Increasing Stress to Induce Apoptosis in Pancreatic Cancer via the Unfolded Protein Response (UPR)

Gehan Botrus, Richard M Miller, Pedro Luiz Serrano Uson Junior, Geoffrey Kannan, Haiyong Han, Daniel D Von Hoff, Gehan Botrus, Richard M Miller, Pedro Luiz Serrano Uson Junior, Geoffrey Kannan, Haiyong Han, Daniel D Von Hoff

Abstract

High rates of cell proliferation and protein synthesis in pancreatic cancer are among many factors leading to endoplasmic reticulum (ER) stress. To restore cellular homeostasis, the unfolded protein response (UPR) activates as an adaptive mechanism through either the IRE1α, PERK, or ATF6 pathways to reduce the translational load and process unfolded proteins, thus enabling tumor cells to proliferate. Under severe and prolonged ER stress, however, the UPR may promote adaptation, senescence, or apoptosis under these same pathways if homeostasis is not restored. In this review, we present evidence that high levels of ER stress and UPR activation are present in pancreatic cancer. We detail the mechanisms by which compounds activate one or many of the three arms of the UPR and effectuate downstream apoptosis and examine available data on the pre-clinical and clinical-phase ER stress inducers with the potential for anti-tumor efficacy in pancreatic cancer. Finally, we hypothesize a potential new approach to targeting pancreatic cancer by increasing levels of ER stress and UPR activation to incite apoptotic cell death.

Keywords: apoptosis; endoplasmic reticulum (ER) stress; pancreatic cancer; unfolded protein response (UPR).

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Unfolded Protein Response. A simplified version of unfolded protein response (UPR). Under stress, cells activate the adaptative UPR to establish cellular homeostasis and proteostasis. The sensors IRE1, PERK, and ATF6 are activated after the dissociation of GRP78, which is recruited due to the accumulation of misfolded and unfolded proteins. IRE1 oligomerization and auto-phosphorylation induce kinase and RNase activity leading to mRNA degradation (RIDD) and altered splicing of the XBP1 mRNA and production of the transcription factor XBP1s. PERK undergoes oligomerization and auto-phosphorylation, subsequently phosphorylating the eukaryotic translation initiation factor eIF2α, resulting in the translation of transcription factor ATF4. NRF2 is also phosphorylated by PERK and activates antioxidant responses. ATF6 activation occurs after transport to the Golgi apparatus where it undergoes S1P/S2P protease cleavage, yielding transcriptionally active ATF6f. The transcriptional events mediated by XBP1s, ATF4, and ATF6f promote the expression of chaperones and components of ER-associated protein degradation (ERAD), reducing protein translation and increasing ER capacity in order to restore homeostasis. Additionally, UPR-mediated gene expression also directly impacts autophagy, cytokine production, and apoptosis. Figure 1 was created with BioRender.com.
Figure 2
Figure 2
Cellular Responses to Prolonged Levels of ER Stress.

References

    1. American Cancer Society Facts & Figures 2022. American Cancer Society. Atlanta, Ga. 2022. [(accessed on 10 October 2022)]. Available online: .
    1. Sarantis P., Koustas E., Papadimitropoulou A., Papavassiliou A.G., Karamouzis M.V. Pancreatic ductal adenocarcinoma: Treatment hurdles, tumor microenvironment and immunotherapy. World J. Gastrointest. Oncol. 2020;12:173–181. doi: 10.4251/wjgo.v12.i2.173.
    1. Uson P.L.S., Jr., Samadder N.J., Riegert-Johnson D., Boardman L., Borad M.J., Ahn D., Sonbol M.B., Faigel D.O., Fukami N., Pannala R., et al. Clinical Impact of Pathogenic Germline Variants in Pancreatic Cancer: Results from a Multicenter, Prospective, Universal Genetic Testing Study. Clin. Transl. Gastroenterol. 2021;12:e00414. doi: 10.14309/ctg.0000000000000414.
    1. Golan T., Hammel P., Reni M., Van Cutsem E., Macarulla T., Hall M.J., Park J.-O., Hochhauser D., Arnold D., Oh D.-Y., et al. Maintenance Olaparib for Germline BRCA-Mutated Metastatic Pancreatic Cancer. N. Engl. J. Med. 2019;381:317–327. doi: 10.1056/NEJMoa1903387.
    1. O’Reilly E.M., Lee J.W., Zalupski M., Capanu M., Park J., Golan T., Tahover E., Lowery M.A., Chou J.F., Sahai V., et al. Randomized, Multicenter, Phase II Trial of Gemcitabine and Cisplatin with or Without Veliparib in Patients With Pancreas Adenocarcinoma and a Germline BRCA/PALB2 Mutation. J. Clin. Oncol. 2020;38:1378–1388. doi: 10.1200/JCO.19.02931.
    1. Leidner R., Silva N.S., Huang H., Sprott D., Zheng C., Shih Y.-P., Leung A., Payne R., Sutcliffe K., Cramer J., et al. Neoantigen T-Cell Receptor Gene Therapy in Pancreatic Cancer. N. Engl. J. Med. 2022;386:2112–2119. doi: 10.1056/NEJMoa2119662.
    1. Robinson C.M., Talty A., Logue S.E., Mnich K., Gorman A.M., Samali A. An Emerging Role for the Unfolded Protein Response in Pancreatic Cancer. Cancers. 2021;13:261. doi: 10.3390/cancers13020261.
    1. Arnold F., Gout J., Wiese H., Weissinger S.E., Roger E., Perkhofer L., Walter K., Scheible J., Bozzo C.P., Lechel A., et al. RINT1 Regulates SUMOylation and the DNA Damage Response to Preserve Cellular Homeostasis in Pancreatic Cancer. Cancer Res. 2021;81:1758–1774. doi: 10.1158/0008-5472.CAN-20-2633.
    1. Dong L., Khoonkari M., Avril T., Chevet E., Kruyt F.A.E. The unfolded protein response as regulator of cancer stemness and differentiation: Mechanisms and implications for cancer therapy. Biochem. Pharmacol. 2021;192:114737.
    1. Shah V.M., Sheppard B.C., Sears R.C., Alani A.W.G. Hypoxia: Friend or Foe for drug delivery in Pancreatic Cancer. Cancer Lett. 2020;492:63–70. doi: 10.1016/j.canlet.2020.07.041.
    1. Keener J., Sneyd J. Cellular Homeostasis. In: Keener J., Sneyd J., editors. Mathematical Physiology. Interdisciplinary Applied Mathematics. Volume 8/1. Springer; New York, NY, USA: 2009.
    1. Liput M., Magliaro C., Kuczynska Z., Zayat V., Ahluwalia A., Buzanska L. Tools and approaches for analyzing the role of mitochondria in health, development and disease using human cerebral organoids. Dev. Neurobiol. 2021;81:591–607. doi: 10.1002/dneu.22818.
    1. Osellame L.D., Blacker T.S., Duchen M.R. Cellular and molecular mechanisms of mitochondrial function. Best Pract. Res. Clin. Endocrinol. Metab. 2012;26:711–723. doi: 10.1016/j.beem.2012.05.003.
    1. Konstantinos P., Lionaki E., Tavernarakis N. Mechanisms of mitophagy in cellular homeostasis, physiology and pathology. Nat. Cell Biol. 2018;20:1013–1022.
    1. Hoseki J., Ushioda R., Nagata K. Mechanism and components of endoplasmic reticulum-associated degradation. J. Biochem. 2010;147:19–25. doi: 10.1093/jb/mvp194.
    1. Ellgaard L., Helenius A. Quality control in the endoplasmic reticulum. Nat. Rev. Mol. Cell Biol. 2003;4:181191. doi: 10.1038/nrm1052.
    1. Malhotra J.D., Kaufman R.J. Seminars in Cell & Developmental Biology. Volume 18 Academic Press; Cambridge, MA, USA: 2007. The endoplasmic reticulum and the unfolded protein response.
    1. Tian X., Zhang S., Zhou L., Seyhan A.A., Borrero L.H., Zhang Y., El-Deiry W.S. Targeting the integrated stress response in cancer therapy. Front. Pharmacol. 2021;12:747837. doi: 10.3389/fphar.2021.747837.
    1. Bertolotti A., Zhang Y., Hendershot L.M., Harding H.P., Ron D. Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat. Cell Biol. 2000;2:326–332. doi: 10.1038/35014014.
    1. Shen J., Chen X., Hendershot L., Prywes R. ER stress regulation of ATF6 localization by dissociation of BiP/GRP78 binding and unmasking of Golgi localization signals. Dev. Cell. 2002;3:99–111. doi: 10.1016/S1534-5807(02)00203-4.
    1. Walter P., Ron D. The unfolded protein response: From stress pathway to homeostatic regulation. Science. 2011;334:1081–1086. doi: 10.1126/science.1209038.
    1. Han J., Kaufman R.J. Physiological/pathological ramifications of transcription factors in the unfolded protein response. Genes. 2017;31:1417–1438. doi: 10.1101/gad.297374.117.
    1. Pattabiraman D.R., Weinberg R.A. Tackling the cancer stem cells—What challenges do they pose? Nat. Rev. Drug Discov. 2014;13:497–512. doi: 10.1038/nrd4253.
    1. Caras I.W. Two cancer stem cell-targeted therapies in clinical trials as viewed from the standpoint of the cancer stem cell model. Stem Cells Transl. Med. 2020;9:821–826. doi: 10.1002/sctm.19-0424.
    1. Saito A., Imaizumi K. Unfolded Protein Response-Dependent Communication and Contact among Endoplasmic Reticulum, Mitochondria, and Plasma Membrane. Int. J. Mol. Sci. 2018;19:3215. doi: 10.3390/ijms19103215.
    1. Frakes A.E., Dillin A. The UPR(ER): Sensor and Coordinator of Organismal Homeostasis. Mol. Cell. 2017;66:761–771. doi: 10.1016/j.molcel.2017.05.031.
    1. Wang M., Kaufman R.J. Protein misfolding in the endoplasmic reticulum as a conduit to human disease. Nature. 2016;529:326–335. doi: 10.1038/nature17041.
    1. Ma Y., Hendershot L.M. The role of the unfolded protein response in tumour development: Friend or foe? Nat. Rev. Cancer. 2004;4:966–977. doi: 10.1038/nrc1505.
    1. Chevet E., Hetz C., Samali A. Endoplasmic reticulum stress-activated cell reprogramming in oncogenesis. Cancer Discov. 2015;5:586–597. doi: 10.1158/-14-1490.
    1. Siwecka N., Rozpędek W., Pytel D., Wawrzynkiewicz A., Dziki A., Diehl J.A., Majsterek I. Dual role of endoplasmic reticulum stress-mediated unfolded protein response signaling pathway in carcinogenesis. Int. J. Mol. Sci. 2019;20:4354. doi: 10.3390/ijms20184354.
    1. Urra H., Dufey E., Avril T., Chevet E., Hetz C. Endoplasmic reticulum stress and the hallmarks of cancer. Trends Cancer. 2016;2:252–262. doi: 10.1016/j.trecan.2016.03.007.
    1. Holtrup F., Bauer A., Fellenberg K., Hilger R.A., Wink M., Hoheisel J.D. Microarray analysis of nemorosone-induced cytotoxic effects on pancreatic cancer cells reveals activation of the unfolded protein response (UPR) Br. J. Pharmacol. 2011;162:1045–1059. doi: 10.1111/j.1476-5381.2010.01125.x.
    1. Lowenfels A.B., Maisonneuve P., Cavallini G., Ammann R.W., Lankisch P.G., Andersen J.R., DiMagno E.P., Andren-Sandberg A., Domellof L. Pancreatitis and the Risk of Pancreatic Cancer. N. Engl. J. Med. 1993;328:1433–1437. doi: 10.1056/NEJM199305203282001.
    1. Kirkegård J., Mortensen F.V., Cronin-Fenton D. Chronic Pancreatitis and Pancreatic Cancer Risk: A Systematic Review and Meta-analysis. Am. J. Gastroenterol. 2017;112:1366–1372. doi: 10.1038/ajg.2017.218.
    1. Raimondi S., Lowenfels A.B., Morselli-Labate A.M., Maisonneuve P., Pezzilli R. Pancreatic cancer in chronic pancreatitis; aetiology, incidence, and early detection. Best Pract. Res. Clin. Gastroenterol. 2010;24:349–358. doi: 10.1016/j.bpg.2010.02.007.
    1. Tong G.X., Geng Q.Q., Chai J., Cheng J., Chen P.L., Liang H., Shen X.R., Wang D.B. Association between pancreatitis and subsequent risk of pancreatic cancer: A systematic review of epidemiological studies. Asian Pac. J. Cancer Prev. 2014;15:5029–5034. doi: 10.7314/APJCP.2014.15.12.5029.
    1. Umans D.S., Hoogenboom S.A., Sissingh N.J., Lekkerkerker S.J., Verdonk R.C., van Hooft J.E. Pancreatitis and pancreatic cancer: A case of the chicken or the egg. World J. Gastroenterol. 2021;27:3148–3157. doi: 10.3748/wjg.v27.i23.3148.
    1. Wang L., Xie D., Wei D. Pancreatic Acinar-to-Ductal Metaplasia and Pancreatic Cancer. Methods Mol. Biol. 2019;1882:299–308. doi: 10.1007/978-1-4939-8879-2_26.
    1. Hingorani S.R., Petricoin E.F., Maitra A., Rajapakse V., King C., Jacobetz M.A., Ross S., Conrads T.P., Veenstra T.D., Hitt B.A., et al. Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell. 2003;4:437–450. doi: 10.1016/S1535-6108(03)00309-X.
    1. Carrière C., Young A.L., Gunn J.R., Longnecker D.S., Korc M. Acute pancreatitis markedly accelerates pancreatic cancer progression in mice expressing oncogenic Kras. Biochem. Biophys. Res. Commun. 2009;382:561–565. doi: 10.1016/j.bbrc.2009.03.068.
    1. Kong B., Cheg T., Wu W., Regel I., Raulefs R., Friess H., Erkan M., Esposito I., Kleeff J., Michalski C.W. Hypoxia-induced endoplasmic reticulum stress characterizes a necrotic phenotype of pancreatic cancer. Oncotarget. 2015;6:32154. doi: 10.18632/oncotarget.5168.
    1. Lu G., Luo H., Zhu X. Targeting the GRP78 pathway for cancer therapy. Front. Med. 2020;7:351. doi: 10.3389/fmed.2020.00351.
    1. Niu Z., Wang M., Zhou L., Yao L., Liao Q., Zhao Y. Elevated GRP78 expression is associated with poor prognosis in patients with pancreatic cancer. Sci. Rep. 2015;5:16067. doi: 10.1038/srep16067.
    1. Dauer P., Sharma N.S., Gupta V.K., Durden B., Hadad R., Banerjee S., Dudeja V., Saluja A., Banerjee S. ER stress sensor, glucose regulatory protein 78 (GRP78) regulates redox status in pancreatic cancer thereby maintaining “stemness”. Cell Death Dis. 2019;10:132. doi: 10.1038/s41419-019-1408-5.
    1. Shen J., Ha D.P., Zhu G., Rangel D.F., Kobielak A., Gill P.S., Groshen S., Dubeau L., Lee A.S. GRP78 haploinsufficiency suppresses acinar-to-ductal metaplasia, signaling, and mutant Kras-driven pancreatic tumorigenesis in mice. Proc. Natl. Acad. Sci. USA. 2017;114:E4020–E4029. doi: 10.1073/pnas.1616060114.
    1. Gifford J.B., Huang W., Zeleniak A.E., Hindoyan A., Wu H., Donahue T.R., Hill R. Expression of GRP78, Master Regulator of the Unfolded Protein Response, Increases Chemoresistance in Pan-creatic Ductal Adenocarcinoma. Mol. Cancer Ther. 2016;15:1043–1052. doi: 10.1158/1535-7163.MCT-15-0774.
    1. Chien W., Ding L.-W., Sun Q.-Y., Torres-Fernandez L.A., Tan S.Z., Xiao J., Lim S.L., Garg M., Lee K.L., Kitajima S., et al. Selective inhibition of unfolded protein response induces apoptosis in pancreatic cancer cells. Oncotarget. 2014;5:4881. doi: 10.18632/oncotarget.2051.
    1. Thakur P.C., Miller-Ocuin J.L., Kguyen K., Matsuda R., Singhi Ad Zeh H.J., Bahary N. Inhibition of endoplasmic-reticulum-stress-mediated autophagy enhances the effectiveness of chemotherapeutics on pancreatic cancer. J. Transl. Med. 2018;16:190. doi: 10.1186/s12967-018-1562-z.
    1. Atkins C., Liu Q., Minthorn E., Zhang S.-Y., Figueroa D.J., Moss K., Stanley T.B., Sanders B., Goetz A., Gaul N., et al. Characterization of a novel PERK kinase inhibitor with antitumor and antiangiogenic activity. Cancer Res. 2013;73:1993–2002. doi: 10.1158/0008-5472.CAN-12-3109.
    1. Terrab L., Wipf P. Hsp70 and the unfolded protein response as a challenging drug target and an inspiration for probe molecule development. ACS Med. Chem. Lett. 2020;11:232–236. doi: 10.1021/acsmedchemlett.9b00583.
    1. Zhao Q., Zhong J., Bi Y., Liu Y., Liu Y., Guo J., Pan L., Tan Y., Yu X. Gambogenic acid induces Noxa-mediated apoptosis in colorectal cancer through ROS-dependent activation of IRE1α/JNK. Phytomedicine. 2020;78:153306. doi: 10.1016/j.phymed.2020.153306.
    1. Liu C., Xu J., Guo C., Chen X., Qian C., Zhang X., Zhou P., Yang Y. Gambogenic Acid Induces Endoplasmic Reticulum Stress in Colorectal Cancer via the Aurora A Pathway. Front. Cell Dev. Biol. 2021;9:736350. doi: 10.3389/fcell.2021.736350.
    1. Su J., Xu T., Jiang G., Hou M., Liang M., Cheng H., Li Q. Gambogenic acid triggers apoptosis in human nasopharyngeal carcinoma CNE-2Z cells by activating volume-sensitive outwardly rectifying chloride channel. Fitoterapia. 2019;133:150–158. doi: 10.1016/j.fitote.2019.01.002.
    1. Cheng A.-L., Kang Y.-K., He A.R., Lim H.Y., Ryoo B.-Y., Hung C.-H., Sheen I.-S., Izumi N., Austin T., Wang Q., et al. Safety and efficacy of tigatuzumab plus sorafenib as first-line therapy in subjects with advanced hepatocellular carcinoma: A phase 2 randomized study. J. Hepatol. 2015;63:896–904. doi: 10.1016/j.jhep.2015.06.001.
    1. Forero-Torres A., Shah J., Wood T., Posey J., Carlisle R., Copigneaux C., Luo F., Wojtowicz-Praga S., Percent I., Saleh M. Phase I trial of weekly tigatuzumab, an agonistic humanized monoclonal antibody targeting death receptor 5 (DR5) Cancer Biother. Radiopharm. 2010;25:13–19. doi: 10.1089/cbr.2009.0673.
    1. DeRosier L.C., Vickers S.M., Zinn K.R., Huang Z., Wang W., Grizzle W.E., Sellers J., Stockard C.R., Zhou T., Oliver P.G., et al. TRA-8 anti-DR5 monoclonal antibody and gemcitabine induce apoptosis and inhibit radiologically validated orthotopic pancreatic tumor growth. Mol. Cancer Ther. 2007;6:3198–3207. doi: 10.1158/1535-7163.MCT-07-0299.
    1. Forero-Torres A., Infante J.R., Waterhouse D., Wong L., Vickers S., Arrowsmith E., He A.R., Hart L., Trent D., Wade J., et al. Phase 2, multicenter, open-label study of tigatuzumab (CS-1008), a humanized monoclonal antibody targeting death receptor 5, in combination with gemcitabine in chemotherapy-naive patients with unresectable or metastatic pancreatic cancer. Cancer Med. 2013;2:925–932. doi: 10.1002/cam4.137.
    1. Forero-Torres A., Varley K.E., Abramson V.G., Li Y., Vaklavas C., Lin N.U., Liu M.C., Rugo H.S., Nanda R., Storniolo A.M., et al. Translational Breast Cancer Research Consortium (TBCRC). TBCRC 019: A Phase II Trial of Nanoparticle Albumin-Bound Paclitaxel with or without the Anti-Death Receptor 5 Monoclonal Antibody Tigatuzumab in Patients with Triple-Negative Breast Cancer. Clin. Cancer Res. 2015;21:2722–2729. doi: 10.1158/1078-0432.CCR-14-2780.
    1. Mujumdar N., Banerjee S., Chen Z., Sangwan V., Chugh R., Dudeja V., Yamamoto M., Vickers S.M., Saluja A.K. Triptolide activates unfolded protein response leading to chronic ER stress in pancreatic cancer cells. Am. J. Physiol. Gastrointest. Liver Physiol. 2014;306:G1011–G1020. doi: 10.1152/ajpgi.00466.2013.
    1. Greeno E., Borazanci E., Gockerman J., Korn R., Saluja A., Von Hoff D. Phase I dose escalation and pharmokinetic study of 14-O phosphonooxymethyltriptolide. In Proceedings of the 106th Annual Meeting of the American Association for Cancer Research, 18–22 April 2015; Philadelphia, P.A., Ed.; AACR. Cancer Res. 2015;75((Suppl. S15)):nr CT207. doi: 10.1158/1538-7445.AM2015-CT207.
    1. Neuditschko B., Legin A.A., Baier D., Schintlmeinster A., Reipert S., Wagner M., Keppler K.K., Berger W., Meier-Menches S.M., Gerner C. Interaction with Ribosomal Proteins Accompanies Stress Induction of the Anticancer Metallodrug BOLD-100/KP1339 in the Endoplasmic Reticulum. Angew. Chem. Int. Ed. Engl. 2021;60:5063–5068. doi: 10.1002/anie.202015962.
    1. Flocke L.S., Trondl R., Jakupec M.A., Keppler B.K. Molecular mode of action of NKP-1339—A clinically investigated ruthenium-based drug—Involves ER- and ROS-related effects in colon carcinoma cell lines. Investig. New Drugs. 2016;34:261–268. doi: 10.1007/s10637-016-0337-8.
    1. Burris H.A., Bakewell S., Bendell J.C., Infante J., Jones S.F., Spigel D.R., Weiss G.J., Ramanathan R.K., Ogden A., Von Hoff D. Safety and activity of IT-139, a ruthenium-based compound, in patients with advanced solid tumours: A first-in-human, open-label, dose-escalation phase I study with expansion cohort. ESMO Open. 2017;1:e000154. doi: 10.1136/esmoopen-2016-000154.
    1. Ekinci E., Rohondia S., Khan R., Dou Q.P. Repurposing Disulfiram as An Anti-Cancer Agent: Updated Review on Literature and Patents. Recent Pat. Anticancer. Drug Discov. 2019;14:113–132. doi: 10.2174/1574892814666190514104035.
    1. Cardenes H.R., Moore A.M., Johnson C.S., Yu M., Helft P., Chiorean E.G., Vinson J., Howard T.J., Stephens A.W., Tai D.F., et al. A phase II study of gemcitabine in combination with radiation therapy in patients with localized, unresectable, pancreatic cancer: A Hoosier Oncology Group study. Am. J. Clin. Oncol. 2011;34:460–465. doi: 10.1097/COC.0b013e3181e9c103.
    1. McGinn C.J., Zalupski M.M., Shureiqi I., Robertson J.M., Eckhauser F.E., Smith D., Brown D., Hejna G., Strawderman M., Normolle D., et al. Phase I trial of radiation dose escalation with concurrent weekly full-dose gemcitabine in patients with advanced pancreatic cancer. J. Clin. Oncol. 2001;19:4202–4208. doi: 10.1200/JCO.2001.19.22.4202.
    1. Murphy J.D., Adusumilli S., Griffith K.A., Ray M.E., Zalupski M.M., Lawrence T.S., Ben-Josef E. Full-dose gemcitabine and concurrent radiotherapy for unresectable pancreatic cancer. Int. J. Radiat. Oncol. Biol. Phys. 2007;68:801–808. doi: 10.1016/j.ijrobp.2006.12.053.
    1. Wolff R.A., Evans D.B., Gravel D.M., Lenzi R., Pisters P.W., ELee J., Janjan N.A., Charnsangavej C., Abbruzzese J.L. Phase I trial of gemcitabine combined with radiation for the treatment of locally advanced pancreatic adenocarcinoma. Clin. Cancer Res. 2001;7:2246–2253.
    1. Nguyen L., Dobiasch S., Schneider G., Schmid R.M., Azimzadeh O., Kanev K., Buschmann D., Pfaffl M.W., Bartzsch S., Schmid T.E., et al. Impact of DNA repair and reactive oxygen species levels on radioresistance in pancreatic cancer. Radiother. Oncol. 2021;159:265–276. doi: 10.1016/j.radonc.2021.03.038.
    1. Shah S.S., Rodriguez G.A., Musick A., Walters W.M., Cordoba N., Barbarite E., Marlow M., Marples B., Prince J., Komotar R., et al. Targeting Glioblastoma Stem Cells with 2-Deoxy-D-Glucose (2-DG) Potentiates Radiation-Induced Unfolded Protein Response (UPR) Cancers. 2019;11:159. doi: 10.3390/cancers11020159.
    1. Shah S.S., Rodriguez G.A., Musick A., Walters W.M., de Cordoba N., Barbarite E., Marlow M.M., Marples B., Prince J.S., Komotar R.J., et al. KRN5500, a spicamycin derivative, exerts anti-myeloma effects through impairing both myeloma cells and osteoclasts. Br. J. Haematol. 2011;155:328–339. doi: 10.1111/j.1365-2141.2011.08844.x.
    1. Supko J.G., Eder JPJr Ryan D.P., Seiden M.V., Lynch T.J., Amrein P.C., Kufe D.W., Clark J.W. Phase I clinical trial and pharmacokinetic study of the spicamycin analog KRN5500 administered as a 1-hour intravenous infusion for five consecutive days to patients with refractory solid tumors. Clin. Cancer Res. 2003;9:5178–5186.
    1. Ashton T.M., McKenna W.G., Kunz-Schughart L.A., Higgins G.S. Oxidative Phosphorylation as an Emerging Target in Cancer Therapy. Clin. Cancer Res. 2018;24:2482–2490. doi: 10.1158/1078-0432.CCR-17-3070.
    1. Guo Y., Hu B., Fu B., Zhu H. Atovaquone at clinically relevant concentration overcomes chemoresistance in ovarian cancer via inhibiting mitochondrial respiration. Pathol. Res. Pract. 2021;224:153529. doi: 10.1016/j.prp.2021.153529.
    1. Abdalbari F.H., Telleria C.M. The gold complex auranofin: New perspectives for cancer therapy. Discov. Oncol. 2021;12:42. doi: 10.1007/s12672-021-00439-0.
    1. Li H., Hu J., Wu S., Wang L., Cao X., Zhang X., Dai B., Cao M., Shao R., Zhang R., et al. Auranofin-mediated inhibition of PI3K/AKT/mTOR axis and anticancer activity in non-small cell lung cancer cells. Oncotarget. 2016;7:3548–3558. doi: 10.18632/oncotarget.6516.

Source: PubMed

3
Abonneren