen S., Newbold P., Rapley L., et al. Biological Exacerbation Clusters Demonstrate Asthma and Chronic Obstructive Pulmonary Disease Overlap with Distinct Mediator and Microbiome Profiles. J. Allergy Clin. Immunol. 2018;141:2027–2036.e12. doi: 10.1016/j.jaci.2018.04.013.
    1. Pang Z., Wang G., Gibson P., Guan X., Zhang W., Zheng R., Chen F., Wang Z., Wang F. Airway Microbiome in Different Inflammatory Phenotypes of Asthma: A Cross-Sectional Study in Northeast China. Int. J. Med. Sci. 2019;16:477–485. doi: 10.7150/ijms.29433.
    1. Durack J., Christian L.S., Nariya S., Gonzalez J., Bhakta N.R., Ansel K.M., Beigelman A., Castro M., Dyer A.-M., Israel E., et al. Distinct Associations of Sputum and Oral Microbiota with Atopic, Immunologic, and Clinical Features in Mild Asthma. J. Allergy Clin. Immunol. 2020;146:1016–1026. doi: 10.1016/j.jaci.2020.03.028.
    1. Abdel-Aziz M.I., Brinkman P., Vijverberg S.J.H., Neerincx A.H., Riley J.H., Bates S., Hashimoto S., Kermani N.Z., Chung K.F., Djukanovic R., et al. Sputum Microbiome Profiles Identify Severe Asthma Phenotypes of Relative Stability at 12 to 18 Months. J. Allergy Clin. Immunol. 2021;147:123–134. doi: 10.1016/j.jaci.2020.04.018.
    1. Zhang D., Frenette P.S. Cross Talk between Neutrophils and the Microbiota. Blood. 2019;133:2168–2177. doi: 10.1182/blood-2018-11-844555.
    1. Chen J., Zheng P., Liu Y., Zhong X., Wang H., Guo Y., Xie P. Sex Differences in Gut Microbiota in Patients with Major Depressive Disorder. Neuropsychiatr. Dis. Treat. 2018;14:647–655. doi: 10.2147/NDT.S159322.
    1. Simpson J.L., Powell H., Boyle M.J., Scott R.J., Gibson P.G. Clarithromycin Targets Neutrophilic Airway Inflammation in Refractory Asthma. Am. J. Respir. Crit. Care Med. 2008;177:148–155. doi: 10.1164/rccm.200707-1134OC.
    1. Sharma A., Laxman B., Naureckas E.T., Hogarth D.K., Sperling A.I., Solway J., Ober C., Gilbert J.A., White S.R. Associations between Fungal and Bacterial Microbiota of Airways and Asthma Endotypes. J. Allergy Clin. Immunol. 2019;144:1214–1227.e7. doi: 10.1016/j.jaci.2019.06.025.
    1. Huang C., Yu Y., Du W., Liu Y., Dai R., Tang W., Wang P., Zhang C., Shi G. Fungal and Bacterial Microbiome Dysbiosis and Imbalance of Trans-Kingdom Network in Asthma. Clin. Transl. Allergy. 2020;10:42. doi: 10.1186/s13601-020-00345-8.
    1. Denner D.R., Sangwan N., Becker J.B., Hogarth D.K., Oldham J., Castillo J., Sperling A.I., Solway J., Naureckas E.T., Gilbert J.A., et al. Corticosteroid Therapy and Airflow Obstruction Influence the Bronchial Microbiome, Which Is Distinct from That of Bronchoalveolar Lavage in Asthmatic Airways. J. Allergy Clin. Immunol. 2016;137:1398–1405.e3. doi: 10.1016/j.jaci.2015.10.017.
    1. Jung J.-W., Choi J.-C., Shin J.-W., Kim J.-Y., Park I.-W., Choi B.W., Park H.-W., Cho S.-H., Kim K., Kang H.-R. Lung Microbiome Analysis in Steroid-Naïve Asthma Patients by Using Whole Sputum. Tuberc. Respir. Dis. 2016;79:165–178. doi: 10.4046/trd.2016.79.3.165.
    1. McCauley K., Durack J., Valladares R., Fadrosh D.W., Lin D.L., Calatroni A., LeBeau P.K., Tran H.T., Fujimura K.E., LaMere B., et al. Distinct Nasal Airway Bacterial Microbiotas Differentially Relate to Exacerbation in Pediatric Patients with Asthma. J. Allergy Clin. Immunol. 2019;144:1187–1197. doi: 10.1016/j.jaci.2019.05.035.
    1. Martin M.J., Zain N.M.M., Hearson G., Rivett D.W., Koller G., Wooldridge D.J., Rose G., Gharbia S.E., Forbes B., Bruce K.D., et al. The Airways Microbiome of Individuals with Asthma Treated with High and Low Doses of Inhaled Corticosteroids. PLoS ONE. 2020;15:e0244681. doi: 10.1371/journal.pone.0244681.
    1. Goleva E., Jackson L.P., Harris J.K., Robertson C.E., Sutherland E.R., Hall C.F., Good J.T., Gelfand E.W., Martin R.J., Leung D.Y.M. The Effects of Airway Microbiome on Corticosteroid Responsiveness in Asthma. Am. J. Respir. Crit. Care Med. 2013;188:1193–1201. doi: 10.1164/rccm.201304-0775OC.
    1. Thorsen J., Stokholm J., Rasmussen M.A., Mortensen M.S., Brejnrod A.D., Hjelmsø M., Shah S., Chawes B., Bønnelykke K., Sørensen S.J., et al. The Airway Microbiota Modulates Effect of Azithromycin Treatment for Episodes of Recurrent Asthma-like Symptoms in Preschool Children: A Randomized Clinical Trial. Am. J. Respir. Crit. Care Med. 2021;204:149–158. doi: 10.1164/rccm.202008-3226OC.
    1. Benton A.S., Wang Z., Lerner J., Foerster M., Teach S.J., Freishtat R.J. Overcoming Heterogeneity in Pediatric Asthma: Tobacco Smoke and Asthma Characteristics within Phenotypic Clusters in an African American Cohort. J. Asthma. 2010;47:728–734. doi: 10.3109/02770903.2010.491142.
    1. Castro-Nallar E., Shen Y., Freishtat R.J., Pérez-Losada M., Manimaran S., Liu G., Johnson W.E., Crandall K.A. Integrating Microbial and Host Transcriptomics to Characterize Asthma-Associated Microbial Communities. BMC Med. Genom. 2015;8:50. doi: 10.1186/s12920-015-0121-1.
    1. Pérez-Losada M., Castro-Nallar E., Bendall M.L., Freishtat R.J., Crandall K.A. Dual Transcriptomic Profiling of Host and Microbiota during Health and Disease in Pediatric Asthma. PLoS ONE. 2015;10:e0131819.
    1. Chun Y., Do A., Grishina G., Grishin A., Fang G., Rose S., Spencer C., Vicencio A., Schadt E., Bunyavanich S. Integrative Study of the Upper and Lower Airway Microbiome and Transcriptome in Asthma. JCI Insight. 2020;5:1–16. doi: 10.1172/jci.insight.133707.
    1. Chiu C.-Y., Chou H.-C., Chang L.-C., Fan W.-L., Dinh M.C.V., Kuo Y.-L., Chung W.-H., Lai H.-C., Hsieh W.-P., Su S.-C. Integration of Metagenomics-Metabolomics Reveals Specific Signatures and Functions of Airway Microbiota in Mite-Sensitized Childhood Asthma. Allergy. 2020;75:2846–2857. doi: 10.1111/all.14438.
    1. Gomez-Llorente M.A., Martínez-Cañavate A., Chueca N., Rico M. de la C.; Romero, R.; Anguita-Ruiz, A.; Aguilera, C.M.; Gil-Campos, M.; Mesa, M.D.; Khakimov, B.; et al. A Multi-Omics Approach Reveals New Signatures in Obese Allergic Asthmatic Children. Biomedicines. 2020;8:359.
    1. Perez-Garcia J., Hernández-Pérez J.M., González-Pérez R., Sardón O., Martin-Gonzalez E., Espuela-Ortiz A., Mederos-Luis E., Callero A., Herrera-Luis E., Corcuera P., et al. The Genomics and Metagenomics of Asthma Severity (GEMAS) Study: Rationale and Design. J. Pers. Med. 2020;10:123. doi: 10.3390/jpm10030123.
    1. Igartua C., Davenport E.R., Gilad Y., Nicolae D.L., Pinto J., Ober C. Host Genetic Variation in Mucosal Immunity Pathways Influences the Upper Airway Microbiome. Microbiome. 2017;5:16. doi: 10.1186/s40168-016-0227-5.
    1. Abdel-Aziz M., Neerincx A., Vijverberg S., Hashimoto S., Brinkman P., Gorenjak M., Toncheva A., Harner S., Brandstetter S., Wolff C., et al. A System Pharmacology Multi-Omics Approach toward Uncontrolled Pediatric Asthma. J. Pers. Med. 2021;11:484. doi: 10.3390/jpm11060484.
    1. Abdel-Aziz M.I., Kermani N.Z., Neerincx A.H., Vijverberg S.J.H., Guo Y., Howarth P., Dahlen S., Djukanovic R., Sterk P.J., Kraneveld A.D., et al. Association of Endopeptidases, Involved in SARS-CoV-2 Infection, with Microbial Aggravation in Sputum of Severe Asthma. Allergy. 2021;76:1917–1921. doi: 10.1111/all.14731.
    1. Tyler S.R., Chun Y., Ribeiro V.M., Grishina G., Grishin A., Hoffman G.E., Do A.N., Bunyavanich S. Merged Affinity Network Association Clustering: Joint Multi-Omic/Clinical Clustering to Identify Disease Endotypes. Cell Rep. 2021;35:108975.
    1. Do A.N., Chun Y., Grishina G., Grishin A., Rogers A.J., Raby B.A., Weiss S.T., Vicencio A., Schadt E.E., Bunyavanich S. Network Study of Nasal Transcriptome Profiles Reveals Master Regulator Genes of Asthma. J. Allergy Clin. Immunol. 2021;147:879–893. doi: 10.1016/j.jaci.2020.07.006.
    1. Carney S.M., Clemente J.C., Cox M.J., Dickson R.P., Huang Y.J., Kitsios G.D., Kloepfer K.M., Leung J.M., Levan T.D., Molyneaux P.L., et al. Methods in Lung Microbiome Research. Am. J. Respir. Cell Mol. Biol. 2020;62:283–299. doi: 10.1165/rcmb.2019-0273TR.
    1. Bharti R., Grimm D.G. Current Challenges and Best-Practice Protocols for Microbiome Analysis. Brief. Bioinform. 2021;22:178–193.
    1. Prodan A., Tremaroli V., Brolin H., Zwinderman A.H., Nieuwdorp M., Levin E. Comparing Bioinformatic Pipelines for Microbial 16S RRNA Amplicon Sequencing. PLoS ONE. 2020;15:e0227434.
    1. Ye S.H., Siddle K.J., Park D.J., Sabeti P.C. Benchmarking Metagenomics Tools for Taxonomic Classification. Cell. 2019;178:779–794. doi: 10.1016/j.cell.2019.07.010.
    1. Bersanelli M., Mosca E., Remondini D., Giampieri E., Sala C., Castellani G., Milanesi L. Methods for the Integration of Multi-Omics Data: Mathematical Aspects. BMC Bioinform. 2016;17:167–177. doi: 10.1186/s12859-015-0857-9.
    1. Huang S., Chaudhary K., Garmire L.X. More Is Better: Recent Progress in Multi-Omics Data Integration Methods. Front. Genet. 2017;8:1–12. doi: 10.3389/fgene.2017.00084.
    1. Subramanian I., Verma S., Kumar S., Jere A., Anamika K. Multi-Omics Data Integration, Interpretation, and Its Application. Bioinform. Biol. Insights. 2020;14:117793221989905. doi: 10.1177/1177932219899051.
    1. Graw S., Chappell K., Washam C.L., Gies A., Bird J., Robeson M.S., Byrum S.D. Multi-Omics Data Integration Considerations and Study Design for Biological Systems and Disease. Mol. Omics. 2021;17:170–185. doi: 10.1039/D0MO00041H.
    1. Narayana J.K., Mac Aogáin M., Ali N.A. tika. B.M.; Tsaneva-Atanasova, K.; Chotirmall, S.H. Similarity Network Fusion for the Integration of Multi-Omics and Microbiomes in Respiratory Disease. Eur. Respir. J. 2021;58:2101016. doi: 10.1183/13993003.01016-2021.
    1. Ruiz-Perez D., Lugo-Martinez J., Bourguignon N., Mathee K., Lerner B., Bar-Joseph Z., Narasimhan G. Dynamic Bayesian Networks for Integrating Multi-Omics Time Series Microbiome Data. mSystems. 2021;6:e01105-20. doi: 10.1128/mSystems.01105-20.
    1. Jiang D., Armour C.R., Hu C., Mei M., Tian C., Sharpton T.J., Jiang Y. Microbiome Multi-Omics Network Analysis: Statistical Considerations, Limitations, and Opportunities. Front. Genet. 2019;10:1–19. doi: 10.3389/fgene.2019.00995.
    1. Wang Q., Wang K., Wu W., Giannoulatou E., Ho J.W.K., Li L. Host and Microbiome Multi-Omics Integration: Applications and Methodologies. Biophys. Rev. 2019;11:55–65. doi: 10.1007/s12551-018-0491-7.
    1. Pedersen H.K., Forslund S.K., Gudmundsdottir V., Petersen A.Ø., Hildebrand F., Hyötyläinen T., Nielsen T., Hansen T., Bork P., Ehrlich S.D., et al. A Computational Framework to Integrate High-Throughput “-Omics” Datasets for the Identification of Potential Mechanistic Links. Nat. Protoc. 2018;13:2781–2800. doi: 10.1038/s41596-018-0064-z.
    1. Zhang X., Li L., Butcher J., Stintzi A., Figeys D. Advancing Functional and Translational Microbiome Research Using Meta-Omics Approaches. Microbiome. 2019;7:154. doi: 10.1186/s40168-019-0767-6.
    1. Daliri E.B.-M., Ofosu F.K., Chelliah R., Lee B.H., Oh D.-H. Challenges and Perspective in Integrated Multi-Omics in Gut Microbiota Studies. Biomolecules. 2021;11:300. doi: 10.3390/biom11020300.
    1. Liu Z., Ma A., Mathé E., Merling M., Ma Q., Liu B. Network Analyses in Microbiome Based on High-Throughput Multi-Omics Data. Brief. Bioinform. 2021;22:1639–1655. doi: 10.1093/bib/bbaa005.
    1. Lee J., Hyeon D.Y., Hwang D. Single-Cell Multiomics: Technologies and Data Analysis Methods. Exp. Mol. Med. 2020;52:1428–1442. doi: 10.1038/s12276-020-0420-2.
    1. Nyholm L., Koziol A., Marcos S., Botnen A.B., Aizpurua O., Gopalakrishnan S., Limborg M.T., Gilbert M.T.P., Alberdi A. Holo-Omics: Integrated Host-Microbiota Multi-Omics for Basic and Applied Biological Research. iScience. 2020;23:101414. doi: 10.1016/j.isci.2020.101414.
    1. Leitao Filho F.S., Alotaibi N.M., Ngan D., Tam S., Yang J., Hollander Z., Chen V., FitzGerald J.M., Nislow C., Leung J.M., et al. Sputum Microbiome Is Associated with 1-Year Mortality after Chronic Obstructive Pulmonary Disease Hospitalizations. Am. J. Respir. Crit. Care Med. 2019;199:1205–1213. doi: 10.1164/rccm.201806-1135OC.
    1. Lynch J.P., Sikder M.A.A., Curren B.F., Werder R.B., Simpson J., Cuív P.Ó., Dennis P.G., Everard M.L., Phipps S. The Influence of the Microbiome on Early-Life Severe Viral Lower Respiratory Infections and Asthma-Food for Thought? Front. Immunol. 2017;8:156. doi: 10.3389/fimmu.2017.00156.

Source: PubMed

3
Abonneren