Potential Effects of Phenolic Compounds That Can Be Found in Olive Oil on Wound Healing

Lucia Melguizo-Rodríguez, Elvira de Luna-Bertos, Javier Ramos-Torrecillas, Rebeca Illescas-Montesa, Victor Javier Costela-Ruiz, Olga García-Martínez, Lucia Melguizo-Rodríguez, Elvira de Luna-Bertos, Javier Ramos-Torrecillas, Rebeca Illescas-Montesa, Victor Javier Costela-Ruiz, Olga García-Martínez

Abstract

The treatment of tissue damage produced by physical, chemical, or mechanical agents involves considerable direct and indirect costs to health care systems. Wound healing involves a series of molecular and cellular events aimed at repairing the defect in tissue integrity. These events can be favored by various natural agents, including the polyphenols in extra virgin olive oil (EVOO). The objective of this study was to review data on the potential effects of different phenolic compounds that can also be found in EVOO on wound healing and closure. Results of in vitro and animal studies demonstrate that polyphenols from different plant species, also present in EVOO, participate in different aspects of wound healing, accelerating this process through their anti-inflammatory, antioxidant, and antimicrobial properties and their stimulation of angiogenic activities required for granulation tissue formation and wound re-epithelialization. These results indicate the potential usefulness of EVOO phenolic compounds for wound treatment, either alone or in combination with other therapies. Human studies are warranted to verify this proposition.

Keywords: extra virgin olive oil; phenolic compounds; tissue regeneration; wound healing.

Conflict of interest statement

The authors declare no conflict of interest.

References

    1. Sen C.K. Human Wounds and Its Burden: An Updated Compendium of Estimates. Adv. Wound Care. 2019;8:39–48. doi: 10.1089/wound.2019.0946.
    1. Guest J.F., Ayoub N., McIlwraith T., Uchegbu I., Gerrish A., Weidlich D., Vowden K., Vowden P. Health economic burden that wounds impose on the National Health Service in the UK. BMJ Open. 2015;5:e009283. doi: 10.1136/bmjopen-2015-009283.
    1. Imran H., Ahmad M., Rahman A., Yaqeen Z., Sohail T., Fatima N., Iqbal W., Yaqeen S.S. Evaluation of wound healing effects between Salvadora persica ointment and Solcoseryl jelly in animal model. Pak. J. Pharm. Sci. 2015;28:1777–1780.
    1. Baranoski S., Ayello E.A. Wound Care Essentials: Practice Principles. Lippincott Williams & Wilkins; Shorewood, IL, USA: 2008.
    1. Farrar D. Advanced Wound Repair Therapies. Woodhead Publishing; Cambridge, UK: 2011. p. 649.
    1. Ibrahim N.I., Wong S.K., Mohamed I.N., Mohamed N., Chin K.Y., Ima-Nirwana S., Shuid A.N. Wound Healing Properties of Selected Natural Products. Int. J. Environ. Res. Public. Health. 2018;15:2360. doi: 10.3390/ijerph15112360.
    1. de Gonzalez A.C.O., Costa T.F., de Andrade Z.A., Medrado A.R.A.P. Wound healing—A literature review. An. Bras. Dermatol. 2016;91:614–620. doi: 10.1590/abd1806-4841.20164741.
    1. Eming S.A., Krieg T., Davidson J.M. Inflammation in wound repair: Molecular and cellular mechanisms. J. Invest. Dermatol. 2007;127:514–525. doi: 10.1038/sj.jid.5700701.
    1. Cumberbatch M., Dearman R.J., Griffiths C.E., Kimber I. Langerhans cell migration. Clin. Exp. Dermatol. 2000;25:413–418. doi: 10.1046/j.1365-2230.2000.00678.x.
    1. Jameson J.M., Sharp L.L., Witherden D.A., Havran W.L. Regulation of skin cell homeostasis by gamma delta T cells. Front. Biosci. J. Virtual Libr. 2004;9:2640–2651. doi: 10.2741/1423.
    1. Noli C., Miolo A. The mast cell in wound healing. Vet. Dermatol. 2001;12:303–313. doi: 10.1046/j.0959-4493.2001.00272.x.
    1. Li J., Chen J., Kirsner R. Pathophysiology of acute wound healing. Clin. Dermatol. 2007;25:9–18. doi: 10.1016/j.clindermatol.2006.09.007.
    1. Isaac C., de Ladeira P.R.S., do Rêgo F.M.P., Aldunate J.C.B., Ferreira M.C. Processo de cura das feridas: Cicatrização fisiológica. Rev. Med. 2010;89:125–131. doi: 10.11606/issn.1679-9836.v89i3/4p125-131.
    1. Tonnesen M.G., Feng X., Clark R.A. Angiogenesis in wound healing. J. Investig. Dermatol. Symp. Proc. 2000;5:40–46. doi: 10.1046/j.1087-0024.2000.00014.x.
    1. Shaw T.J., Martin P. Wound repair at a glance. J. Cell Sci. 2009;122:3209–3213. doi: 10.1242/jcs.031187.
    1. Zhou X., Ruan Q., Ye Z., Chu Z., Xi M., Li M., Hu W., Guo X., Yao P., Xie W. Resveratrol accelerates wound healing by attenuating oxidative stress-induced impairment of cell proliferation and migration. Burns J. Int. Soc. Burn Inj. 2021;47:133–139. doi: 10.1016/j.burns.2020.10.016.
    1. Barchitta M., Maugeri A., Favara G., Magnano San Lio R., Evola G., Agodi A., Basile G. Nutrition and Wound Healing: An Overview Focusing on the Beneficial Effects of Curcumin. Int. J. Mol. Sci. 2019;20:1119. doi: 10.3390/ijms20051119.
    1. Van de Velde F., Esposito D., Grace M.H., Pirovani M.E., Lila M.A. Anti-inflammatory and wound healing properties of polyphenolic extracts from strawberry and blackberry fruits. Food Res. Int. Ott. Ont. 2019;121:453–462. doi: 10.1016/j.foodres.2018.11.059.
    1. Polerà N., Badolato M., Perri F., Carullo G., Aiello F. Quercetin and its Natural Sources in Wound Healing Management. Curr. Med. Chem. 2019;26:5825–5848. doi: 10.2174/0929867325666180713150626.
    1. Bayir Y., Un H., Ugan R.A., Akpinar E., Cadirci E., Calik I., Halici Z. The effects of Beeswax, Olive oil and Butter impregnated bandage on burn wound healing. Burns J. Int. Soc. Burn Inj. 2019;45:1410–1417. doi: 10.1016/j.burns.2018.03.004.
    1. Donato-Trancoso A., Monte-Alto-Costa A., Romana-Souza B. Olive oil-induced reduction of oxidative damage and inflammation promotes wound healing of pressure ulcers in mice. J. Dermatol. Sci. 2016;83:60–69. doi: 10.1016/j.jdermsci.2016.03.012.
    1. Karimi Z., Behnammoghadam M., Rafiei H., Abdi N., Zoladl M., Talebianpoor M.S., Arya A., Khastavaneh M. Impact of olive oil and honey on healing of diabetic foot: A randomized controlled trial. Clin. Cosmet. Investig. Dermatol. 2019;12:347–354. doi: 10.2147/CCID.S198577.
    1. Schanuel F.S., Saguie B.O., Monte-Alto-Costa A. Olive oil promotes wound healing of mice pressure injuries through NOS-2 and Nrf2. Appl. Physiol. Nutr. Metab. Physiol. Appl. Nutr. Metab. 2019;44:1199–1208. doi: 10.1139/apnm-2018-0845.
    1. Servili M., Esposto S., Fabiani R., Urbani S., Taticchi A., Mariucci F., Selvaggini R., Montedoro G.F. Phenolic compounds in olive oil: Antioxidant, health and organoleptic activities according to their chemical structure. Inflammopharmacology. 2009;17:76–84. doi: 10.1007/s10787-008-8014-y.
    1. Han J., Talorete T.P.N., Yamada P., Isoda H. Anti-proliferative and apoptotic effects of oleuropein and hydroxytyrosol on human breast cancer MCF-7 cells. Cytotechnology. 2009;59:45–53. doi: 10.1007/s10616-009-9191-2.
    1. Almeida J.S., Benvegnú D.M., Boufleur N., Reckziegel P., Barcelos R.C.S., Coradini K., de Carvalho L.M., Bürger M.E., Beck R.C.R. Hydrogels containing rutin intended for cutaneous administration: Efficacy in wound healing in rats. Drug Dev. Ind. Pharm. 2012;38:792–799. doi: 10.3109/03639045.2011.628676.
    1. Chen L.-Y., Huang C.-N., Liao C.-K., Chang H.-M., Kuan Y.-H., Tseng T.-J., Yen K.-J., Yang K.-L., Lin H.-C. Effects of Rutin on Wound Healing in Hyperglycemic Rats. Antioxidants. 2020;9:1122. doi: 10.3390/antiox9111122.
    1. Pivec T., Kargl R., Maver U., Bračič M., Elschner T., Žagar E., Gradišnik L., Kleinschek K.S. Chemical Structure-Antioxidant Activity Relationship of Water-Based Enzymatic Polymerized Rutin and Its Wound Healing Potential. Polymers. 2019;11:1566. doi: 10.3390/polym11101566.
    1. Pastore S., Lulli D., Fidanza P., Potapovich A.I., Kostyuk V.A., De Luca C., Mikhal’Chik E., Korkina L.G. Plant Polyphenols Regulate Chemokine Expression and Tissue Repair in Human Keratinocytes Through Interaction with Cytoplasmic and Nuclear Components of Epidermal Growth Factor Receptor System. Antioxid. Redox Signal. 2012;16:314–328. doi: 10.1089/ars.2011.4053.
    1. Chen T., Yuan D., Wei B., Jiang J., Kang J., Ling K., Gu Y., Li J., Xiao L., Pei G. E-Cadherin-Mediated Cell–Cell Contact Is Critical for Induced Pluripotent Stem Cell Generation. Stem Cells. 2010;28:1315–1325. doi: 10.1002/stem.456.
    1. Guerrero J.A., Lozano M.L., Castillo J., Benavente-García O., Vicente V., Rivera J. Flavonoids inhibit platelet function through binding to the thromboxane A2 receptor. J. Thromb. Haemost. JTH. 2005;3:369–376. doi: 10.1111/j.1538-7836.2004.01099.x.
    1. Bayrami Z., Khalighi-Sigaroodi F., Rahimi R., Farzaei M.H., Hodjat M., Baeeri M., Rahimifard M., Navaei-nigjeh M., Abdollahi M., Hajiaghaee R. In vitro wound healing activity of luteolin. Res. J. Pharmacogn. 2017;4:7.
    1. Wan D., Fu Y., Le Y., Zhang P., Ju J., Wang B., Zhang G., Wang Z., Su H., Wang L., et al. Luteolin-7-glucoside Promotes Human Epidermal Stem Cell Proliferation by Upregulating β-Catenin, c-Myc, and Cyclin Expression. Stem Cells Int. 2019;2019:1575480. doi: 10.1155/2019/1575480.
    1. Zhou Q., Yan B., Hu X., Li X.-B., Zhang J., Fang J. Luteolin inhibits invasion of prostate cancer PC3 cells through E-cadherin. Mol. Cancer Ther. 2009;8:1684–1691. doi: 10.1158/1535-7163.MCT-09-0191.
    1. Süntar I., Küpeli Akkol E., Keles H., Yesilada E., Sarker S.D., Arroo R., Baykal T. Efficacy of Daphne oleoides subsp. kurdica used for wound healing: Identification of active compounds through bioassay guided isolation technique. J. Ethnopharmacol. 2012;141:1058–1070. doi: 10.1016/j.jep.2012.04.001.
    1. Süntar I., Küpeli Akkol E., Keles H., Yesilada E., Sarker S.D. Exploration of the wound healing potential of Helichrysum graveolens (Bieb.) Sweet: Isolation of apigenin as an active component. J. Ethnopharmacol. 2013;149:103–110. doi: 10.1016/j.jep.2013.06.006.
    1. Melguizo-Rodríguez L., Illescas-Montes R., Costela-Ruiz V.J., Ramos-Torrecillas J., de Luna-Bertos E., García-Martínez O., Ruiz C. Antimicrobial properties of olive oil phenolic compounds and their regenerative capacity towards fibroblast cells. J. Tissue Viability. 2021 doi: 10.1016/j.jtv.2021.03.003.
    1. Cheng M., Zhang L., Zhang H., Li X., Wang Y., Xia F., Wang B., Cai R., Guo Z., Zhang Y., et al. An Ointment Consisting of the Phage Lysin LysGH15 and Apigenin for Decolonization of Methicillin-Resistant Staphylococcus aureus from Skin Wounds. Viruses. 2018;10:E244. doi: 10.3390/v10050244.
    1. Shukla R., Kashaw S.K., Jain A.P., Lodhi S. Fabrication of Apigenin loaded gellan gum–chitosan hydrogels (GGCH-HGs) for effective diabetic wound healing. Int. J. Biol. Macromol. 2016;91:1110–1119. doi: 10.1016/j.ijbiomac.2016.06.075.
    1. Lopez-Jornet P., Camacho-Alonso F., Gómez-Garcia F., Molina Miñano F., Cañas X., Serafín A., Castillo J., Vicente-Ortega V. Effects of potassium apigenin and verbena extract on the wound healing process of SKH-1 mouse skin. Int. Wound J. 2014;11:489–495. doi: 10.1111/j.1742-481X.2012.01114.x.
    1. Lo Vasco V.R., Leopizzi M., Di Maio V., Di Raimo T., Cesa S., Masci A., Rocca C.D. LPS, Oleuropein and Blueberry extracts affect the survival, morphology and Phosphoinositide signalling in stimulated human endothelial cells. J. Cell Commun. Signal. 2017;11:317–327. doi: 10.1007/s12079-017-0391-9.
    1. Alfano A., Corsuto L., Finamore R., Savarese M., Ferrara F., Falco S., Santabarbara G., De Rosa M., Schiraldi C. Valorization of Olive Mill Wastewater by Membrane Processes to Recover Natural Antioxidant Compounds for Cosmeceutical and Nutraceutical Applications or Functional Foods. Antioxidants. 2018;7:72. doi: 10.3390/antiox7060072.
    1. Mehraein F., Sarbishegi M., Aslani A. Evaluation of effect of oleuropein on skin wound healing in aged male BALB/c mice. Cell J. 2014;16:25–30.
    1. Mehraein F., Sarbishegi M., Aslani A. Therapeutic Effects of Oleuropein on Wounded Skin in Young Male Balb/c Mice. Wounds. 2014;26:83–88.
    1. Quesada-Gómez J.M.Q., Santiago-Mora R.M.S., Casado-Díaz A.C. Composiciones de Oleuropeína Para Cicatrización de Heridas y Úlceras en Ancianos y/o Diabéticos. Oficina Española de Patentes y Marcas; Madrid, España: 2017.
    1. Kahkeshani N., Farzaei F., Fotouhi M., Alavi S.S., Bahramsoltani R., Naseri R., Momtaz S., Abbasabadi Z., Rahimi R., Farzaei M.H., et al. Pharmacological effects of gallic acid in health and diseases: A mechanistic review. Iran. J. Basic Med. Sci. 2019;22:225–237.
    1. Yang D.J., Moh S.H., Son D.H., You S., Kinyua A.W., Ko C.M., Song M., Yeo J., Choi Y.-H., Kim K.W. Gallic Acid Promotes Wound Healing in Normal and Hyperglucidic Conditions. Mol. Basel Switz. 2016;21:899. doi: 10.3390/molecules21070899.
    1. Wang X., Liu K., Ruan M., Yang J., Gao Z. Gallic acid inhibits fibroblast growth and migration in keloids through the AKT/ERK signaling pathway. Acta Biochim. Biophys. Sin. 2018;50:1114–1120. doi: 10.1093/abbs/gmy115.
    1. Teodoro G.R., Ellepola K., Seneviratne C.J., Koga-Ito C.Y. Potential Use of Phenolic Acids as Anti-Candida Agents: A Review. Front. Microbiol. 2015;6:1420. doi: 10.3389/fmicb.2015.01420.
    1. Kaparekar P.S., Pathmanapan S., Anandasadagopan S.K. Polymeric scaffold of Gallic acid loaded chitosan nanoparticles infused with collagen-fibrin for wound dressing application. Int. J. Biol. Macromol. 2020;165:930–947. doi: 10.1016/j.ijbiomac.2020.09.212.
    1. Sun X., Dong M., Guo Z., Zhang H., Wang J., Jia P., Bu T., Liu Y., Li L., Wang L. Multifunctional chitosan-copper-gallic acid based antibacterial nanocomposite wound dressing. Int. J. Biol. Macromol. 2021;167:10–22. doi: 10.1016/j.ijbiomac.2020.11.153.
    1. Delaquis P., Stanich K., Toivonen P. Effect of pH on the inhibition of Listeria spp. by vanillin and vanillic acid. J. Food Prot. 2005;68:1472–1476. doi: 10.4315/0362-028X-68.7.1472.
    1. Phan T.T., Wang L., See P., Grayer R.J., Chan S.Y., Lee S.T. Phenolic compounds of Chromolaena odorata protect cultured skin cells from oxidative damage: Implication for cutaneous wound healing. Biol. Pharm. Bull. 2001;24:1373–1379. doi: 10.1248/bpb.24.1373.
    1. Song H.S., Park T.W., Sohn U.D., Shin Y.K., Choi B.C., Kim C.J., Sim S.S. The Effect of Caffeic Acid on Wound Healing in Skin-incised Mice. Korean J. Physiol. Pharmacol. Off. J. Korean Physiol. Soc. Korean Soc. Pharmacol. 2008;12:343–347. doi: 10.4196/kjpp.2008.12.6.343.
    1. Li L., Sun W., Wu T., Lu R., Shi B. Caffeic acid phenethyl ester attenuates lipopolysaccharide-stimulated proinflammatory responses in human gingival fibroblasts via NF-κB and PI3K/Akt signaling pathway. Eur. J. Pharmacol. 2017;794:61–68. doi: 10.1016/j.ejphar.2016.11.003.
    1. Lim K.-M., Bae S., Koo J.E., Kim E.-S., Bae O.-N., Lee J.Y. Suppression of skin inflammation in keratinocytes and acute/chronic disease models by caffeic acid phenethyl ester. Arch. Dermatol. Res. 2015;307:219–227. doi: 10.1007/s00403-014-1529-8.
    1. Romana-Souza B., Dos Santos J.S., Monte-Alto-Costa A. Caffeic acid phenethyl ester promotes wound healing of mice pressure ulcers affecting NF-κB, NOS2 and NRF2 expression. Life Sci. 2018;207:158–165. doi: 10.1016/j.lfs.2018.05.057.
    1. dos Santos J.S., Monte-Alto-Costa A. Caffeic acid phenethyl ester improves burn healing in rats through anti-inflammatory and antioxidant effects. J. Burn Care Res. Off. Publ. Am. Burn Assoc. 2013;34:682–688. doi: 10.1097/BCR.0b013e3182839b1c.
    1. Lin C.-M., Chiu J.-H., Wu I.-H., Wang B.-W., Pan C.-M., Chen Y.-H. Ferulic acid augments angiogenesis via VEGF, PDGF and HIF-1α. J. Nutr. Biochem. 2010;21:627–633. doi: 10.1016/j.jnutbio.2009.04.001.
    1. Wang J., Yuan Z., Zhao H., Ju D., Chen Y., Chen X., Zhang J. Ferulic acid promotes endothelial cells proliferation through up-regulating cyclin D1 and VEGF. J. Ethnopharmacol. 2011;137:992–997. doi: 10.1016/j.jep.2011.07.019.
    1. San Miguel S.M., Opperman L.A., Allen E.P., Zielinski J., Svoboda K.K.H. Bioactive antioxidant mixtures promote proliferation and migration on human oral fibroblasts. Arch. Oral Biol. 2011;56:812–822. doi: 10.1016/j.archoralbio.2011.01.001.
    1. Poornima B., Korrapati P.S. Fabrication of chitosan-polycaprolactone composite nanofibrous scaffold for simultaneous delivery of ferulic acid and resveratrol. Carbohydr. Polym. 2017;157:1741–1749. doi: 10.1016/j.carbpol.2016.11.056.
    1. Bairagi U., Mittal P., Singh J., Mishra B. Preparation, characterization, and in vivo evaluation of nano formulations of ferulic acid in diabetic wound healing. Drug Dev. Ind. Pharm. 2018;44:1783–1796. doi: 10.1080/03639045.2018.1496448.
    1. Ghaisas M.M., Kshirsagar S.B., Sahane R.S. Evaluation of wound healing activity of ferulic acid in diabetic rats. Int. Wound J. 2014;11:523–532. doi: 10.1111/j.1742-481X.2012.01119.x.
    1. da Viana R.S., de Aquino F.L.T., Barreto E. Effect of trans-cinnamic acid and p-coumaric acid on fibroblast motility: A pilot comparative study of in silico lipophilicity measure. Nat. Prod. Res. 2020:1–7. doi: 10.1080/14786419.2020.1798664.
    1. Scoditti E., Nestola A., Massaro M., Calabriso N., Storelli C., De Caterina R., Carluccio M.A. Hydroxytyrosol suppresses MMP-9 and COX-2 activity and expression in activated human monocytes via PKCα and PKCβ1 inhibition. Atherosclerosis. 2014;232:17–24. doi: 10.1016/j.atherosclerosis.2013.10.017.
    1. Abate M., Citro M., Pisanti S., Caputo M., Martinelli R. Keratinocytes Migration Promotion, Proliferation Induction, and Free Radical Injury Prevention by 3-Hydroxytirosol. Int. J. Mol. Sci. 2021;22:2438. doi: 10.3390/ijms22052438.
    1. Abate M., Pisanti S., Caputo M., Citro M., Vecchione C., Martinelli R. 3-Hydroxytyrosol Promotes Angiogenesis In Vitro by Stimulating Endothelial Cell Migration. Int. J. Mol. Sci. 2020;21:3657. doi: 10.3390/ijms21103657.
    1. Zrelli H., Matsuoka M., Kitazaki S., Araki M., Kusunoki M., Zarrouk M., Miyazaki H. Hydroxytyrosol induces proliferation and cytoprotection against oxidative injury in vascular endothelial cells: Role of Nrf2 activation and HO-1 induction. J. Agric. Food Chem. 2011;59:4473–4482. doi: 10.1021/jf104151d.
    1. Guo W., An Y., Jiang L., Geng C., Zhong L. The protective effects of hydroxytyrosol against UVB-induced DNA damage in HaCaT cells. Phytother. Res. 2010;24:352–359. doi: 10.1002/ptr.2943.
    1. Bedoya L.M., Beltrán M., Obregón-Calderón P., García-Pérez J., de la Torre H.E., González N., Pérez-Olmeda M., Auñón D., Capa L., Gómez-Acebo E., et al. Hydroxytyrosol: A new class of microbicide displaying broad anti-HIV-1 activity. AIDS Lond. Engl. 2016;30:2767–2776. doi: 10.1097/QAD.0000000000001283.
    1. Wu H., Jiang K., Zhang T., Zhao G., Deng G. Hydroxytyrosol exerts an anti-inflammatory effect by suppressing Toll-like receptor 2 and TLR 2 downstream pathways in Staphylococcus aureus-induced mastitis in mice. J. Funct. Foods. 2017;35:595–604. doi: 10.1016/j.jff.2017.06.035.
    1. Karković Marković A., Torić J., Barbarić M., Jakobušić Brala C. Hydroxytyrosol, Tyrosol and Derivatives and Their Potential Effects on Human Health. Molecules. 2019;24:2001. doi: 10.3390/molecules24102001.
    1. Serra G., Deiana M., Spencer J.P.E., Corona G. Olive Oil Phenolics Prevent Oxysterol-Induced Proinflammatory Cytokine Secretion and Reactive Oxygen Species Production in Human Peripheral Blood Mononuclear Cells, Through Modulation of p38 and JNK Pathways. Mol. Nutr. Food Res. 2017;61:1700283. doi: 10.1002/mnfr.201700283.
    1. Amini A., Liu M., Ahmad Z. Understanding the link between antimicrobial properties of dietary olive phenolics and bacterial ATP synthase. Int. J. Biol. Macromol. 2017;101:153–164. doi: 10.1016/j.ijbiomac.2017.03.087.
    1. Sato K., Mihara Y., Kanai K., Yamashita Y., Kimura Y., Itoh N. Tyrosol ameliorates lipopolysaccharide-induced ocular inflammation in rats via inhibition of nuclear factor (NF)-κB activation. J. Vet. Med. Sci. 2016;78:1429–1438. doi: 10.1292/jvms.16-0166.
    1. Plotnikov M.B., Aliev O.I., Sidekhmenova A.V., Shamanaev A.Y., Anishchenko A.M., Fomina T.I., Plotnikova T.M., Arkhipov A.M. Effect of p-tyrosol on hemorheological parameters and cerebral capillary network in young spontaneously hypertensive rats. Microvasc. Res. 2018;119:91–97. doi: 10.1016/j.mvr.2018.04.005.
    1. Goels T., Eichenauer E., Langeder J., Hoeller F., Sykora C., Tahir A., Urban E., Heiss E.H., Saukel J., Glasl S. Norway Spruce Balm: Phytochemical Composition and Ability to Enhance Re-epithelialization In Vitro. Planta Med. 2020;86:1080–1088. doi: 10.1055/a-1141-0921.
    1. Do K.H., Choi Y.W., Kim E.K., Yun S.J., Kim M.S., Lee S.Y., Ha J.M., Kim J.H., Kim C.D., Son B.G., et al. Pinoresinol-4,4’-di-O-beta-D-glucoside from Valeriana officinalis root stimulates calcium mobilization and chemotactic migration of mouse embryo fibroblasts. Phytomedicine Int. J. Phytother. Phytopharm. 2009;16:530–537.
    1. Ribeiro V.P., Arruda C., Mejia J.A.A., Bastos J., Tripathi S.K., Khan S.I., Khan I.A., Ali Z. Phytochemical, antiplasmodial, cytotoxic and antimicrobial evaluation of a Southeast Brazilian Brown Propolis produced by Apis mellifera bees. Chem. Biodivers. 2021 doi: 10.1002/cbdv.202100288.
    1. Céspedes C.L., Avila J.G., García A.M., Becerra J., Flores C., Aqueveque P., Bittner M., Hoeneisen M., Martinez M., Silva M. Antifungal and antibacterial activities of Araucaria araucana (Mol.) K. Koch heartwood lignans. Z. Naturforschung C J. Biosci. 2006;61:35–43. doi: 10.1515/znc-2006-1-207.
    1. Yadav N., Monisha M., Niranjan R., Dubey A., Patil S., Priyadarshini R., Lochab B. Antibacterial performance of fully biobased chitosan-grafted-polybenzoxazine films: Elaboration and properties of released material. Carbohydr. Polym. 2021;254:117296. doi: 10.1016/j.carbpol.2020.117296.
    1. Jin X., Shang Y., Zou Y., Xiao M., Huang H., Zhu S., Liu N., Li J., Wang W., Zhu P. Injectable Hypoxia-Induced Conductive Hydrogel to Promote Diabetic Wound Healing. ACS Appl. Mater. Interfaces. 2020;12:56681–56691. doi: 10.1021/acsami.0c13197.
    1. Lee J.-C., Kim I.H., Cho J.H., Lee T.-K., Park J.H., Ahn J.H., Shin B.N., Yan B.C., Kim J.-D., Jeon Y.H., et al. Vanillin improves scopolamine-induced memory impairment through restoration of ID1 expression in the mouse hippocampus. Mol. Med. Rep. 2018;17:4399–4405. doi: 10.3892/mmr.2018.8401.
    1. Abo-youssef A.M. Possible antidepressant effects of vanillin against experimentally induced chronic mild stress in rats. Beni-Suef Univ. J. Basic Appl. Sci. 2016;5:187–192. doi: 10.1016/j.bjbas.2016.04.003.
    1. Tai A., Sawano T., Yazama F., Ito H. Evaluation of antioxidant activity of vanillin by using multiple antioxidant assays. Biochim. Biophys. Acta BBA Gen. Subj. 2011;1810:170–177. doi: 10.1016/j.bbagen.2010.11.004.
    1. Park S.-H., Sim Y.-B., Choi S.-M., Seo Y.-J., Kwon M.-S., Lee J.-K., Suh H.-W. Antinociceptive profiles and mechanisms of orally administered vanillin in the mice. Arch. Pharm. Res. 2009;32:1643. doi: 10.1007/s12272-009-2119-8.
    1. Makni M., Chtourou Y., Fetoui H., Garoui E.M., Boudawara T., Zeghal N. Evaluation of the antioxidant, anti-inflammatory and hepatoprotective properties of vanillin in carbon tetrachloride-treated rats. Eur. J. Pharmacol. 2011;668:133–139. doi: 10.1016/j.ejphar.2011.07.001.
    1. de Aragão Tavares E., de Medeiros W.M.T.Q., de Assis Pontes T.P., Barbosa M.M., de Araújo A.A., de Araújo R.F., Figueiredo J.G., Leitão R.C., da Silva Martins C., da Silva F.O.N., et al. Chitosan Membrane Modified With a New Zinc(II)-Vanillin Complex Improves Skin Wound Healing in Diabetic Rats. Front. Pharmacol. 2018;9:1511. doi: 10.3389/fphar.2018.01511.
    1. Tian Y., Pang L., Zhang R., Xu T., Wang S., Yu B., Gao L., Cong H., Shen Y. Poly-tetrahydropyrimidine Antibacterial Hydrogel with Injectability and Self-Healing Ability for Curing the Purulent Subcutaneous Infection. ACS Appl. Mater. Interfaces. 2020;12:50236–50247. doi: 10.1021/acsami.0c13822.
    1. Zhou G., Ruhan A., Ge H., Wang L., Liu M., Wang B., Su H., Yan M., Xi Y., Fan Y. Research on a novel poly (vinyl alcohol)/lysine/vanillin wound dressing: Biocompatibility, bioactivity and antimicrobial activity. Burns J. Int. Soc. Burn Inj. 2014;40:1668–1678. doi: 10.1016/j.burns.2014.04.005.
    1. Vinha A.F., Ferreres F., Silva B.M., Valentão P., Gonçalves A., Pereira J.A., Oliveira M.B., Seabra R.M., Andrade P.B. Phenolic profiles of Portuguese olive fruits (Olea europaea L.): Influences of cultivar and geographical origin. Food Chem. 2005;89:561–568. doi: 10.1016/j.foodchem.2004.03.012.
    1. Gómez-Rico A., Fregapane G., Salvador M.D. Effect of cultivar and ripening on minor components in Spanish olive fruits and their corresponding virgin olive oils. Food Res. Int. 2008;41:433–440. doi: 10.1016/j.foodres.2008.02.003.
    1. Budzynska B., Faggio C., Kruk-Slomka M., Samec D., Nabavi S.F., Sureda A., Devi K.P., Nabavi S.M. Rutin as Neuroprotective Agent: From Bench to Bedside. Curr. Med. Chem. 2019;26:5152–5164. doi: 10.2174/0929867324666171003114154.
    1. Ganeshpurkar A., Saluja A.K. The Pharmacological Potential of Rutin. Saudi Pharm. J. SPJ Off. Publ. Saudi Pharm. Soc. 2017;25:149–164. doi: 10.1016/j.jsps.2016.04.025.
    1. Song K., Na J.-Y., Kim S., Kwon J. Rutin upregulates neurotrophic factors resulting in attenuation of ethanol-induced oxidative stress in HT22 hippocampal neuronal cells. J. Sci. Food Agric. 2015;95:2117–2123. doi: 10.1002/jsfa.6927.
    1. Yashin A., Yashin Y., Xia X., Nemzer B. Antioxidant Activity of Spices and Their Impact on Human Health: A Review. Antioxidants. 2017;6:70. doi: 10.3390/antiox6030070.
    1. Seelinger G., Merfort I., Schempp C.M. Anti-oxidant, anti-inflammatory and anti-allergic activities of luteolin. Planta Med. 2008;74:1667–1677. doi: 10.1055/s-0028-1088314.
    1. Neuhouser M.L. Dietary flavonoids and cancer risk: Evidence from human population studies. Nutr. Cancer. 2004;50:1–7. doi: 10.1207/s15327914nc5001_1.
    1. Guo Y.-F., Xu N.-N., Sun W., Zhao Y., Li C.-Y., Guo M.-Y. Luteolin reduces inflammation in Staphylococcus aureus-induced mastitis by inhibiting NF-kB activation and MMPs expression. Oncotarget. 2017;8:28481–28493. doi: 10.18632/oncotarget.16092.
    1. Fedel-Miyasato L.E.S., Kassuya C.A.L., Auharek S.A., Formagio A.S.N., Cardoso C.A.L., Mauro M.O., Cunha-Laura A.L., Monreal A.C.D., Vieira M.C., Oliveira R.J. Evaluation of anti-inflammatory, immunomodulatory, chemopreventive and wound healing potentials from Schinus terebinthifolius methanolic extract. Rev. Bras. Farmacogn. 2014;24:565–575. doi: 10.1016/j.bjp.2014.08.004.
    1. Mainka M., Czerwińska M.E., Osińska E., Ziaja M., Bazylko A. Screening of Antioxidative Properties and Inhibition of Inflammation-Linked Enzymes by Aqueous and Ethanolic Extracts of Plants Traditionally Used in Wound Healing in Poland. Antioxidants. 2021;10:698. doi: 10.3390/antiox10050698.
    1. Motawea M.H., Abd Elmaksoud H.A., Elharrif M.G., Desoky A.A.E., Ibrahimi A. Evaluation of Anti-inflammatory and Antioxidant Profile of Oleuropein in Experimentally Induced Ulcerative Colitis. Int. J. Mol. Cell. Med. 2020;9:224–233.
    1. Barbaro B., Toietta G., Maggio R., Arciello M., Tarocchi M., Galli A., Balsano C. Effects of the olive-derived polyphenol oleuropein on human health. Int. J. Mol. Sci. 2014;15:18508–18524. doi: 10.3390/ijms151018508.
    1. Gorzynik-Debicka M., Przychodzen P., Cappello F., Kuban-Jankowska A., Marino Gammazza A., Knap N., Wozniak M., Gorska-Ponikowska M. Potential Health Benefits of Olive Oil and Plant Polyphenols. Int. J. Mol. Sci. 2018;19:686. doi: 10.3390/ijms19030686.
    1. Hassen I., Casabianca H., Hosni K. Biological activities of the natural antioxidant oleuropein: Exceeding the expectation—A mini-review. J. Funct. Foods. 2014;18:926–940. doi: 10.1016/j.jff.2014.09.001.
    1. Garrido Fernandez A., Adams M.R., Fernandez-Diez M.J. Table Olives—Production and Processing. Chapman & Hall; London, UK: 1997.
    1. Fernandes F.H.A., Salgado H.R.N. Gallic Acid: Review of the Methods of Determination and Quantification. Crit. Rev. Anal. Chem. 2016;46:257–265. doi: 10.1080/10408347.2015.1095064.
    1. Choubey S., Varughese L.R., Kumar V., Beniwal V. Medicinal importance of gallic acid and its ester derivatives: A patent review. Pharm. Pat. Anal. 2015;4:305–315. doi: 10.4155/ppa.15.14.
    1. Shao D., Li J., Li J., Tang R., Liu L., Shi J., Huang Q., Yang H. Inhibition of Gallic Acid on the Growth and Biofilm Formation of Escherichia coli and Streptococcus mutans. J. Food Sci. 2015;80:M1299–M1305. doi: 10.1111/1750-3841.12902.
    1. Oh E., Jeon B. Synergistic anti-Campylobacter jejuni activity of fluoroquinolone and macrolide antibiotics with phenolic compounds. Front. Microbiol. 2015;6:1129. doi: 10.3389/fmicb.2015.01129.
    1. Aziz N.H., Farag S.E., Mousa L.A., Abo-Zaid M.A. Comparative antibacterial and antifungal effects of some phenolic compounds. Microbios. 1998;93:43–54.
    1. Liu R.H. Potential synergy of phytochemicals in cancer prevention: Mechanism of action. J. Nutr. 2004;134:3479S–3485S. doi: 10.1093/jn/134.12.3479S.
    1. Ghanbari R., Anwar F., Alkharfy K.M., Gilani A.-H., Saari N. Valuable nutrients and functional bioactives in different parts of olive (Olea europaea L.)—A review. Int. J. Mol. Sci. 2012;13:3291–3340. doi: 10.3390/ijms13033291.
    1. Kakkar S., Bais S. A review on protocatechuic Acid and its pharmacological potential. ISRN Pharmacol. 2014;2014:952943. doi: 10.1155/2014/952943.
    1. Juturu V. Chapter 82—Polyphenols and Cardiometabolic Syndrome. In: Watson R.R., Preedy V.R., Zibadi S., editors. Polyphenols in Human Health and Disease. Academic Press; San Diego, CA, USA: 2014. pp. 1067–1076.
    1. Zheng W., Wang S.Y. Antioxidant activity and phenolic compounds in selected herbs. J. Agric. Food Chem. 2001;49:5165–5170. doi: 10.1021/jf010697n.
    1. Russell W.R., Scobbie L., Labat A., Duthie G.G. Selective bio-availability of phenolic acids from Scottish strawberries. Mol. Nutr. Food Res. 2009;53:S85–S91. doi: 10.1002/mnfr.200800302.
    1. Gitzinger M., Kemmer C., Fluri D.A., Daoud El-Baba M., Weber W., Fussenegger M. The food additive vanillic acid controls transgene expression in mammalian cells and mice. Nucleic Acids Res. 2012;40:e37. doi: 10.1093/nar/gkr1251.
    1. Jun H.-I., Song G.-S., Yang E.-I., Youn Y., Kim Y.-S. Antioxidant activities and phenolic compounds of pigmented rice bran extracts. J. Food Sci. 2012;77:C759–C764. doi: 10.1111/j.1750-3841.2012.02763.x.
    1. Palafox-Carlos H., Yahia E.M., González-Aguilar G.A. Identification and quantification of major phenolic compounds from mango (Mangifera indica, cv. Ataulfo) fruit by HPLC–DAD–MS/MS-ESI and their individual contribution to the antioxidant activity during ripening. Food Chem. 2012;135:105–111. doi: 10.1016/j.foodchem.2012.04.103.
    1. Son S., Lewis B.A. Free radical scavenging and antioxidative activity of caffeic acid amide and ester analogues: Structure-activity relationship. J. Agric. Food Chem. 2002;50:468–472. doi: 10.1021/jf010830b.
    1. Tsuruya M., Niwano Y., Nakamura K., Kanno T., Nakashima T., Egusa H., Sasaki K. Acceleration of Proliferative Response of Mouse Fibroblasts by Short-Time Pretreatment with Polyphenols. Appl. Biochem. Biotechnol. 2014;174:2223–2235. doi: 10.1007/s12010-014-1124-7.
    1. Serarslan G., Altuğ E., Kontas T., Atik E., Avci G. Caffeic acid phenethyl ester accelerates cutaneous wound healing in a rat model and decreases oxidative stress. Clin. Exp. Dermatol. 2007;32:709–715. doi: 10.1111/j.1365-2230.2007.02470.x.
    1. Chaudhary A., Jaswal V.S., Choudhary S., Sharma A., Beniwal V., Tuli H.S., Sharma S. Ferulic Acid: A Promising Therapeutic Phytochemical and Recent Patents Advances. Recent Pat. Inflamm. Allergy Drug Discov. 2019;13:115–123. doi: 10.2174/1872213X13666190621125048.
    1. Budak N.H., Aykin E., Seydim A.C., Greene A.K., Guzel-Seydim Z.B. Functional properties of vinegar. J. Food Sci. 2014;79:R757–R764. doi: 10.1111/1750-3841.12434.
    1. Bayram B., Esatbeyoglu T., Schulze N., Ozcelik B., Frank J., Rimbach G. Comprehensive Analysis of Polyphenols in 55 Extra Virgin Olive Oils by HPLC-ECD and Their Correlation with Antioxidant Activities. Plant Foods Hum. Nutr. 2012;67:326–336. doi: 10.1007/s11130-012-0315-z.
    1. Manach C., Scalbert A., Morand C., Rémésy C., Jiménez L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr. 2004;79:727–747. doi: 10.1093/ajcn/79.5.727.
    1. Rashmi H.B., Negi P.S. Phenolic acids from vegetables: A review on processing stability and health benefits. Food Res. Int. 2020;136:109298. doi: 10.1016/j.foodres.2020.109298.
    1. Zduńska K., Dana A., Kolodziejczak A., Rotsztejn H. Antioxidant Properties of Ferulic Acid and Its Possible Application. Skin Pharmacol. Physiol. 2018;31:332–336. doi: 10.1159/000491755.
    1. Carbone C., Caddeo C., Grimaudo M.A., Manno D.E., Serra A., Musumeci T. Ferulic Acid-NLC with Lavandula Essential Oil: A Possible Strategy for Wound-Healing? Nanomaterials. 2020;10:898. doi: 10.3390/nano10050898.
    1. Valacchi G., Grisci G., Sticozzi C., Lim Y., Paolino M., Giuliani G., Mendichi R., Belmonte G., Artusi R., Zanardi A., et al. Wound healing properties of hyaluronan derivatives bearing ferulate residues. J. Mater. Chem. B. 2015;3:7037–7045. doi: 10.1039/C5TB00661A.
    1. Juneja K., Mishra R., Chauhan S., Gupta S., Roy P., Sircar D. Metabolite profiling and wound-healing activity of Boerhavia diffusa leaf extracts using in vitro and in vivo models. J. Tradit. Complement. Med. 2020;10:52–59. doi: 10.1016/j.jtcme.2019.02.002.
    1. Song Y., Zeng R., Hu L., Maffucci K.G., Ren X., Qu Y. In vivo wound healing and in vitro antioxidant activities of Bletilla striata phenolic extracts. Biomed. Pharmacother. Biomedecine Pharmacother. 2017;93:451–461. doi: 10.1016/j.biopha.2017.06.079.
    1. Tsai C.-Y., Woung L.-C., Yen J.-C., Tseng P.-C., Chiou S.-H., Sung Y.-J., Liu K.-T., Cheng Y.-H. Thermosensitive chitosan-based hydrogels for sustained release of ferulic acid on corneal wound healing. Carbohydr. Polym. 2016;135:308–315. doi: 10.1016/j.carbpol.2015.08.098.
    1. Wei Q., Duan J., Ma G., Zhang W., Wang Q., Hu Z. Enzymatic crosslinking to fabricate antioxidant peptide-based supramolecular hydrogel for improving cutaneous wound healing. J. Mater. Chem. B. 2019;7:2220–2225. doi: 10.1039/C8TB03147A.
    1. Ferreira P.S., Victorelli F.D., Fonseca-Santos B., Chorilli M. A Review of Analytical Methods for p-Coumaric Acid in Plant-Based Products, Beverages, and Biological Matrices. Crit. Rev. Anal. Chem. 2019;49:21–31. doi: 10.1080/10408347.2018.1459173.
    1. Seok J.K., Boo Y.C. p-Coumaric Acid Attenuates UVB-Induced Release of Stratifin from Keratinocytes and Indirectly Regulates Matrix Metalloproteinase 1 Release from Fibroblasts. Korean J. Physiol. Pharmacol. Off. J. Korean Physiol. Soc. Korean Soc. Pharmacol. 2015;19:241–247. doi: 10.4196/kjpp.2015.19.3.241.
    1. El-Seedi H.R., El-Said A.M.A., Khalifa S.A.M., Göransson U., Bohlin L., Borg-Karlson A.-K., Verpoorte R. Biosynthesis, Natural Sources, Dietary Intake, Pharmacokinetic Properties, and Biological Activities of Hydroxycinnamic Acids. J. Agric. Food Chem. 2012;60:10877–10895. doi: 10.1021/jf301807g.
    1. Sytar O., Hemmerich I., Zivcak M., Rauh C., Brestic M. Comparative analysis of bioactive phenolic compounds composition from 26 medicinal plants. Saudi J. Biol. Sci. 2018;25:631–641. doi: 10.1016/j.sjbs.2016.01.036.
    1. Sowa I., Paduch R., Strzemski M., Zielińska S., Rydzik-Strzemska E., Sawicki J., Kocjan R., Polkowski J., Matkowski A., Latalski M., et al. Proliferative and antioxidant activity of Symphytum officinale root extract. Nat. Prod. Res. 2018;32:605–609. doi: 10.1080/14786419.2017.1326492.
    1. Bonoli M., Montanucci M., Gallina Toschi T., Lercker G. Fast separation and determination of tyrosol, hydroxytyrosol and other phenolic compounds in extra-virgin olive oil by capillary zone electrophoresis with ultraviolet-diode array detection. J. Chromatogr. A. 2003;1011:163–172. doi: 10.1016/S0021-9673(03)01100-2.
    1. Bonoli M., Bendini A., Cerretani L., Lercker G., Toschi T.G. Qualitative and semiquantitative analysis of phenolic compounds in extra virgin olive oils as a function of the ripening degree of olive fruits by different analytical techniques. J. Agric. Food Chem. 2004;52:7026–7032. doi: 10.1021/jf048868m.
    1. Montedoro G., Servili M., Baldioli M., Miniati E. Simple and hydrolyzable phenolic compounds in virgin olive oil. 1. Their extraction, separation, and quantitative and semiquantitative evaluation by HPLC. J. Agric. Food Chem. 1992;40:1571–1576. doi: 10.1021/jf00021a019.
    1. Catalán Ú., López de Las Hazas M.-C., Rubió L., Fernández-Castillejo S., Pedret A., de la Torre R., Motilva M.-J., Solà R. Protective effect of hydroxytyrosol and its predominant plasmatic human metabolites against endothelial dysfunction in human aortic endothelial cells. Mol. Nutr. Food Res. 2015;59:2523–2536. doi: 10.1002/mnfr.201500361.
    1. Perona J.S., Cabello-Moruno R., Ruiz-Gutierrez V. The role of virgin olive oil components in the modulation of endothelial function. J. Nutr. Biochem. 2006;17:429–445. doi: 10.1016/j.jnutbio.2005.11.007.
    1. Bernini R., Carastro I., Palmini G., Tanini A., Zonefrati R., Pinelli P., Brandi M.L., Romani A. Lipophilization of Hydroxytyrosol-Enriched Fractions from Olea europaea L. Byproducts and Evaluation of the in Vitro Effects on a Model of Colorectal Cancer Cells. J. Agric. Food Chem. 2017;65:6506–6512. doi: 10.1021/acs.jafc.6b05457.
    1. Fabiani R., Sepporta M.V., Rosignoli P., De Bartolomeo A., Crescimanno M., Morozzi G. Anti-proliferative and pro-apoptotic activities of hydroxytyrosol on different tumour cells: The role of extracellular production of hydrogen peroxide. Eur. J. Nutr. 2012;51:455–464. doi: 10.1007/s00394-011-0230-3.
    1. Kamil K., Yazid M.D., Idrus R.B.H., Kumar J. Hydroxytyrosol Promotes Proliferation of Human Schwann Cells: An In Vitro Study. Int. J. Environ. Res. Public. Health. 2020;17:4404. doi: 10.3390/ijerph17124404.
    1. Rodríguez-Morató J., Xicota L., Fitó M., Farré M., Dierssen M., De la Torre R. Potential Role of Olive Oil Phenolic Compounds in the Prevention of Neurodegenerative Diseases. Molecules. 2015;20:4655–4680. doi: 10.3390/molecules20034655.
    1. Diallinas G., Rafailidou N., Kalpaktsi I., Komianou A.C., Tsouvali V., Zantza I., Mikros E., Skaltsounis A.L., Kostakis I.K. Hydroxytyrosol (HT) Analogs Act as Potent Antifungals by Direct Disruption of the Fungal Cell Membrane. Front. Microbiol. 2018;9:2624. doi: 10.3389/fmicb.2018.02624.
    1. Yamada K., Ogawa H., Hara A., Yoshida Y., Yonezawa Y., Karibe K., Nghia V.B., Yoshimura H., Yamamoto Y., Yamada M., et al. Mechanism of the antiviral effect of hydroxytyrosol on influenza virus appears to involve morphological change of the virus. Antivir. Res. 2009;83:35–44. doi: 10.1016/j.antiviral.2009.03.002.
    1. Calabriso N., Gnoni A., Stanca E., Cavallo A., Damiano F., Siculella L., Carluccio M.A. Hydroxytyrosol Ameliorates Endothelial Function under Inflammatory Conditions by Preventing Mitochondrial Dysfunction. Oxid. Med. Cell. Longev. 2018;2018:9086947. doi: 10.1155/2018/9086947.
    1. Granados-Principal S., Quiles J.L., Ramirez-Tortosa C.L., Sanchez-Rovira P., Ramirez-Tortosa M.C. Hydroxytyrosol: From laboratory investigations to future clinical trials. Nutr. Rev. 2010;68:191–206. doi: 10.1111/j.1753-4887.2010.00278.x.
    1. Utami N.D., Nordin A., Katas H., Bt Hj Idrus R., Fauzi M.B. Molecular Action of Hydroxytyrosol in Wound Healing: An In Vitro Evidence-Based Review. Biomolecules. 2020;10:1397. doi: 10.3390/biom10101397.
    1. Bisignano G., Tomaino A., Lo Cascio R., Crisafi G., Uccella N., Saija A. On the in-vitro antimicrobial activity of oleuropein and hydroxytyrosol. J. Pharm. Pharmacol. 1999;51:971–974. doi: 10.1211/0022357991773258.
    1. Tuck K.L., Hayball P.J. Major phenolic compounds in olive oil: Metabolism and health effects. J. Nutr. Biochem. 2002;13:636–644. doi: 10.1016/S0955-2863(02)00229-2.
    1. Brenes M., Hidalgo F.J., García A., Rios J.J., García P., Zamora R., Garrido A. Pinoresinol and 1-acetoxypinoresinol, two new phenolic compounds identified in olive oil. J. Am. Oil Chem. Soc. 2000;77:715–720. doi: 10.1007/s11746-000-0115-4.
    1. Kim Y., Florio S., Wang Q. Blast Analysis of Aging Transportation Structures with Little Stand-Off Distance. Congr. Tech. Adv. 2017;1:143–151.
    1. Shaughnessy D.T., Setzer R.W., DeMarini D.M. The antimutagenic effect of vanillin and cinnamaldehyde on spontaneous mutation in Salmonella TA104 is due to a reduction in mutations at GC but not AT sites. Mutat. Res. Mol. Mech. Mutagen. 2001;480–481:55–69. doi: 10.1016/S0027-5107(01)00169-5.
    1. De Flora S., Bennicelli C., Rovida A., Scatolini L., Camoirano A. Inhibition of the ‘spontaneous’ mutagenicity in Salmonella typhimurium TA102 and TA104. Mutat. Res. Mol. Mech. Mutagen. 1994;307:157–167. doi: 10.1016/0027-5107(94)90288-7.
    1. Ho K., Yazan L.S., Ismail N., Ismail M. Apoptosis and cell cycle arrest of human colorectal cancer cell line HT-29 induced by vanillin. Cancer Epidemiol. 2009;33:155–160. doi: 10.1016/j.canep.2009.06.003.
    1. Ho K., Yazan L.S., Ismail N., Ismail M. Toxicology study of vanillin on rats via oral and intra-peritoneal administration. Food Chem. Toxicol. 2011;49:25–30. doi: 10.1016/j.fct.2010.08.023.
    1. Banerjee G., Chattopadhyay P. Vanillin biotechnology: The perspectives and future. J. Sci. Food Agric. 2019;99:499–506. doi: 10.1002/jsfa.9303.

Source: PubMed

3
Abonneren