Correction of the NSE concentration in hemolyzed serum samples improves its diagnostic accuracy in small-cell lung cancer

Sylvia A A M Genet, Esther Visser, Ben E E M van den Borne, Maggy Youssef-El Soud, Huub N A Belderbos, Gerben Stege, Marleen E A de Saegher, Federica Eduati, Maarten A C Broeren, Joost van Dongen, Luc Brunsveld, Daan van de Kerkhof, Volkher Scharnhorst, Sylvia A A M Genet, Esther Visser, Ben E E M van den Borne, Maggy Youssef-El Soud, Huub N A Belderbos, Gerben Stege, Marleen E A de Saegher, Federica Eduati, Maarten A C Broeren, Joost van Dongen, Luc Brunsveld, Daan van de Kerkhof, Volkher Scharnhorst

Abstract

Neuron-specific enolase (NSE) is a well-known biomarker for the diagnosis, prognosis and treatment monitoring of small-cell lung cancer (SCLC). Nevertheless, its clinical applicability is limited since serum NSE levels are influenced by hemolysis, leading to falsely elevated results. Therefore, this study aimed to develop a hemolysis correction equation and evaluate its role in SCLC diagnostics. Two serum pools were spiked with increasing amounts of hemolysate obtained from multiple individuals. A hemolysis correction equation was obtained by analyzing the relationship between the measured NSE concentration and the degree of hemolysis. The equation was validated using intentionally hemolyzed serum samples, which showed that the correction was accurate for samples with an H-index up to 30 μmol/L. Correction of the measured NSE concentration in patients suspected of lung cancer caused an increase in AUC and a significantly lower cut-off value for SCLC detection when compared to uncorrected results. Therefore, a hemolysis correction equation should be used to correct falsely elevated NSE concentrations. Results of samples with an H-index above 30 μmol/L should not be reported to clinicians. Application of the equation illustrates the importance of hemolysis correction in SCLC diagnostics and questions the correctness of the currently used diagnostic cut-off value.

Keywords: hemolysis correction equation; neuron-specific enolase; protein tumor markers; small-cell lung cancer.

Conflict of interest statement

CONFLICTS OF INTEREST The authors declare no conflicts of interest.

Figures

Figure 1. The influence of hemolysis on…
Figure 1. The influence of hemolysis on the measured NSE concentration.
(A) A hemolysate spiking study showing a hemolysis-dependent elevation of measured NSE concentration in two serum pools spiked with increasing amounts of hemolysate derived from five individuals (a–e). (B) Derivation of the hemolysis correction equation by combining all pools and plotting the corresponding ΔNSE concentration as a function of H-index.
Figure 2. Validation of the hemolysis correction…
Figure 2. Validation of the hemolysis correction equation.
(A) The difference between corrected and baseline NSE values of all hemolysate pools (a-j) spiked in serum pool 1 and 2 plotted as a function of H-index. The dashed lines indicate the mean ± 2SD, the dotted line illustrates the H-index level at which the mean ± 2SD equalizes 2TEa (H-index = 30). (B) Boxplots of the differences between (un) corrected and baseline NSE values, showing a significant difference between uncorrected and corrected values. (C) QQ-plots of the difference between baseline, uncorrected and corrected samples indicating non-normally distributed data. (D) Distribution of the differences between corrected and baseline NSE values, where the corrected group was divided into subgroups based on the H-index.
Figure 3. The diagnostic performance of corrected…
Figure 3. The diagnostic performance of corrected NSE in case of SCLC.
(A) ROC curves constructed with the us of uncorrected and corrected NSE values and corresponding AUCs (median). (B) QQ-plots of the difference between the AUC of uncorrected and corrected NSE indicating non-normally distributed data.
Figure 4
Figure 4
Optimal cut-off values for SCLC diagnostics of (A) uncorrected and (B) corrected NSE determined by the Youden’s J statistic and stratified bootstrapping. (C) Boxplots of the optimal cut-off values, showing a significant decrease in cut-off value after correction.

References

    1. Isgrò MA, Bottoni P, Scatena R. Neuron-Specific Enolase as a Biomarker: Biochemical and Clinical Aspects. Adv Exp Med Biol. 2015; 867:125–43. 10.1007/978-94-017-7215-0_9.
    1. Tolan NV, Vidal-Folch N, Algeciras-Schimnich A, Singh RJ, Grebe SKG. Individualized correction of neuron-specific enolase (NSE) measurement in hemolyzed serum samples. Clin Chim Acta. 2013; 424:216–221. 10.1016/j.cca.2013.06.009.
    1. Wang Q, Wang G, Lu X, Guo X, Du Q, Lin F, Fan Q, Zhang G, Wang D. A correction formula for neuron-specific enolase measurement in hemolyzed neonatal serum samples. Biomed Rep. 2018; 8:491–496. 10.3892/br.2018.1081.
    1. Molina R, Holdenrieder S, Auge JM, Schalhorn A, Hatz R, Stieber P. Diagnostic relevance of circulating biomarkers in patients with lung cancer. Cancer Biomark. 2010; 6:163–178. 10.3233/CBM-2009-0127.
    1. Liu X, Zhang W, Yin W, Xiao Y, Zhou C, Hu Y, Geng S. The prognostic value of the serum neuron specific enolase and lactate dehydrogenase in small cell lung cancer patients receiving first-line platinum-based chemotherapy. Medicine (Baltimore). 2017; 96:e8258. 10.1097/MD.0000000000008258.
    1. Molina R, Marrades RM, Augé JM, Escudero JM, Viñolas N, Reguart N, Ramirez J, Filella X, Molins L, Agustí A. Assessment of a Combined Panel of Six Serum Tumor Markers for Lung Cancer. Am J Respir Crit Care Med. 2016; 193:427–37. 10.1164/rccm.201404-0603OC.
    1. Shibayama T, Ueoka H, Nishii K, Kiura K, Tabata M, Miyatake K, Kitajima T, Harada M. Complementary roles of pro-gastrin-releasing peptide (ProGRP) and neuron specific enolase (NSE) in diagnosis and prognosis of small-cell lung cancer (SCLC). Lung Cancer. 2001; 32:61–69. 10.1016/S0169-5002(00)00205-1.
    1. Nisman B, Biran H, Ramu N, Heching N, Barak V, Peretz T. The Diagnostic and Prognostic Value of ProGRP in Lung Cancer. Anticancer Res. 2009; 29:4827–4832.
    1. Zamay T, Zamay G, Kolovskaya O, Zukov R, Petrova M, Gargaun A, Berezovski M, Kichkailo A, Zamay TN, Zamay GS, Kolovskaya OS, Zukov RA, Petrova MM, et al.. Current and Prospective Protein Biomarkers of Lung Cancer. Cancers (Basel). 2017; 9:155. 10.3390/cancers9110155.
    1. Ma R, Xu H, Wu J, Sharma A, Bai S, Dun B, Jing C, Cao H, Wang Z, She JX, Feng J. Identification of serum proteins and multivariate models for diagnosis and therapeutic monitoring of lung cancer. Oncotarget. 2017; 8:18901–18913. 10.18632/oncotarget.14782.
    1. Berger R, Richichi R. Derivation and validation of an equation for adjustment of neuron-specific enolase concentrations in hemolyzed serum. Pediatr Crit Care Med. 2009; 10:260–263. 10.1097/PCC.0b013e31819a376d.
    1. Haque A, Polcyn R, Matzelle D, Banik NL. New Insights into the Role of Neuron-Specific Enolase in Neuro-Inflammation, Neurodegeneration, and Neuroprotection. Brain Sci. 2018; 8:33. 10.3390/brainsci8020033.
    1. Harmsma M, Schutte B, Ramaekers FCS. Serum markers in small cell lung cancer: Opportunities for improvement. Biochim Biophys Acta. 2013; 1836:255–272. 10.1016/j.bbcan.2013.06.002.
    1. Beaudeux JL, Léger P, Dequen L, Gandjbakhch I, Coriat P, Foglietti MJ. Influence of Hemolysis on the Measurement of S-100β Protein and Neuron-specific Enolase Plasma Concentrations during Coronary Artery Bypass Grafting. Clin Chem. 2000; 46:989–990. 10.1093/clinchem/46.7.989.
    1. Satoh H, Ishikawa H, Kurishima K, Yamashita YT, Ohtsuka M, Sekizawa K. Cut-off levels of NSE to differentiate SCLC from NSCLC. Oncol Rep. 2002; 9:581–583. 10.3892/or.9.3.581.
    1. Carney D, Ihde D, Cohen M, Marangos P, Bunn P, Minna J, Gazdar A. Serum Neuron-Specific Enolase: a marker for disease extent and response to therapy of small-cell lung cancer. Lancet. 1982; 1:583–5. 10.1016/S0140-6736(82)91748-2.
    1. Kulpa J, Wójcik E, Reinfuss M, Kołodziejski L. Carcinoembryonic Antigen, Squamous Cell Carcinoma Antigen, CYFRA 21-1, and Neuron-specific Enolase in Squamous Cell Lung Cancer Patients. Clin Chem. 2002; 48:1931–1937. 10.1093/clinchem/48.11.1931.
    1. Yang Q, Zhang P, Wu R, Lu K, Zhou H. Identifying the Best Marker Combination in CEA, CA125, CY211, NSE, and SCC for Lung Cancer Screening by Combining ROC Curve and Logistic Regression Analyses: Is It Feasible? Dis Markers. 2018; 2018:2082840. 10.1155/2018/2082840.
    1. Mauro C, Passerini R, Spaggiari L, Galetta D, Radice D, Lentati P, Sandri MT. New and old biomarkers in the differential diagnosis of lung cancer: Pro-gastrin-releasing peptide in comparison with neuron-specific enolase, carcinoembryonic antigen, and CYFRA 21-1. Int J Biol Markers. 2019; 34:163–167. 10.1177/1724600819834235.
    1. Dal Bello MG, Filiberti RA, Alama A, Orengo AM, Mussap M, Coco S, Vanni I, Boccardo S, Rijavec E, Genova C, Biello F, Barletta G, Rossi G, et al.. The role of CEA, CYFRA21-1 and NSE in monitoring tumor response to Nivolumab in advanced non-small cell lung cancer (NSCLC) patients. J Transl Med. 2019; 17:74. 10.1186/s12967-019-1828-0.
    1. Huang L, Zhou JG, Yao WX, Tian X, Lv SP, Zhang TY, Jin SH, Bai YJ, Ma H. Systematic review and meta-analysis of the efficacy of serum neuron-specific enolase for early small cell lung cancer screening. Oncotarget. 2017; 8:64358–64372. 10.18632/oncotarget.17825.
    1. Burtis CA, Ashwood ER, Bruns DE. Tietz Textbook of Clinical Chemistry and Molecular Diagnostics - E-Book. Elsevier Health Sciences. 2012.
    1. Hastie T, Tibshirani R, Friedman J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd ed. Springer Science & Business Media. 2009. 10.1007/978-0-387-84858-7.
    1. Braga F, Ferraro S, Mozzi R, Dolci A, Panteghini M. Biological variation of neuroendocrine tumor markers chromogranin A and neuron-specific enolase. Clin Biochem. 2013; 46:148–151. 10.1016/j.clinbiochem.2012.09.005.
    1. Matyar S, Ozturk OG, Karacor EZ, Ariyurek SY, Sahin G, Kibar F, Yaman A, Inal T. Biological Variation and Reference Change Value Data for Serum Neuron-Specific Enolase in a Turkish Population. J Clin Lab Anal. 2016; 30:1081–1085. 10.1002/jcla.21984.
    1. Qi Z, Zhang L, Chen Y, Ma X, Gao X, Du J, Zhang F, Cheng X, Cui W. Biological variations of seven tumor markers. Clin Chim Acta. 2015; 450:233–236. 10.1016/j.cca.2015.08.026.
    1. Carobene A, Guerra E, Locatelli M, Ceriotti F, Sandberg S, Fernandez-Calle P, Coşkun A, Aarsand AK. Providing Correct Estimates of Biological Variation—Not an Easy Task. The Example of S100-β Protein and Neuron-Specific Enolase. Clin Chem. 2018; 64:1537–9. 10.1373/clinchem.2018.292169.
    1. Travis W, Brambilla E, Burke A, Marx A, Nicholson A. WHO Classification of Tumours of the Lung, Pleura, Thymus and Heart, 4th ed. Lyon: International Agency for Research on Cancer; 2015.

Source: PubMed

3
Abonneren