The Liquid Biopsy for Lung Cancer: State of the Art, Limitations and Future Developments

Daniel Di Capua, Dara Bracken-Clarke, Karine Ronan, Anne-Marie Baird, Stephen Finn, Daniel Di Capua, Dara Bracken-Clarke, Karine Ronan, Anne-Marie Baird, Stephen Finn

Abstract

Lung cancer is a leading cause of cancer-related deaths, contributing to 18.4% of cancer deaths globally. Treatment of non-small cell lung carcinoma has seen rapid progression with targeted therapies tailored to specific genetic drivers. However, identifying genetic alterations can be difficult due to lack of tissue, inaccessible tumors and the risk of complications for the patient with serial tissue sampling. The liquid biopsy provides a minimally invasive method which can obtain circulating biomarkers shed from the tumor and could be a safer alternative to tissue biopsy. While tissue biopsy remains the gold standard, liquid biopsies could be very beneficial where serial sampling is required, such as monitoring disease progression or development of resistance mutations to current targeted therapies. Liquid biopsies also have a potential role in identifying patients at risk of relapse post treatment and as a component of future lung cancer screening protocols. Rapid developments have led to multiple platforms for isolating circulating tumor cells (CTCs) and detecting circulating tumor DNA (ctDNA); however, standardization is lacking, especially in lung carcinoma. Additionally, clonal hematopoiesis of uncertain clinical significance must be taken into consideration in genetic sequencing, as it introduces the potential for false positives. Various biomarkers have been investigated in liquid biopsies; however, in this review, we will concentrate on the current use of ctDNA and CTCs, focusing on the clinical relevance, current and possible future applications and limitations of each.

Keywords: circulating tumor DNA; circulating tumor cells; liquid biopsy; lung cancer; non-small cell lung carcinoma.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Technical considerations when acquiring tumor tissue and liquid biopsy specimens and preparing samples for diagnostic and monitoring purposes in NSCLC. Core tissue biopsy and EBUS requires careful consideration of patient factors such as comorbidity and frailty, and may be complicated by procedure risk. Technically skilled medical staff and significant healthcare resources are required for such procedures, which limits their availability. Acquisition of sufficient material for diagnosis, subtyping and molecular subtyping is not always straightforward and can lead to delays in “real-world” practice. Sample collection for liquid biopsy is minimally invasive, via blood draw or pleural fluid analysis, technically straightforward and minimizes patient risk. NSCLC = non-small cell lung carcinoma; EBUS = endobronchial ultrasound; CTCs = circulating tumor cells; ctDNA = circulating tumor DNA.
Figure 2
Figure 2
Graph demonstrating the potential roles of ctDNA and CTCs in the clinical course of a patient with NSCLC compared with standard approaches to patient care. Patient 1 demonstrates standard approaches to screening, diagnosis and monitoring of a patient with NSCLC. Patient 2 demonstrates the potential utility of ctDNA and CTCs in the disease course of a patient with NSCLC.

References

    1. Globocan Cancer Fact Sheets, Lung Cancer 2018. [(accessed on 16 October 2020)]; Available online: .
    1. American Lung Association Lung Cancer Fact Sheet. [(accessed on 24 November 2020)]; Available online: .
    1. Arbour K.C., Riely G.J. Systemic therapy for locally advanced and metastatic non-small cell lung cancer: A review. JAMA. 2019;322:764–774. doi: 10.1001/jama.2019.11058.
    1. Barlesi F., Mazieres J., Merlio J.P., Debieuvre D., Mosser J., Lena H., Ouafik L., Besse B., Rouquette I., Westeel V., et al. Routine molecular profiling of patients with advanced non-small-cell lung cancer: Results of a 1-year nationwide programme of the French Cooperative Thoracic Intergroup (IFCT) Lancet. 2016;387:1415–1426. doi: 10.1016/S0140-6736(16)00004-0.
    1. Mosele F., Remon J., Mateo J., Westphalen C.B., Barlesi F., Lolkema M.P., Normanno N., Scarpa A., Robson M., Meric-Bernstam F., et al. Recommendations for the use of next-generation sequencing (NGS) for patients with metastatic cancers: A report from the ESMO Precision Medicine Working Group. Ann. Oncol. 2020;31:1491–1505. doi: 10.1016/j.annonc.2020.07.014.
    1. Morgensztern D., Ng S.H., Gao F., Govindan R. Trends in stage distribution for patients with non-small cell lung cancer: A National Cancer Database survey. J. Thorac. Oncol. 2010;5:29–33. doi: 10.1097/JTO.0b013e3181c5920c.
    1. Fintelmann F.J., Troschel F.M., Kuklinski M.W., McDermott S., Petranovic M., Digumarthy S.R., Sharma A., Troschel A.S., Price M.C., Hariri L.P., et al. Safety and success of repeat lung needle biopsies in patients with epidermal growth factor receptor-mutant lung cancer. Oncologist. 2019;24:1570–1576. doi: 10.1634/theoncologist.2019-0158.
    1. Heerink W.J., de Bock G.H., de Jonge G.J., Groen H.J., Vliegenthart R., Oudkerk M. Complication rates of CT-guided transthoracic lung biopsy: Meta-analysis. Eur. Radiol. 2017;27:138–148. doi: 10.1007/s00330-016-4357-8.
    1. Chouaid C., Dujon C., Do P., Monnet I., Madroszyk A., Le Caer H., Auliac J.B., Berard H., Thomas P., Lena H., et al. Feasibility and clinical impact of re-biopsy in advanced non small-cell lung cancer: A prospective multicenter study in a real-world setting (GFPC study 12-01) Lung Cancer. 2014;86:170–173. doi: 10.1016/j.lungcan.2014.08.016.
    1. Gregg J.P., Li T., Yoneda K.Y. Molecular testing strategies in non-small cell lung cancer: Optimizing the diagnostic journey. Transl. Lung Cancer Res. 2019;8:286–301. doi: 10.21037/tlcr.2019.04.14.
    1. Jamal-Hanjani M., Wilson G.A., McGranahan N., Birkbak N.J., Watkins T.B.K., Veeriah S., Shafi S., Johnson D.H., Mitter R., Rosenthal R., et al. Tracking the evolution of non–small-cell lung cancer. N. Engl. J. Med. 2017;376:2109–2121. doi: 10.1056/NEJMoa1616288.
    1. de Bruin E.C., McGranahan N., Mitter R., Salm M., Wedge D.C., Yates L., Jamal-Hanjani M., Shafi S., Murugaesu N., Rowan A.J., et al. Spatial and temporal diversity in genomic instability processes defines lung cancer evolution. Science. 2014;346:251. doi: 10.1126/science.1253462.
    1. Zhang J., Fujimoto J., Zhang J., Wedge D.C., Song X., Zhang J., Seth S., Chow C.W., Cao Y., Gumbs C., et al. Intratumor heterogeneity in localized lung adenocarcinomas delineated by multiregion sequencing. Science. 2014;346:256. doi: 10.1126/science.1256930.
    1. Imamura F., Uchida J., Kukita Y., Kumagai T., Nishino K., Inoue T., Kimura M., Oba S., Kato K. Monitoring of treatment responses and clonal evolution of tumor cells by circulating tumor DNA of heterogeneous mutant EGFR genes in lung cancer. Lung Cancer. 2016;94:68–73. doi: 10.1016/j.lungcan.2016.01.023.
    1. Turner N.C., Reis-Filho J.S. Genetic heterogeneity and cancer drug resistance. Lancet Oncol. 2012;13:e178–e185. doi: 10.1016/S1470-2045(11)70335-7.
    1. Siravegna G., Mussolin B., Buscarino M., Corti G., Cassingena A., Crisafulli G., Ponzetti A., Cremolini C., Amatu A., Lauricella C., et al. Clonal evolution and resistance to EGFR blockade in the blood of colorectal cancer patients. Nat. Med. 2015;21:795–801. doi: 10.1038/nm.3870.
    1. Dexter D.L., Leith J.T. Tumor heterogeneity and drug resistance. J. Clin. Oncol. 1986;4:244–257. doi: 10.1200/JCO.1986.4.2.244.
    1. Lovly C.M., Salama A.K.S., Salgia R. Tumor heterogeneity and therapeutic resistance. Am. Soc. Clin. Oncol. Educ. Book. 2016;36:e585–e593. doi: 10.1200/EDBK_158808.
    1. Schneider B.J., Ismaila N., Aerts J., Chiles C., Daly M.E., Detterbeck F.C., Hearn J.W.D., Katz S.I., Leighl N.B., Levy B., et al. Lung cancer surveillance after definitive curative-intent therapy: ASCO guideline. J. Clin. Oncol. 2019;38:753–766. doi: 10.1200/JCO.19.02748.
    1. de Koning H.J., van der Aalst C.M., de Jong P.A., Scholten E.T., Nackaerts K., Heuvelmans M.A., Lammers J.J., Weenink C., Yousaf-Khan U., Horeweg N., et al. Reduced lung-cancer mortality with volume CT screening in a randomized trial. N. Engl. J. Med. 2020;382:503–513. doi: 10.1056/NEJMoa1911793.
    1. Orme N.M., Fletcher J.G., Siddiki H.A., Harmsen W.S., O’Byrne M.M., Port J.D., Tremaine W.J., Pitot H.C., McFarland E.G., Robinson M.E., et al. Incidental findings in imaging research: Evaluating incidence, benefit, and burden. Arch. Intern. Med. 2010;170:1525–1532. doi: 10.1001/archinternmed.2010.317.
    1. Chapman C.J., Healey G.F., Murray A., Boyle P., Robertson C., Peek L.J., Allen J., Thorpe A.J., Hamilton-Fairley G., Parsy-Kowalska C.B., et al. EarlyCDT(R)-Lung test: Improved clinical utility through additional autoantibody assays. Tumour Biol. 2012;33:1319–1326. doi: 10.1007/s13277-012-0379-2.
    1. Kearney P., Hunsucker S.W., Li X.J., Porter A., Springmeyer S., Mazzone P. An integrated risk predictor for pulmonary nodules. PLoS ONE. 2017;12:e0177635. doi: 10.1371/journal.pone.0177635.
    1. Vachani A., Whitney D.H., Parsons E.C., Lenburg M., Ferguson J.S., Silvestri G.A., Spira A. Clinical utility of a bronchial genomic classifier in patients with suspected lung cancer. Chest. 2016;150:210–218. doi: 10.1016/j.chest.2016.02.636.
    1. Ostrin E.J., Sidransky D., Spira A., Hanash S.M. Biomarkers for lung cancer screening and detection. Cancer Epidemiol. Biomark. Prev. 2020;29:2411–2415. doi: 10.1158/1055-9965.EPI-20-0865.
    1. Hofman V., Bonnetaud C., Ilie M.I., Vielh P., Vignaud J.M., Fléjou J.F., Lantuejoul S., Piaton E., Mourad N., Butori C., et al. Preoperative circulating tumor cell detection using the isolation by size of epithelial tumor cell method for patients with lung cancer is a new prognostic biomarker. Clin. Cancer Res. 2011;17:827–835. doi: 10.1158/1078-0432.CCR-10-0445.
    1. Bayarri-Lara C., Ortega F.G., Cueto Ladrón de Guevara A., Puche J.L., Ruiz Zafra J., de Miguel-Pérez D., Ramos A.S., Giraldo-Ospina C.F., Navajas Gómez J.A., Delgado-Rodriguez M., et al. Circulating tumor cells identify early recurrence in patients with non-small cell lung cancer undergoing radical resection. PLoS ONE. 2016;11:e0148659. doi: 10.1371/journal.pone.0148659.
    1. Benešová L., Hálková T., Ptáčková R., Semyakina A., Menclová K., Pudil J., Ryska M., Levý M., Šimša J., Pazdírek F., et al. Significance of postoperative follow-up of patients with metastatic colorectal cancer using circulating tumor DNA. World J. Gastroenterol. 2019;25:6939–6948. doi: 10.3748/wjg.v25.i48.6939.
    1. Lee B., Lipton L., Cohen J., Tie J., Javed A.A., Li L., Goldstein D., Burge M., Cooray P., Nagrial A., et al. Circulating tumor DNA as a potential marker of adjuvant chemotherapy benefit following surgery for localized pancreatic cancer. Ann. Oncol. 2019;30:1472–1478. doi: 10.1093/annonc/mdz200.
    1. Massihnia D., Pizzutilo E.G., Amatu A., Tosi F., Ghezzi S., Bencardino K., Di Masi P., Righetti E., Patelli G., Scaglione F., et al. Liquid biopsy for rectal cancer: A systematic review. Cancer Treat. Rev. 2019;79:101893. doi: 10.1016/j.ctrv.2019.101893.
    1. Suzuki C., Jacobsson H., Hatschek T., Torkzad M.R., Bodén K., Eriksson-Alm Y., Berg E., Fujii H., Kubo A., Blomqvist L. Radiologic measurements of tumor response to treatment: Practical approaches and limitations. Radiographics. 2008;28:329–344. doi: 10.1148/rg.282075068.
    1. Jia W., Gao Q., Han A., Zhu H., Yu J. The potential mechanism, recognition and clinical significance of tumor pseudoprogression after immunotherapy. Cancer Biol. Med. 2019;16:655–670.
    1. Katz S.I., Hammer M., Bagley S.J., Aggarwal C., Bauml J.M., Thompson J.C., Nachiappan A.C., Simone C.B., Langer C.J. Radiologic pseudoprogression during anti-PD-1 therapy for advanced non-small cell lung cancer. J. Thorac. Oncol. 2018;13:978–986. doi: 10.1016/j.jtho.2018.04.010.
    1. Sestini S., Boeri M., Marchiano A., Pelosi G., Galeone C., Verri C., Suatoni P., Sverzellati N., La Vecchia C., Sozzi G., et al. Circulating microRNA signature as liquid-biopsy to monitor lung cancer in low-dose computed tomography screening. Oncotarget. 2015;6:32868–32877. doi: 10.18632/oncotarget.5210.
    1. Syrigos K., Fiste O., Charpidou A., Grapsa D. Circulating tumor cells count as a predictor of survival in lung cancer. Crit. Rev. Oncol Hematol. 2018;125:60–68. doi: 10.1016/j.critrevonc.2018.03.004.
    1. Vendrell J.A., Mau-Them F.T., Béganton B., Godreuil S., Coopman P., Solassol J. Circulating cell free tumor DNA detection as a routine tool for lung cancer patient management. Int. J. Mol. Sci. 2017;18:264. doi: 10.3390/ijms18020264.
    1. Sozzi G., Conte D., Mariani L., Lo Vullo S., Roz L., Lombardo C., Pierotti M.A., Tavecchio L. Analysis of circulating tumor DNA in plasma at diagnosis and during follow-up of lung cancer patients. Cancer Res. 2001;61:4675.
    1. Krishnamurthy N., Spencer E., Torkamani A., Nicholson L. Liquid biopsies for cancer: Coming to a patient near you. J. Clin. Med. 2017;6:3. doi: 10.3390/jcm6010003.
    1. Dawson S.-J., Tsui D.W.Y., Murtaza M., Biggs H., Rueda O.M., Chin S.-F., Dunning M.J., Gale D., Forshew T., Mahler-Araujo B., et al. Analysis of circulating tumor DNA to monitor metastatic breast cancer. N. Engl. J. Med. 2013;368:1199–1209. doi: 10.1056/NEJMoa1213261.
    1. Yang M., Forbes M.E., Bitting R.L., O’Neill S.S., Chou P.C., Topaloglu U., Miller L.D., Hawkins G.A., Grant S.C., DeYoung B.R., et al. Incorporating blood-based liquid biopsy information into cancer staging: Time for a TNMB system? Ann. Oncol. 2018;29:311–323. doi: 10.1093/annonc/mdx766.
    1. Loveland P., Christie M., Hammerschlag G., Irving L., Steinfort D. Diagnostic yield of pleural fluid cytology in malignant effusions: An Australian tertiary centre experience. Intern. Med. J. 2018;48:1318–1324. doi: 10.1111/imj.13991.
    1. Brun C., Gay P., Cottier M., Karpathiou G., Patoir A., Tiffet O., Barral F.G., Vergnon J.M., Froudarakis M.E. Comparison of cytology, chest computed and positron emission tomography findings in malignant pleural effusion from lung cancer. J. Thorac. Dis. 2018;10:6903–6911. doi: 10.21037/jtd.2018.11.127.
    1. Glantz M.J., Cole B.F., Glantz L.K., Cobb J., Mills P., Lekos A., Walters B.C., Recht L.D. Cerebrospinal fluid cytology in patients with cancer: Minimizing false-negative results. Cancer. 1998;82:733–739. doi: 10.1002/(SICI)1097-0142(19980215)82:4<733::AID-CNCR17>;2-Z.
    1. Guo Z., Xie Z., Shi H., Du W., Peng L., Han W., Duan F., Zhang X., Chen M., Duan J., et al. Malignant pleural effusion supernatant is an alternative liquid biopsy specimen for comprehensive mutational profiling. Thorac. Cancer. 2019;10:823–831. doi: 10.1111/1759-7714.13006.
    1. Villatoro S., Mayo-de-Las-Casas C., Jordana-Ariza N., Viteri-Ramirez S., Garzon-Ibanez M., Moya-Horno I., Garcia-Pelaez B., Gonzalez-Cao M., Malapelle U., Balada-Bel A., et al. Prospective detection of mutations in cerebrospinal fluid, pleural effusion, and ascites of advanced cancer patients to guide treatment decisions. Mol. Oncol. 2019;13:2633–2645. doi: 10.1002/1878-0261.12574.
    1. Yeo C.D., Kim J.W., Kim K.H., Ha J.H., Rhee C.K., Kim S.J., Kim Y.K., Park C.K., Lee S.H., Park M.S., et al. Detection and comparison of EGFR mutations in matched tumor tissues, cell blocks, pleural effusions, and sera from patients with NSCLC with malignant pleural effusion, by PNA clamping and direct sequencing. Lung Cancer. 2013;81:207–212. doi: 10.1016/j.lungcan.2013.04.023.
    1. Meng S., Tripathy D., Frenkel E.P., Shete S., Naftalis E.Z., Huth J.F., Beitsch P.D., Leitch M., Hoover S., Euhus D., et al. Circulating tumor cells in patients with breast cancer dormancy. Clin. Cancer Res. 2004;10:8152–8162. doi: 10.1158/1078-0432.CCR-04-1110.
    1. Nagrath S., Sequist L.V., Maheswaran S., Bell D.W., Irimia D., Ulkus L., Smith M.R., Kwak E.L., Digumarthy S., Muzikansky A., et al. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature. 2007;450:1235–1239. doi: 10.1038/nature06385.
    1. Lou J., Ben S., Yang G., Liang X., Wang X., Ni S., Han B. Quantification of rare circulating tumor cells in non-small cell lung cancer by ligand-targeted PCR. PLoS ONE. 2013;8:e80458. doi: 10.1371/journal.pone.0080458.
    1. Wei T., Zhu D., Yang Y., Yuan G., Xie H., Shen R. The application of nano-enrichment in CTC detection and the clinical significance of CTCs in non-small cell lung cancer (NSCLC) treatment. PLoS ONE. 2019;14:e0219129.
    1. Freidin M.B., Tay A., Freydina D.V., Chudasama D., Nicholson A.G., Rice A., Anikin V., Lim E. An assessment of diagnostic performance of a filter-based antibody-independent peripheral blood circulating tumour cell capture paired with cytomorphologic criteria for the diagnosis of cancer. Lung Cancer. 2014;85:182–185. doi: 10.1016/j.lungcan.2014.05.017.
    1. Jin X.R., Zhu L.Y., Qian K., Feng Y.G., Zhou J.H., Wang R.W., Bai L., Deng B., Liang N., Tan Q.Y. Circulating tumor cells in early stage lung adenocarcinoma: A case series report and literature review. Oncotarget. 2017;8:23130–23141. doi: 10.18632/oncotarget.15506.
    1. Li Y., Tian X., Gao L., Jiang X., Fu R., Zhang T., Ren T., Hu P., Wu Y., Zhao P., et al. Clinical significance of circulating tumor cells and tumor markers in the diagnosis of lung cancer. Cancer Med. 2019;8:3782–3792. doi: 10.1002/cam4.2286.
    1. Poggiana C., Rossi E., Zamarchi R. Possible role of circulating tumor cells in early detection of lung cancer. J. Thorac. Dis. 2020;12:3821–3835. doi: 10.21037/jtd.2020.02.24.
    1. Crosbie P.A., Shah R., Krysiak P., Zhou C., Morris K., Tugwood J., Booton R., Blackhall F., Dive C. Circulating tumor cells detected in the tumor-draining pulmonary vein are associated with disease recurrence after surgical resection of NSCLC. J. Thorac. Oncol. 2016;11:1793–1797. doi: 10.1016/j.jtho.2016.06.017.
    1. Janning M., Kobus F., Babayan A., Wikman H., Velthaus J.L., Bergmann S., Schatz S., Falk M., Berger L.A., Bottcher L.M., et al. Determination of PD-L1 expression in circulating tumor cells of NSCLC patients and correlation with response to PD-1/PD-L1 inhibitors. Cancers. 2019;11:835. doi: 10.3390/cancers11060835.
    1. Krebs M.G., Sloane R., Priest L., Lancashire L., Hou J.M., Greystoke A., Ward T.H., Ferraldeschi R., Hughes A., Clack G., et al. Evaluation and prognostic significance of circulating tumor cells in patients with non-small-cell lung cancer. J. Clin. Oncol. 2011;29:1556–1563. doi: 10.1200/JCO.2010.28.7045.
    1. Lindsay C.R., Blackhall F.H., Carmel A., Fernandez-Gutierrez F., Gazzaniga P., Groen H.J.M., Hiltermann T.J.N., Krebs M.G., Loges S., Lopez-Lopez R., et al. EPAC-lung: Pooled analysis of circulating tumour cells in advanced non-small cell lung cancer. Eur. J. Cancer. 2019;117:60–68. doi: 10.1016/j.ejca.2019.04.019.
    1. Manjunath Y., Upparahalli S.V., Suvilesh K.N., Avella D.M., Kimchi E.T., Staveley-O’Carroll K.F., Li G., Kaifi J.T. Circulating tumor cell clusters are a potential biomarker for detection of non-small cell lung cancer. Lung Cancer. 2019;134:147–150. doi: 10.1016/j.lungcan.2019.06.016.
    1. Murlidhar V., Reddy R.M., Fouladdel S., Zhao L., Ishikawa M.K., Grabauskiene S., Zhang Z., Lin J., Chang A.C., Carrott P., et al. Poor prognosis indicated by venous circulating tumor cell clusters in early-stage lung cancers. Cancer Res. 2017;77:5194–5206. doi: 10.1158/0008-5472.CAN-16-2072.
    1. Tamminga M., de Wit S., van de Wauwer C., van den Bos H., Swennenhuis J.F., Klinkenberg T.J., Hiltermann T.J.N., Andree K.C., Spierings D.C.J., Lansdorp P.M., et al. Analysis of released circulating tumor cells during surgery for non-small cell lung cancer. Clin. Cancer Res. 2020;26:1656–1666. doi: 10.1158/1078-0432.CCR-19-2541.
    1. Xu M., Zhao H., Chen J., Liu W., Li E., Wang Q., Zhang L. An integrated microfluidic chip and its clinical application for circulating tumor cell isolation and single-cell analysis. Cytom. A. 2020;97:46–53. doi: 10.1002/cyto.a.23902.
    1. Andree K.C., van Dalum G., Terstappen L.W. Challenges in circulating tumor cell detection by the CellSearch system. Mol. Oncol. 2016;10:395–407. doi: 10.1016/j.molonc.2015.12.002.
    1. Barr J., Chudasama D., Rice A., Karteris E., Anikin V. Lack of association between Screencell-detected circulating tumour cells and long-term survival of patients undergoing surgery for non-small cell lung cancer: A pilot clinical study. Mol. Clin. Oncol. 2020;12:191–195. doi: 10.3892/mco.2020.1981.
    1. Chudasama D., Rice A., Anikin V., Soppa G., Dalal P. Circulating tumour cells in patients with malignant lung tumors undergoing radio-frequency ablation. Anticancer Res. 2015;35:2823–2826.
    1. Alama A., Truini A., Coco S., Genova C., Grossi F. Prognostic and predictive relevance of circulating tumor cells in patients with non-small-cell lung cancer. Drug Discov. Today. 2014;19:1671–1676. doi: 10.1016/j.drudis.2014.06.001.
    1. Zhou J., Kulasinghe A., Bogseth A., O’Byrne K., Punyadeera C., Papautsky I. Isolation of circulating tumor cells in non-small-cell-lung-cancer patients using a multi-flow microfluidic channel. Microsyst. Nanoeng. 2019;5:8. doi: 10.1038/s41378-019-0045-6.
    1. Sollier E., Go D.E., Che J., Gossett D.R., O’Byrne S., Weaver W.M., Kummer N., Rettig M., Goldman J., Nickols N., et al. Size-selective collection of circulating tumor cells using Vortex technology. Lab Chip. 2014;14:63–77. doi: 10.1039/C3LC50689D.
    1. Andree K.C., Mentink A., Zeune L.L., Terstappen L., Stoecklein N.H., Neves R.P., Driemel C., Lampignano R., Yang L., Neubauer H., et al. Toward a real liquid biopsy in metastatic breast and prostate cancer: Diagnostic LeukApheresis increases CTC yields in a European prospective multicenter study (CTCTrap) Int. J. Cancer. 2018;143:2584–2591. doi: 10.1002/ijc.31752.
    1. Ma X.L., Xiao Z.L., Liu L., Liu X.X., Nie W., Li P., Chen N.Y., Wei Y.Q. Meta-analysis of circulating tumor cells as a prognostic marker in lung cancer. Asian Pac. J. Cancer Prev. 2012;13:1137–1144. doi: 10.7314/APJCP.2012.13.4.1137.
    1. Yang B., Qin A., Zhang K., Ren H., Liu S., Liu X., Pan X., Yu G. Circulating tumor cells predict prognosis following tyrosine kinase inhibitor treatment in EGFR-mutant non-small cell lung cancer patients. Oncol. Res. 2017;25:1601–1606. doi: 10.3727/096504017X14928634401178.
    1. Chemi F., Rothwell D.G., McGranahan N., Gulati S., Abbosh C., Pearce S.P., Zhou C., Wilson G.A., Jamal-Hanjani M., Birkbak N., et al. Pulmonary venous circulating tumor cell dissemination before tumor resection and disease relapse. Nat. Med. 2019;25:1534–1539. doi: 10.1038/s41591-019-0593-1.
    1. Hashimoto M., Tanaka F., Yoneda K., Takuwa T., Matsumoto S., Okumura Y., Kondo N., Tsujimura T., Nakano T., Hasegawa S. Positive correlation between postoperative tumor recurrence and changes in circulating tumor cell counts in pulmonary venous blood (pvCTC) during surgical manipulation in non-small cell lung cancer. J. Thorac. Dis. 2018;10:298–306. doi: 10.21037/jtd.2017.12.56.
    1. Hashimoto M., Tanaka F., Yoneda K., Takuwa T., Matsumoto S., Okumura Y., Kondo N., Tsubota N., Tsujimura T., Tabata C., et al. Significant increase in circulating tumour cells in pulmonary venous blood during surgical manipulation in patients with primary lung cancer. Interact. Cardiovasc. Thorac. Surg. 2014;18:775–783. doi: 10.1093/icvts/ivu048.
    1. Chudasama D., Burnside N., Beeson J., Karteris E., Rice A., Anikin V. Perioperative detection of circulating tumour cells in patients with lung cancer. Oncol. Lett. 2017;14:1281–1286. doi: 10.3892/ol.2017.6366.
    1. Funaki S., Sawabata N., Nakagiri T., Shintani Y., Inoue M., Kadota Y., Minami M., Okumura M. Novel approach for detection of isolated tumor cells in pulmonary vein using negative selection method: Morphological classification and clinical implications. Eur. J. Cardiothorac. Surg. 2011;40:322–327. doi: 10.1016/j.ejcts.2010.11.029.
    1. Ilie M., Hofman V., Long-Mira E., Selva E., Vignaud J.M., Padovani B., Mouroux J., Marquette C.H., Hofman P. “Sentinel” circulating tumor cells allow early diagnosis of lung cancer in patients with chronic obstructive pulmonary disease. PLoS ONE. 2014;9:e111597. doi: 10.1371/journal.pone.0111597.
    1. Marquette C.H., Boutros J., Benzaquen J., Ferreira M., Pastre J., Pison C., Padovani B., Bettayeb F., Fallet V., Guibert N., et al. Circulating tumour cells as a potential biomarker for lung cancer screening: A prospective cohort study. Lancet Respir. Med. 2020;8:709–716. doi: 10.1016/S2213-2600(20)30081-3.
    1. Maheswaran S., Sequist L.V., Nagrath S., Ulkus L., Brannigan B., Collura C.V., Inserra E., Diederichs S., Iafrate A.J., Bell D.W., et al. Detection of mutations in EGFR in circulating lung-cancer cells. N. Engl. J. Med. 2008;359:366–377. doi: 10.1056/NEJMoa0800668.
    1. Zhang Q., Nong J., Wang J., Yan Z., Yi L., Gao X., Liu Z., Zhang H., Zhang S. Isolation of circulating tumor cells and detection of EGFR mutations in patients with non-small-cell lung cancer. Oncol. Lett. 2019;17:3799–3807. doi: 10.3892/ol.2019.10016.
    1. Pailler E., Adam J., Barthelemy A., Oulhen M., Auger N., Valent A., Borget I., Planchard D., Taylor M., Andre F., et al. Detection of circulating tumor cells harboring a unique ALK rearrangement in ALK-positive non-small-cell lung cancer. J. Clin. Oncol. 2013;31:2273–2281. doi: 10.1200/JCO.2012.44.5932.
    1. Pailler E., Auger N., Lindsay C.R., Vielh P., Islas-Morris-Hernandez A., Borget I., Ngo-Camus M., Planchard D., Soria J.C., Besse B., et al. High level of chromosomal instability in circulating tumor cells of ROS1-rearranged non-small-cell lung cancer. Ann. Oncol. 2015;26:1408–1415. doi: 10.1093/annonc/mdv165.
    1. Thierry A.R., El Messaoudi S., Gahan P.B., Anker P., Stroun M. Origins, structures, and functions of circulating DNA in oncology. Cancer Metastasis Rev. 2016;35:347–376. doi: 10.1007/s10555-016-9629-x.
    1. Corcoran R.B., Chabner B.A. Application of Cell-free DNA Analysis to Cancer Treatment. N. Engl. J. Med. 2018;379:1754–1765. doi: 10.1056/NEJMra1706174.
    1. Perez-Barrios C., Nieto-Alcolado I., Torrente M., Jimenez-Sanchez C., Calvo V., Gutierrez-Sanz L., Palka M., Donoso-Navarro E., Provencio M., Romero A. Comparison of methods for circulating cell-free DNA isolation using blood from cancer patients: Impact on biomarker testing. Transl. Lung Cancer Res. 2016;5:665–672. doi: 10.21037/tlcr.2016.12.03.
    1. Crowley E., Di Nicolantonio F., Loupakis F., Bardelli A. Liquid biopsy: Monitoring cancer-genetics in the blood. Nat. Rev. Clin. Oncol. 2013;10:472–484. doi: 10.1038/nrclinonc.2013.110.
    1. Herbreteau G., Vallee A., Knol A.C., Theoleyre S., Quereux G., Khammari A., Dreno B., Denis M.G. Circulating tumour DNA: Analytical aspects and clinical applications for metastatic melanoma patients. Ann. Biol. Clin. 2017;75:619–630. doi: 10.1684/abc.2017.1305.
    1. Lee T.H., Montalvo L., Chrebtow V., Busch M.P. Quantitation of genomic DNA in plasma and serum samples: Higher concentrations of genomic DNA found in serum than in plasma. Transfusion. 2001;41:276–282. doi: 10.1046/j.1537-2995.2001.41020276.x.
    1. Nikolaev S., Lemmens L., Koessler T., Blouin J.L., Nouspikel T. Circulating tumoral DNA: Preanalytical validation and quality control in a diagnostic laboratory. Anal. Biochem. 2018;542:34–39. doi: 10.1016/j.ab.2017.11.004.
    1. Kang Q., Henry N.L., Paoletti C., Jiang H., Vats P., Chinnaiyan A.M., Hayes D.F., Merajver S.D., Rae J.M., Tewari M. Comparative analysis of circulating tumor DNA stability In K3EDTA, Streck, and CellSave blood collection tubes. Clin. Biochem. 2016;49:1354–1360. doi: 10.1016/j.clinbiochem.2016.03.012.
    1. Chae Y.K., Oh M.S. Detection of minimal residual disease using ctDNA in lung cancer: Current evidence and future directions. J. Thorac. Oncol. 2019;14:16–24. doi: 10.1016/j.jtho.2018.09.022.
    1. Rolfo C., Mack P.C., Scagliotti G.V., Baas P., Barlesi F., Bivona T.G., Herbst R.S., Mok T.S., Peled N., Pirker R., et al. Liquid biopsy for advanced Non-Small Cell Lung Cancer (NSCLC): A statement paper from the IASLC. J. Thorac. Oncol. 2018;13:1248–1268. doi: 10.1016/j.jtho.2018.05.030.
    1. Li M., Diehl F., Dressman D., Vogelstein B., Kinzler K.W. BEAMing up for detection and quantification of rare sequence variants. Nat. Methods. 2006;3:95–97. doi: 10.1038/nmeth850.
    1. Samorodnitsky E., Jewell B.M., Hagopian R., Miya J., Wing M.R., Lyon E., Damodaran S., Bhatt D., Reeser J.W., Datta J., et al. Evaluation of hybridization capture versus amplicon-based methods for whole-exome sequencing. Hum. Mutat. 2015;36:903–914. doi: 10.1002/humu.22825.
    1. Simon R., Roychowdhury S. Implementing personalized cancer genomics in clinical trials. Nat. Rev. Drug. Discov. 2013;12:358–369. doi: 10.1038/nrd3979.
    1. Schenk D., Song G., Ke Y., Wang Z. Amplification of overlapping DNA amplicons in a single-tube multiplex PCR for targeted next-generation sequencing of BRCA1 and BRCA2. PLoS ONE. 2017;12:e0181062. doi: 10.1371/journal.pone.0181062.
    1. Zhang T.H., Wu N.C., Sun R. A benchmark study on error-correction by read-pairing and tag-clustering in amplicon-based deep sequencing. BMC Genom. 2016;17:108. doi: 10.1186/s12864-016-2388-9.
    1. Bruno R., Fontanini G. Next generation sequencing for gene fusion analysis in lung cancer: A literature review. Diagnostics. 2020;10:521. doi: 10.3390/diagnostics10080521.
    1. Esposito Abate R., Frezzetti D., Maiello M.R., Gallo M., Camerlingo R., De Luca A., De Cecio R., Morabito A., Normanno N. Next generation sequencing-based profiling of cell free DNA in patients with advanced non-small cell lung cancer: Advantages and pitfalls. Cancers. 2020;12:3804. doi: 10.3390/cancers12123804.
    1. Plagnol V., Woodhouse S., Howarth K., Lensing S., Smith M., Epstein M., Madi M., Smalley S., Leroy C., Hinton J., et al. Analytical validation of a next generation sequencing liquid biopsy assay for high sensitivity broad molecular profiling. PLoS ONE. 2018;13:e0193802. doi: 10.1371/journal.pone.0193802.
    1. Cheng J., Cao Y., MacLeay A., Lennerz J.K., Baig A., Frazier R.P., Lee J., Hu K., Pacula M., Meneses E., et al. Clinical validation of a cell-free DNA gene panel. J. Mol. Diagn. 2019;21:632–645. doi: 10.1016/j.jmoldx.2019.02.008.
    1. Muller J.N., Falk M., Talwar J., Neemann N., Mariotti E., Bertrand M., Zacherle T., Lakis S., Menon R., Gloeckner C., et al. Concordance between comprehensive cancer genome profiling in plasma and tumor specimens. J. Thorac. Oncol. 2017;12:1503–1511. doi: 10.1016/j.jtho.2017.07.014.
    1. Remon J., Lacroix L., Jovelet C., Caramella C., Howarth K., Plagnol V., Rosenfeld N., Morris C., Mezquita L., Pannet C., et al. Real-world utility of an amplicon-based next-generation sequencing liquid biopsy for broad molecular profiling in patients with advanced non-small-cell lung cancer. JCO Precis. Oncol. 2019;3:1–14. doi: 10.1200/PO.18.00211.
    1. Schrock A.B., Welsh A., Chung J.H., Pavlick D., Bernicker E.H., Creelan B.C., Forcier B., Ross J.S., Stephens P.J., Ali S.M., et al. Hybrid capture-based genomic profiling of circulating tumor DNA from patients with advanced non-small cell lung cancer. J. Thorac. Oncol. 2019;14:255–264. doi: 10.1016/j.jtho.2018.10.008.
    1. Oxnard G.R., Thress K.S., Alden R.S., Lawrance R., Paweletz C.P., Cantarini M., Yang J.C., Barrett J.C., Janne P.A. Association between plasma genotyping and outcomes of treatment with Osimertinib (AZD9291) in advanced non-small-cell lung cancer. J. Clin. Oncol. 2016;34:3375–3382. doi: 10.1200/JCO.2016.66.7162.
    1. Newman A.M., Bratman S.V., To J., Wynne J.F., Eclov N.C., Modlin L.A., Liu C.L., Neal J.W., Wakelee H.A., Merritt R.E., et al. An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat. Med. 2014;20:548–554. doi: 10.1038/nm.3519.
    1. Newman A.M., Lovejoy A.F., Klass D.M., Kurtz D.M., Chabon J.J., Scherer F., Stehr H., Liu C.L., Bratman S.V., Say C., et al. Integrated digital error suppression for improved detection of circulating tumor DNA. Nat. Biotechnol. 2016;34:547–555. doi: 10.1038/nbt.3520.
    1. Cai W., Lin D., Wu C., Li X., Zhao C., Zheng L., Chuai S., Fei K., Zhou C., Hirsch F.R. Intratumoral heterogeneity of ALK-rearranged and ALK/EGFR coaltered lung adenocarcinoma. J. Clin. Oncol. 2015;33:3701–3709. doi: 10.1200/JCO.2014.58.8293.
    1. Chaudhuri A.A., Chabon J.J., Lovejoy A.F., Newman A.M., Stehr H., Azad T.D., Khodadoust M.S., Esfahani M.S., Liu C.L., Zhou L., et al. Early detection of molecular residual disease in localized lung cancer by circulating tumor DNA profiling. Cancer Discov. 2017;7:1394–1403. doi: 10.1158/-17-0716.
    1. Cho M.S., Park C.H., Lee S., Park H.S. Clinicopathological parameters for circulating tumor DNA shedding in surgically resected non-small cell lung cancer with EGFR or KRAS mutation. PLoS ONE. 2020;15:e0230622. doi: 10.1371/journal.pone.0230622.
    1. Li Y.S., Jiang B.Y., Yang J.J., Zhang X.C., Zhang Z., Ye J.Y., Zhong W.Z., Tu H.Y., Chen H.J., Wang Z., et al. Unique genetic profiles from cerebrospinal fluid cell-free DNA in leptomeningeal metastases of EGFR-mutant non-small-cell lung cancer: A new medium of liquid biopsy. Ann. Oncol. 2018;29:945–952. doi: 10.1093/annonc/mdy009.
    1. Papadopoulou E., Tsoulos N., Tsantikidi K., Metaxa-Mariatou V., Stamou P.E., Kladi-Skandali A., Kapeni E., Tsaousis G., Pentheroudakis G., Petrakis D., et al. Clinical feasibility of NGS liquid biopsy analysis in NSCLC patients. PLoS ONE. 2019;14:e0226853. doi: 10.1371/journal.pone.0226853.
    1. Sabari J.K., Offin M., Stephens D., Ni A., Lee A., Pavlakis N., Clarke S., Diakos C.I., Datta S., Tandon N., et al. A prospective study of circulating tumor DNA to guide matched targeted therapy in lung cancers. J. Natl. Cancer Inst. 2019;111:575–583. doi: 10.1093/jnci/djy156.
    1. Tailor T.D., Rao X., Campa M.J., Wang J., Gregory S.G., Patz E.F., Jr. Whole exome sequencing of cell-free DNA for early lung cancer: A pilot study to differentiate benign from malignant CT-detected pulmonary lesions. Front. Oncol. 2019;9:317. doi: 10.3389/fonc.2019.00317.
    1. Tsui D.W.Y., Murtaza M., Wong A.S.C., Rueda O.M., Smith C.G., Chandrananda D., Soo R.A., Lim H.L., Goh B.C., Caldas C., et al. Dynamics of multiple resistance mechanisms in plasma DNA during EGFR-targeted therapies in non-small cell lung cancer. EMBO Mol. Med. 2018;10:e7945. doi: 10.15252/emmm.201707945.
    1. Uchida J., Kato K., Kukita Y., Kumagai T., Nishino K., Daga H., Nagatomo I., Inoue T., Kimura M., Oba S., et al. Diagnostic accuracy of noninvasive genotyping of EGFR in lung cancer patients by deep sequencing of plasma cell-free DNA. Clin. Chem. 2015;61:1191–1196. doi: 10.1373/clinchem.2015.241414.
    1. Weber B., Meldgaard P., Hager H., Wu L., Wei W., Tsai J., Khalil A., Nexo E., Sorensen B.S. Detection of EGFR mutations in plasma and biopsies from non-small cell lung cancer patients by allele-specific PCR assays. BMC Cancer. 2014;14:294. doi: 10.1186/1471-2407-14-294.
    1. Yang M., Topaloglu U., Petty W.J., Pagni M., Foley K.L., Grant S.C., Robinson M., Bitting R.L., Thomas A., Alistar A.T., et al. Circulating mutational portrait of cancer: Manifestation of aggressive clonal events in both early and late stages. J. Hematol. Oncol. 2017;10:100. doi: 10.1186/s13045-017-0468-1.
    1. Zhang J., Dong A., Li S., Ren X., Zhang X. Consistency of genotyping data from simultaneously collected plasma circulating tumor DNA and tumor-DNA in lung cancer patients. J. Thorac. Dis. 2020;12:7290–7297. doi: 10.21037/jtd-20-3162.
    1. Zhao X., Han R.B., Zhao J., Wang J., Yang F., Zhong W., Zhang L., Li L.Y., Wang M.Z. Comparison of epidermal growth factor receptor mutation statuses in tissue and plasma in stage I-IV non-small cell lung cancer patients. Respiration. 2013;85:119–125. doi: 10.1159/000338790.
    1. Fenizia F., De Luca A., Pasquale R., Sacco A., Forgione L., Lambiase M., Iannaccone A., Chicchinelli N., Franco R., Rossi A., et al. EGFR mutations in lung cancer: From tissue testing to liquid biopsy. Future Oncol. 2015;11:1611–1623. doi: 10.2217/fon.15.23.
    1. Aggarwal C., Thompson J.C., Black T.A., Katz S.I., Fan R., Yee S.S., Chien A.L., Evans T.L., Bauml J.M., Alley E.W., et al. Clinical implications of plasma-based genotyping with the delivery of personalized therapy in metastatic non-small cell lung cancer. JAMA Oncol. 2019;5:173–180. doi: 10.1001/jamaoncol.2018.4305.
    1. Wang N., Zhang X., Wang F., Zhang M., Sun B., Yin W., Deng S., Wan Y., Lu W. The diagnostic accuracy of liquid biopsy in EGFR-mutated NSCLC: A systematic review and meta-analysis of 40 studies. SLAS Technol. 2020;26:42–54. doi: 10.1177/2472630320939565.
    1. Mok T.S., Wu Y.-L., Ahn M.-J., Garassino M.C., Kim H.R., Ramalingam S.S., Shepherd F.A., He Y., Akamatsu H., Theelen W.S.M.E., et al. Osimertinib or platinum–pemetrexed in EGFR T790M–positive lung cancer. N. Engl. J. Med. 2016;376:629–640. doi: 10.1056/NEJMoa1612674.
    1. Nakamura T., Nakashima C., Komiya K., Kitera K., Hirai M., Kimura S., Aragane N. Mechanisms of acquired resistance to afatinib clarified with liquid biopsy. PLoS ONE. 2018;13:e0209384. doi: 10.1371/journal.pone.0209384.
    1. Hochmair M.J., Buder A., Schwab S., Burghuber O.C., Prosch H., Hilbe W., Cseh A., Fritz R., Filipits M. Liquid-biopsy-based identification of EGFR T790M mutation-mediated resistance to Afatinib treatment in patients with advanced EGFR mutation-positive NSCLC, and subsequent response to Osimertinib. Target. Oncol. 2019;14:75–83. doi: 10.1007/s11523-018-0612-z.
    1. Ito K., Suzuki Y., Saiki H., Sakaguchi T., Hayashi K., Nishii Y., Watanabe F., Hataji O. Utility of liquid biopsy by improved PNA-LNA PCR clamp method for detecting EGFR mutation at initial diagnosis of non-small-cell lung cancer: Observational study of 190 consecutive cases in clinical practice. Clin Lung Cancer. 2018;19:181–190. doi: 10.1016/j.cllc.2017.10.017.
    1. Mezquita L., Swalduz A., Jovelet C., Ortiz-Cuaran S., Howarth K., Planchard D., Avrillon V., Recondo G., Marteau S., Benitez J.C., et al. Clinical relevance of an amplicon-based liquid biopsy for detecting ALK and ROS1 fusion and resistance mutations in patients with non-small-cell lung cancer. JCO Precis. Oncol. 2020;4:272–282. doi: 10.1200/PO.19.00281.
    1. Chen Y., Guo W., Fan J., Chen Y., Zhang X., Chen X., Luo P. The applications of liquid biopsy in resistance surveillance of anaplastic lymphoma kinase inhibitor. Cancer Manag. Res. 2017;9:801–811. doi: 10.2147/CMAR.S151235.
    1. Russo M., Misale S., Wei G., Siravegna G., Crisafulli G., Lazzari L., Corti G., Rospo G., Novara L., Mussolin B., et al. Acquired resistance to the TRK inhibitor entrectinib in colorectal cancer. Cancer Discov. 2016;6:36–44. doi: 10.1158/-15-0940.
    1. Bettegowda C., Sausen M., Leary R.J., Kinde I., Wang Y., Agrawal N., Bartlett B.R., Wang H., Luber B., Alani R.M., et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci. Transl. Med. 2014;6:224ra24. doi: 10.1126/scitranslmed.3007094.
    1. Phallen J., Sausen M., Adleff V., Leal A., Hruban C., White J., Anagnostou V., Fiksel J., Cristiano S., Papp E., et al. Direct detection of early-stage cancers using circulating tumor DNA. Sci Transl. Med. 2017;9:eaan2415. doi: 10.1126/scitranslmed.aan2415.
    1. Cortiula F., Pasello G., Follador A., Nardo G., Polo V., Scquizzato E., Del Conte A., Miorin M., Giovanis P., D’Urso A., et al. A multi-center, real-life experience on liquid biopsy practice for EGFR testing in Non-Small Cell Lung Cancer (NSCLC) patients. Diagnostics. 2020;10:765. doi: 10.3390/diagnostics10100765.
    1. Reck M., Hagiwara K., Han B., Tjulandin S., Grohe C., Yokoi T., Morabito A., Novello S., Arriola E., Molinier O., et al. ctDNA Determination of EGFR mutation status in European and Japanese patients with advanced NSCLC: The ASSESS study. J. Thorac. Oncol. 2016;11:1682–1689. doi: 10.1016/j.jtho.2016.05.036.
    1. Dietel M., Bubendorf L., Dingemans A.M., Dooms C., Elmberger G., Garcia R.C., Kerr K.M., Lim E., Lopez-Rios F., Thunnissen E., et al. Diagnostic procedures for non-small-cell lung cancer (NSCLC): Recommendations of the European Expert Group. Thorax. 2016;71:177–184. doi: 10.1136/thoraxjnl-2014-206677.
    1. Xiang C., Huo M., Ma S., Guo L., Zhao R., Teng H., Zhang J., Han Y. Molecular profiling for supernatants and matched cell pellets of pleural effusions in non-small-cell lung cancer. J. Mol. Diagn. 2020;22:513–522. doi: 10.1016/j.jmoldx.2020.01.011.
    1. Liu L., Shao D., Deng Q., Tang H., Wang J., Liu J., Guo F., Lin Y., Peng Z., Mao M., et al. Next generation sequencing-based molecular profiling of lung adenocarcinoma using pleural effusion specimens. J. Thorac. Dis. 2018;10:2631–2637. doi: 10.21037/jtd.2018.04.125.
    1. Yang S.R., Mooney K.L., Libiran P., Jones C.D., Joshi R., Lau H.D., Stehr H., Berry G.J., Zehnder J.L., Long S.R., et al. Targeted deep sequencing of cell-free DNA in serous body cavity fluids with malignant, suspicious, and benign cytology. Cancer Cytopathol. 2020;128:43–56. doi: 10.1002/cncy.22205.
    1. Zhang Y., Li J., Hua P., Liu N., Li Q., Zhu X., Jiang L., Zheng K., Su X. Targeted next-generation sequencing in cytology specimens for molecular profiling of lung adenocarcinoma. Int. J. Clin. Exp. Pathol. 2018;11:3647–3655.
    1. Wang C.G., Zeng D.X., Huang J.A., Jiang J.H. Effective assessment of low times MET amplification in pleural effusion after epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) acquired resistance: Cases report. Medicine. 2018;97:e9021. doi: 10.1097/MD.0000000000009021.
    1. Liao Y., Ma Z., Zhang Y., Li D., Lv D., Chen Z., Li P., Ai-Dherasi A., Zheng F., Tian J., et al. Targeted deep sequencing from multiple sources demonstrates increased NOTCH1 alterations in lung cancer patient plasma. Cancer Med. 2019;8:5673–5686. doi: 10.1002/cam4.2458.
    1. Smalley K.S., Fedorenko I.V., Kenchappa R.S., Sahebjam S., Forsyth P.A. Managing leptomeningeal melanoma metastases in the era of immune and targeted therapy. Int. J. Cancer. 2016;139:1195–1201. doi: 10.1002/ijc.30147.
    1. Cheng H., Perez-Soler R. Leptomeningeal metastases in non-small-cell lung cancer. Lancet Oncol. 2018;19:e43–e55. doi: 10.1016/S1470-2045(17)30689-7.
    1. Bruno M.K., Raizer J. Leptomeningeal metastases from solid tumors (meningeal carcinomatosis) Cancer Treat. Res. 2005;125:31–52.
    1. Kesari S., Batchelor T.T. Leptomeningeal metastases. Neurol. Clin. 2003;21:25–66. doi: 10.1016/S0733-8619(02)00032-4.
    1. Ernani V., Stinchcombe T.E. Management of brain metastases in non-small-cell lung cancer. J. Oncol. Pract. 2019;15:563–570. doi: 10.1200/JOP.19.00357.
    1. Sperduto P.W., Yang T.J., Beal K., Pan H., Brown P.D., Bangdiwala A., Shanley R., Yeh N., Gaspar L.E., Braunstein S., et al. Estimating survival in patients with lung cancer and brain metastases: An update of the graded prognostic assessment for lung cancer using molecular markers (Lung-molGPA) JAMA Oncol. 2017;3:827–831. doi: 10.1001/jamaoncol.2016.3834.
    1. Xiao F., Lv S., Zong Z., Wu L., Tang X., Kuang W., Zhang P., Li X., Fu J., Xiao M., et al. Cerebrospinal fluid biomarkers for brain tumor detection: Clinical roles and current progress. Am. J. Transl. Res. 2020;12:1379–1396.
    1. McEwen A.E., Leary S.E.S., Lockwood C.M. Beyond the blood: CSF-derived cfDNA for diagnosis and characterization of CNS tumors. Front. Cell. Dev. Biol. 2020;8:45. doi: 10.3389/fcell.2020.00045.
    1. Zhao Y., He J.Y., Zou Y.L., Guo X.S., Cui J.Z., Guo L., Bu H. Evaluating the cerebrospinal fluid ctDNA detection by next-generation sequencing in the diagnosis of meningeal Carcinomatosis. BMC Neurol. 2019;19:331. doi: 10.1186/s12883-019-1554-5.
    1. Zheng M.M., Li Y.S., Jiang B.Y., Tu H.Y., Tang W.F., Yang J.J., Zhang X.C., Ye J.Y., Yan H.H., Su J., et al. Clinical utility of cerebrospinal fluid cell-free DNA as liquid biopsy for leptomeningeal metastases in ALK-rearranged NSCLC. J. Thorac. Oncol. 2019;14:924–932. doi: 10.1016/j.jtho.2019.01.007.
    1. Li N., Liu Y., Duan J., Yang B., Bai H., Sun R., Yu L., Wang J. Prognostic significance of molecular characteristics of cerebrospinal fluid for non-small cell lung cancer patients with leptomeningeal metastasis. Thorac. Cancer. 2019;10:1673–1682. doi: 10.1111/1759-7714.13123.
    1. Balasubramanian S.K., Sharma M., Venur V.A., Schmitt P., Kotecha R., Chao S.T., Suh J.H., Angelov L., Mohammadi A.M., Vogelbaum M.A., et al. Impact of EGFR mutation and ALK rearrangement on the outcomes of non-small cell lung cancer patients with brain metastasis. Neuro. Oncol. 2020;22:267–277. doi: 10.1093/neuonc/noz155.
    1. Ballard P., Yates J.W., Yang Z., Kim D.W., Yang J.C., Cantarini M., Pickup K., Jordan A., Hickey M., Grist M., et al. Preclinical comparison of Osimertinib with other EGFR-TKIs in EGFR-mutant NSCLC brain metastases models, and early evidence of clinical brain metastases activity. Clin. Cancer Res. 2016;22:5130–5140. doi: 10.1158/1078-0432.CCR-16-0399.
    1. Iuchi T., Shingyoji M., Sakaida T., Hatano K., Nagano O., Itakura M., Kageyama H., Yokoi S., Hasegawa Y., Kawasaki K., et al. Phase II trial of gefitinib alone without radiation therapy for Japanese patients with brain metastases from EGFR-mutant lung adenocarcinoma. Lung Cancer. 2013;82:282–287. doi: 10.1016/j.lungcan.2013.08.016.
    1. Petrelli F., Lazzari C., Ardito R., Borgonovo K., Bulotta A., Conti B., Cabiddu M., Capitanio J.F., Brighenti M., Ghilardi M., et al. Efficacy of ALK inhibitors on NSCLC brain metastases: A systematic review and pooled analysis of 21 studies. PLoS ONE. 2018;13:e0201425. doi: 10.1371/journal.pone.0201425.
    1. Ying S., Ke H., Ding Y., Liu Y., Tang X., Yang D., Li M., Liu J., Yu B., Xiang J., et al. Unique genomic profiles obtained from cerebrospinal fluid cell-free DNA of non-small cell lung cancer patients with leptomeningeal metastases. Cancer Biol. Ther. 2019;20:562–570. doi: 10.1080/15384047.2018.1538614.
    1. Steensma D.P., Bejar R., Jaiswal S., Lindsley R.C., Sekeres M.A., Hasserjian R.P., Ebert E.L. Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood. 2015;126:9–16. doi: 10.1182/blood-2015-03-631747.
    1. Jan M., Ebert B.L., Jaiswal S. Clonal hematopoiesis. Semin. Hematol. 2017;54:43–50. doi: 10.1053/j.seminhematol.2016.10.002.
    1. Xie M., Lu C., Wang J., McLellan M.D., Johnson K.J., Wendl M.C., McMichael J.F., Schmidt H.K., Yellapantula V., Miller C.A., et al. Age-related mutations associated with clonal hematopoietic expansion and malignancies. Nat. Med. 2014;20:1472–1478. doi: 10.1038/nm.3733.
    1. Jaiswal S., Fontanillas P., Flannick J., Manning A., Grauman P.V., Mar B.G., Lindsley R.C., Mermel C.H., Burtt N., Chavez A., et al. Age-related clonal hematopoiesis associated with adverse outcomes. N. Engl. J. Med. 2014;371:2488–2498. doi: 10.1056/NEJMoa1408617.
    1. Chabon J.J., Hamilton E.G., Kurtz D.M., Esfahani M.S., Moding E.J., Stehr H., Schroers-Martin J., Nabet B.Y., Chen B., Chaudhuri A.A., et al. Integrating genomic features for non-invasive early lung cancer detection. Nature. 2020;580:245–251. doi: 10.1038/s41586-020-2140-0.
    1. Hu Y., Ulrich B.C., Supplee J., Kuang Y., Lizotte P.H., Feeney N.B., Guibert N.M., Awad M.M., Wong K.K., Janne P.A., et al. False-positive plasma genotyping due to clonal hematopoiesis. Clin. Cancer Res. 2018;24:4437–4443. doi: 10.1158/1078-0432.CCR-18-0143.
    1. Mayrhofer M., De Laere B., Whitington T., Van Oyen P., Ghysel C., Ampe J., Ost P., Demey W., Hoekx L., Schrijvers D., et al. Cell-free DNA profiling of metastatic prostate cancer reveals microsatellite instability, structural rearrangements and clonal hematopoiesis. Genome Med. 2018;10:85. doi: 10.1186/s13073-018-0595-5.
    1. Liu J., Chen X., Wang J., Zhou S., Wang C.L., Ye M.Z., Wang X.Y., Song Y., Wang Y.Q., Zhang L.T., et al. Biological background of the genomic variations of cf-DNA in healthy individuals. Ann. Oncol. 2019;30:464–470. doi: 10.1093/annonc/mdy513.
    1. Chan H.T., Nagayama S., Chin Y.M., Otaki M., Hayashi R., Kiyotani K., Fukunaga Y., Ueno M., Nakamura Y., Low S.K. Clinical significance of clonal hematopoiesis in the interpretation of blood liquid biopsy. Mol. Oncol. 2020;14:1719–1730. doi: 10.1002/1878-0261.12727.
    1. Jahr S., Hentze H., Englisch S., Hardt D., Fackelmayer F.O., Hesch R.D., Knippers R. DNA fragments in the blood plasma of cancer patients: Quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res. 2001;61:1659–1665.
    1. Stroun M., Lyautey J., Lederrey C., Olson-Sand A., Anker P. About the possible origin and mechanism of circulating DNA apoptosis and active DNA release. Clin. Chim. Acta. 2001;313:139–142. doi: 10.1016/S0009-8981(01)00665-9.
    1. Lin C.C., Shih J.Y., Yu C.J., Ho C.C., Liao W.Y., Lee J.H., Tsai T.H., Su K.Y., Hsieh M.S., Chang Y.L., et al. Outcomes in patients with non-small-cell lung cancer and acquired Thr790Met mutation treated with osimertinib: A genomic study. Lancet Respir. Med. 2018;6:107–116. doi: 10.1016/S2213-2600(17)30480-0.
    1. Guo N., Lou F., Ma Y., Li J., Yang B., Chen W., Hua Y., Zhang J.-B., Zhao M.-Y., Wu W.-J., et al. Circulating tumor DNA detection in lung cancer patients before and after surgery. Sci. Rep. 2016;6:33519. doi: 10.1038/srep33519.
    1. Chen K., Zhang J., Guan T., Yang F., Lou F., Chen W., Zhao M., Zhang J., Chen S., Wang J. Comparison of plasma to tissue DNA mutations in surgical patients with non-small cell lung cancer. J. Thorac. Cardiovasc. Surg. 2017;154:1123–1131. doi: 10.1016/j.jtcvs.2017.04.073.
    1. Abbosh C., Birkbak N.J., Wilson G.A., Jamal-Hanjani M., Constantin T., Salari R., Le Quesne J., Moore D.A., Veeriah S., Rosenthal R., et al. Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution. Nature. 2017;545:446–451. doi: 10.1038/nature22364.
    1. Heitzer E., Haque I.S., Roberts C.E.S., Speicher M.R. Current and future perspectives of liquid biopsies in genomics-driven oncology. Nat. Rev. Genet. 2019;20:71–88. doi: 10.1038/s41576-018-0071-5.
    1. Luchini C., Lawlor R.T., Milella M., Scarpa A. Molecular tumor boards in clinical practice. Trends Cancer. 2020;6:738–744. doi: 10.1016/j.trecan.2020.05.008.

Source: PubMed

3
Abonneren