3D Printing in Digital Prosthetic Dentistry: An Overview of Recent Developments in Additive Manufacturing

Josef Schweiger, Daniel Edelhoff, Jan-Frederik Güth, Josef Schweiger, Daniel Edelhoff, Jan-Frederik Güth

Abstract

Popular media now often present 3D printing as a widely employed technology for the production of dental prostheses. This article aims to show, based on factual information, to what extent 3D printing can be used in dental laboratories and dental practices at present. It attempts to present a rational evaluation of todays´ applications of 3D printing technology in the context of dental restorations. In addition, the article discusses future perspectives and examines the ongoing viability of traditional dental laboratory services and manufacturing processes. It also shows which expertise is needed for the digital additive manufacturing of dental restorations.

Keywords: 3D printing; 3D printing using composite resin; 3D printing using zirconia; digital one-piece casting; digital pressing technology; graphic 3D models; hybrid production; multi-material 3D printing.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Overview of the existing process categories in additive manufacturing. (According to EN ISO 17296-2).
Figure 2
Figure 2
Dental 3D printing follows the characteristics of the Gartner hype cycle.
Figure 3
Figure 3
Lasersintered CoCr Crowns and Bridges.
Figure 4
Figure 4
Laser sintered removable partial denture with support structures.
Figure 5
Figure 5
Hybrid manufacturing combines additive manufacturing. With CNC-milling (Source: Datron AG, Mühltal, Germany).
Figure 6
Figure 6
Additive manufactured models for implantology.
Figure 7
Figure 7
3D printed surgical guide with drilling sleeves.
Figure 8
Figure 8
Cross-section through an implant impression tray on the implant model (Source: Shera Werkstofftechnologie, Lemförde, Germany).
Figure 9
Figure 9
Different orientations for occlusal splints on the build platform.
Figure 10
Figure 10
3D printed realistic training models in a standard phantom head.
Figure 11
Figure 11
Nature-identical simulation teeth.
Figure 12
Figure 12
Multi-layered model of the complete jaw for surgical simulations and trainings.
Figure 13
Figure 13
3D printed graphic 3D model based on 3D data from an intraoral 3D scanners.
Figure 14
Figure 14
CAD–construction of 4 upper incisal crowns using the tooth-structure database.
Figure 15
Figure 15
3D printed multi-layered upper incisal crowns.
Figure 16
Figure 16
Single-tooth crowns printed with VarseoSmile Crown plus (Bego).
Figure 17
Figure 17
Comparison of 3D printed and pressed ceramic inlays.
Figure 18
Figure 18
3D printed Zirconia crown in the green and the white state and finally sintered.

References

    1. Schweiger J., Edelhoff D., Güth J.F. Update digitale Zahnheilkunde 2020—Aktuelle Möglichkeiten und Limitationen. Bayerisches Zahnärzte Blatt. 2020;57:42–52.
    1. Schweiger J., Güth J.F. Neue Entwicklungen in der additiven und subtraktiven Fertigung Teamwork. J. Cont. Dent. Educ. 2020;23:82–90.
    1. Betriebe—Beschäftigte—Auszubildende im Zahntechniker-Handwerk. [(accessed on 10 December 2020)]; Available online:
    1. Campbell S.D., Cooper L., Craddock H., Hyde T.P., Nattress B., Pavitt S.H., Seymour D.W. Removable partial dentures: The clinical need for innovation. J. Prosthet. Dent. 2017;118:273–280. doi: 10.1016/j.prosdent.2017.01.008.
    1. Jordan R.A., Micheelis W. Fünfte Deutsche Mundgesundheitsstudie (DMS V) Deutscher Zahnärzte; Köln, Germany: 2016.
    1. Van Noort R. The future of dental devices is digital. Dent. Mater. 2012;28:3–12. doi: 10.1016/j.dental.2011.10.014.
    1. Horn T.J., Harryson O.L.A. Overview of current additive manufacturing technologies and selected applications. Sci. Prog. 2012;95:255–282. doi: 10.3184/003685012X13420984463047.
    1. Dawood A., Marti B., Sauret Jackson V., Darwood A. 3D printing in dentistry. Br. Dent. J. 2015;219:521–529. doi: 10.1038/sj.bdj.2015.914.
    1. Caviezel C., Grünwald R., Ehrenberg-Silies S., Kind S., Jetzke T., Bovenschulte M. Additive Fertigungsverfahren (3D-Druck)—Innovationsanalyse. TAB Arbeitsbereicht; Berlin, Germany: 2017.
    1. Kessler A., Hickel R., Reymus M. 3D Printing in Dentistry—State of the Art. Oper. Dent. 2020;45:30–40. doi: 10.2341/18-229-L.
    1. Kieschnick A., Schweiger J., Edelhoff D., Güth J.F. Status Präsens 2020: Additive CAD/CAM-Gestützte Fertigungstechnologien im Zahntechnischen Labor. [(accessed on 10 December 2020)]; Available online:
    1. Hull C.W. Apparatus for Production of Three-Dimensional Objects by Stereolithography. 4,575,330. U.S. Patent. 1984 Aug 8;
    1. Crump S. Apparatus and Method for Creating Three-Dimensional Objects. 5,121,329. U.S. Patent. 1989 Sep 5;
    1. Kollenberg W. Keramik und Multimaterial 3D-Druck. Keram. Z. 2014;66:233–236. doi: 10.1007/BF03400217.
    1. ISO/ASTM Additive Manufacturing—General Principles—Terminology. Beuth. 2017;52900 doi: 10.31030/2631641.
    1. ISO/ASTM Additive Manufacturing—General Principles—Part 2: Overview of Process Categories and Feedstock. Beuth. 2016;17296-2 doi: 10.31030/2580024.
    1. Gartner Hype Cycle. [(accessed on 10 December 2020)]; Available online: .
    1. Dolabdjian H., Strietzel R. Verfahren zur Herstellung von Zahnersatz und dentalen Hilfsteilen. Application 1 021 997 B2. European Patent. 2000 Jul 26;
    1. Revilla-León M., Meyer M.J., Özcan M. Metal additive manufacturing technologies. Int. J. Comput. Dent. 2019;22:55–67.
    1. Fischer J., Stawarczyk B., Trottmann A., Hämmerle C.H.F. Festigkeit lasergesinterter Brückengerüste aus einer CoCr-legierung. Quintessenz Zahntech. 2008;34:140–149.
    1. Rudolph M., Setz J. Ein CAD/CAM-System mit aufbauender Lasertechnologie. Quintessenz Zahntech. 2007;33:582–587.
    1. Quante K., Ludwig K., Kern M. Marginal and internal fit of metal-ceramic crowns abricated with a new laser melting technology. Dent. Mater. 2008;24:1311–1355. doi: 10.1016/j.dental.2008.02.011.
    1. Xu D., Xiang N., Wie B. The marginal fit of selective laser melting-fabricated metal crowns: An in vitro study. J. Prosth. Dent. 2014;112:1437–1440. doi: 10.1016/j.prosdent.2014.05.018.
    1. Huang Z., Zhang L., Zhu J., Zhang X. Clinical marginal and internal fitt of metal ceramic crowns fabricated with a selective laser melting technolog. J. Prosth. Dent. 2015;113:623–627. doi: 10.1016/j.prosdent.2014.10.012.
    1. Lövgren N., Roxner R., Klemendz S., Larsson C. Effect of production method on surface roughness, marginal and internal fit, and retention of cobalt-chromium single crowns. J Prosth Dent. 2017;118:95–101. doi: 10.1016/j.prosdent.2016.09.025.
    1. Lehmann K.M., Hellwig E., Wenz H.J. Zahnärztliche Propädeutik. Deutscher Zahnärzte; Köln, Germany: 2015.
    1. Stark H. Ist die Modellgussprothese adäquater Zahnersatz für den älteren Menschen? Quintessenz. 2005;56:367–373.
    1. Roach F.E. Principles and essentials of bar clasp partial dentures. J. Am. Dent. Assoc. 1930;17:124–138.
    1. Schweiger J., Kieschnick A. CAD/CAM in der digitalen Zahnheilkunde. Teamwork Media; Fuchstal, Germany: 2017.
    1. Alifui-Segbaya F., Williams R.J., George R. Additive manufacturing: A novel method for fabricating cobalt-chromium removable partial denture frameworks. Eur. J. Prosthodont Restor. Dent. 2017;25:73–78.
    1. Laverty D.P., Thomas M.B.M., Clark P., Addy L.D. The use of 3D metal printing (direct metal laser sintering) in removable prosthodontics. Dent. Update. 2016;43:826–835. doi: 10.12968/denu.2016.43.9.826.
    1. Lima J.M., Anami L.C., Araujo R.M., Pavanelli C.A. Removable partial dentures: Use of rapid prototyping. J. Prosthodont. 2014;23:588–591. doi: 10.1111/jopr.12154.
    1. Tregermann I., Renne W., Kelly A., Wilson D. Evaluation of removable partial denture frameworks fabricated using 3 differnet techniques. J. Prosthet. Dent. 2019;122:390–395. doi: 10.1016/j.prosdent.2018.10.013.
    1. Van Zeghbroeck L., Boons E. Evaluation of technicians working time in the fabrication of removable partial dentures: Cad/Cam versus tradition; Proceedings of the 14th Biennial Meeting of the International College of Prosthodontics; Waikoloa Village, HI, USA. 7–12 September 2011; p. 63.
    1. Schweiger J., Güth J.F., Erdelt K.J., Edelhoff D., Schubert O. Internal porosities, retentive force, and survival of cobalt-chromium alloy clasps fabricated by selective laser sintering. J. Prosthodont. Res. 2019;64:210–216. doi: 10.1016/j.jpor.2019.07.006.
    1. Torii M., Nakata T., Takahashi K., Kawamura N., Shimpo H., Ohkubo C. Fitness and retentive force of cobalt-chromium alloy clasps fabricates with repeated laser sintering and milling. J. Prosthodont. Res. 2018;62:342–346. doi: 10.1016/j.jpor.2018.01.001.
    1. Nakata T., Shimpo H., Okhubo C. Clasp fabrication using one-process molding by repeated laser sintering and high-speed milling. J. Prosth. Research. 2017;61:276–282. doi: 10.1016/j.jpor.2016.10.002.
    1. Revilla-León M., Öczan M. Additive manufacturing technologies used for processing polymers: Current status and potential application in prosthetic dentistry. J Prosthodont. 2019;28:146–158. doi: 10.1111/jopr.12801.
    1. Jokusch J., Öczan M. Additive manufacturing of dental polymers: An overview on processes, materials and applications. Dent. Mater. J. 2020;39:345–354. doi: 10.4012/dmj.2019-123.
    1. Quan H., Zhang T., Xu H., Luo S., Nie J., Zhu X. Photo-curing 3D-Printing technique and its challenges. Bioact. Mater. 2020;22:110–115. doi: 10.1016/j.bioactmat.2019.12.003.
    1. Dietrich C.A., Ender A., Baumgartner S., Mehl A. A validation study of reconstructes rapid prototyping models produces by two technologies. Angle Orthod. 2017;87:782–787. doi: 10.2319/01091-727.1.
    1. Brown G.B., Currier G.F., Kadioglu O., Kierl J.P. Accuracy of 3-dimensional printed dental models reconstructed from digital intraoral impressions. Am. J. Orthod. Dentofac. Orthop. 2018;154:733–739. doi: 10.1016/j.ajodo.2018.06.009.
    1. Kim S.Y., Shin Y.S., Jund H.D., Hwang C.J., Baik H.S., Cha J.Y. Precision and trueness of dental models manufactured with different 3-dimensional printing technologies. Am. J. Orthod. Dentofac. Orthop. 2018;153:144–153. doi: 10.1016/j.ajodo.2017.05.025.
    1. Emir F., Ayyildiz S. Accuracy evaluation of complete-arch models manufactured by three different 3D printing technologies: A three-dimensional analysis. J. Prosthodont. Res. 2021 doi: 10.2186/jpr.JPOR_2019_579.
    1. Rungrojwittayakul O., Kann J.Y., Shiozaki K., Swamidass R.S., Goodacre B.J., Goodacre C.J., Lozada J.L. Accuracy of 3D-printed models created by two technolgies of printers with different designs of model base. J. Prosthodont. 2020;29:124–128. doi: 10.1111/jopr.13107.
    1. Etemad-Shahidi Y., Qallandar O.B., Evenden J., Alifui-Segbaya F., Ahmed K.E. Accuracy of 3-Dimensionally printed full-arch dental models: A systematic review. J. Clin. Med. 2020;9:3357. doi: 10.3390/jcm9103357.
    1. Kallweit D., Mönch W., Zappe H. Kontrolliert kippen: Silizium-Mikrospiegel mit integriertem optischen Feedback. Photonik. 2006;4:62–65.
    1. Viereck V., Li Q., Jäkel A., Hillmer H. Großflächige Anwendung von optischen MEMS: Mikospiegel-Arrays zur Tageslichtlenkung. Photonik. 2009;2:28–29.
    1. DLP® 0.47-inch 4K UHD HSSI Digital Micromirror Device (DMD) [(accessed on 10 December 2020)]; Available online: .
    1. The 3D Printing Standard in Speed, Reliability and Workflow Integration. [(accessed on 4 May 2021)]; Available online: .
    1. Professionelle Desktop 3D-Drucker. [(accessed on 10 December 2020)]; Available online: .
    1. Allanic A.L. Production of a Volume Object by Lithography, Having Improved Spatial Resolution. Application 2 943 329 B1. European Patent. 2015 Nov 8;
    1. ProMaker LD20 Dental Plus. Compact High Precision 3d Printer. [(accessed on 10 December 2020)]; Available online:
    1. Schultheiss A. Mehr Qualität, mehr Produktivität: Professioneller 3D-Druck im Dentallabor. Zahntechnik Magazin 2018. [(accessed on 10 December 2020)]; Available online: .
    1. Stadlmann K. Anlage zum schichtweisen Aufbau eines Körpers und Entformvorrichtung hierfür. AT 51. 4496 B1:2015.
    1. Stadlmann K. System for Layered Construction of a Body and Tray therefore. US 10,414,091 B2. U.S. Patent. 2017
    1. DeSimone J.M., Ermoshkin A., Ermoshkin N., Samulski E.T. Continuous Liquid Interphase Printing. US 9,205,601 B2. U.S. Patent. 2015 Dec 8;
    1. Tumbletone J.R., Shirvanyants D., Ermoshkin N., Janusziewicz R., Johnson A.R., Kelly D., Chen K., Pinschmidt R., Rolland J.P., Ermoshkin A., et al. Additive manufacturing. Continuous liquid interface production of 3D objects. Science. 2015;347:1349–1352. doi: 10.1126/science.aaa2397.
    1. Schweiger J., Edelhoff D., Stimmelmayr M., Güth J.F., Beuer F. Automatisierte Fertigung von mehrschichtigem Frontzahnersatz mithilfe digitaler Dentinkerne. Quintessenz Zahntech. 2014;40:1248–1266.
    1. Schweiger J., Edelhoff D., Stimmelmayr M., Güth J.F., Beuer F. Automated production of multilayer anterior restorations with digitally produced dentin cores. Quintessence Dent. Tech. 2015;38:207–220.
    1. Schweiger J., Trimpl J., Schwerin C., Güth J.F., Edelhoff D. Biomaterials update—Additive manufacturing: Applications in dentistry based on materials selection. Quintessence Dent. Tech. 2019;42:50–69.
    1. Schweiger J., Edelhoff D., Schubert O., Trimpl J., Erdelt K.J., Güth J.F. Digitale Modellherstellung—eine Übersicht. Quintessenz Zahntech. 2019;45:41–61.
    1. Güth J.F., Schubert O., Nold E., Trimpl J., Schweiger J. Teamdisziplin-3D-Planung und Navigation in der Implantologie. Bayerischer Zahnärzte Blatt. 2018;55:50–56.
    1. Wöstmann B., Powers M. Präzisionsabformungen—Ein Leitfaden für Theorie und Praxis. 3M ESPE; Seefeld, Germany: 2016.
    1. Wedekind L., Güth J.-F., Schweiger J., Kollmuss M., Reichl F.-X., Edelhoff D., Högg C. Elution behavior of a 3D-printed, milled and conventional resin-based occlusal splint material. Dent. Mater. 2021;37:701–710. doi: 10.1016/j.dental.2021.01.024.
    1. Lutz A.-M., Hampe R., Roos M., Lümkemann N., Eichberger M., Stawarczyk B. Fracture resistance and 2-body wear of 3-dimensional–printed occlusal devices. J. Prosthet. Dent. 2019;121:166–172. doi: 10.1016/j.prosdent.2018.04.007.
    1. Berli C., Thieringer F.M., Sharma N., Müller J.A., Dedem P., Fischer J., Rohr N. Comparing the mechanical properties of pressed, milled, and 3D-printed resins for occlusal devices. J. Prosthet. Dent. 2020;124:780–786. doi: 10.1016/j.prosdent.2019.10.024.
    1. Reymus M., Hickel R., Kunz A. Accuracy of CAD/CAM-fabricated bite splints: Milling vs. 3D printing. Clin. Oral Investig. 2020;24:4607–4615.
    1. Reymus M., Fotiadou C., Kessler A., Heck K., Hickel R., Diegritz C. 3D printed replicas for endodontic education. Int. Endod. J. 2019;52:123–130. doi: 10.1111/iej.12964.
    1. Meglioli M., Naveau A., Macaluso G.M., Catros S. 3D printed bone models in oral and cranio-maxillofacial surgery: A systematic review. 3D Print. Med. 2020;6:1–19. doi: 10.1186/s41205-020-00082-5.
    1. Schweiger J., Edelhoff D., Güth J.F. Update digitale Fertigung 2020—neueste Entwicklungen in der additiven und subtraktiven Fertigung. Dent. Dialogue. 2020;21:36–51.
    1. Schweiger J., Beuer F., Stimmelmayr M., Edelhoff D., Magne P., Güth J.F. Histo-anatomic 3D printing of dental structures. Br. Dent. J. 2016;221:555–560. doi: 10.1038/sj.bdj.2016.815.
    1. Schweiger J. Method, Apparatur and Computer Program for Producing a Dental Prosthesis. US8,775,131,B2. U.S. Patent. 2014 Jul 8;
    1. Schweiger J. Method, Apparatur and Computer Program for Producing a Dental Prosthesis. Application 2 363 094 B1. European Patent. 2013 Jul 10;
    1. Wissenschaftliche Untersuchungen zu VarseoSmile Crown Plus. [(accessed on 10 December 2020)]; Available online: .
    1. Schweiger J., Bomze D., Schwentenwein M. 3D-Printing of Zirconia—What is the future? Curr. Oral Health Rep. 2019;6:339–343. doi: 10.1007/s40496-019-00243-4.
    1. Geier S., Potestio I. 3D-printing: From multi-material to functionally-graded ceramic. Ceram. Appl. 2020;8:32–35.
    1. Kessler A., Reichl F.-X., Folwaczny M., Högg C. Monomer release from surgical guide resins manufactured with different 3D printing devices. Dent. Mater. 2020;36:1486–1492. doi: 10.1016/j.dental.2020.09.002.
    1. Prpić V., Schauperl Z., Ćatić A., Dulčić N., Čimić S. Comparison of mechanical properties of 3D-printed, CAD/CAM, and conventional denture base materials. J. Prosthodont. 2020;29:524–528. doi: 10.1111/jopr.13175.
    1. Wemken G., Burkhardt F., Spies B.C., Kleinvogel L., Adali U., Sterzenbach G., Beuer F., Wesemann C. Bond strength of conventional, subtractive, and additive manufactured denture bases to soft and hard relining materials. Dent. Mater. 2021;37:928–938. doi: 10.1016/j.dental.2021.02.018.
    1. Unkovskiy A., Schmidt F., Beuer F., Li P., Spintzyk S., Fernandez P.K. Stereolithography vs. direct light processing for rapid manufacturing of complete denture bases: An in vitro accuracy analysis. J. Clin. Med. 2021;10:1070. doi: 10.3390/jcm10051070.
    1. Anadioti E., Musharbash L., Blatz M.B., Papavasiliou G., Kamposiora P. 3D printed complete removable dental prostheses: A narrative review. BMC Oral Health. 2020;20:1–9. doi: 10.1186/s12903-020-01328-8.

Source: PubMed

3
Abonneren