The Use of Janus Kinase Inhibitors in Axial Spondyloarthritis: Current Insights

Eric Toussirot, Eric Toussirot

Abstract

Current pharmacological treatments of axial spondyloarthritis (axSpA) are limited to non-steroidal anti-inflammatory drugs (NSAIDs) and biological agents, including TNFα inhibitors and IL-17 inhibitors. Despite the availability of these agents, many patients either fail to respond adequately, lose their initial therapeutic response over time, or develop undesirable side effects, thus highlighting the need for new treatment options. Janus kinase (JAK) and signal transducers and activators of transcription (STAT) are a group of intracellular kinases that play a role in the signaling pathway induced by cytokines and certain growth factors associated with the inflammatory process of axSpA. There are several lines of evidence implicating the JAK-STAT pathway in the pathophysiological process of axSpA, including genetic data, the use of certain JAK in the intracellular signal of specific cytokines involved in axSpA (IL-23, IL-22, and IL-6), and data from experimental models of SpA. This provides a rationale for the assessment of JAK inhibitors (JAKi) in clinical trials with patients with axSpA. In this review, we examine the role of JAK-STAT signaling in the pathogenesis of axSpA and summarize the results from recent clinical trials of JAKi (tofacitinib, upadacitinib, and filgotinib) in patients with axSpA.

Keywords: JAK inhibitors; JAK/STAT; Janus kinase; axial spondyloarthritis.

Conflict of interest statement

The author declares no conflict of interest.

Figures

Figure 1
Figure 1
Use of the members of the Janus kinases (JAKs) (one or more JAK) by different cytokines.

References

    1. Sieper J., Poddubnyy D. Axial spondyloarthritis. Lancet. 2017;390:73–84. doi: 10.1016/S0140-6736(16)31591-4.
    1. van der Linden S., Valkenburg H.A., Cats A. Evaluation of diagnostic criteria for ankylosing spondylitis. A proposal for modification of the New York criteria. Arthritis Rheumatol. 1984;27:361–368. doi: 10.1002/art.1780270401.
    1. Rudwaleit M., Landewé R., van der Heijde D., Listing J., Brandt J., Braun J., Burgos-Vargas R., Collantes-Estevez E., Davis J., Dijkmans B., et al. The development of Assessment of SpondyloArthritis international Society classification criteria for axial spondyloarthritis (part I): Classification of paper patients by expert opinion including uncertainty appraisal. Ann. Rheum. Dis. 2009;68:770–776. doi: 10.1136/ard.2009.108217.
    1. Navarro-Compán V., Sepriano A., El-Zorkany B., van der Heijde D. Axial spondyloarthritis. Ann. Rheum. Dis. 2021;80:1511–1521. doi: 10.1136/annrheumdis-2021-221035.
    1. Poddubnyy D., Sieper J. Current Unmet Needs in Spondyloarthritis. Curr. Rheumatol. Rep. 2019;21:43. doi: 10.1007/s11926-019-0844-7.
    1. Smolen J.S., Schöls M., Braun J., Dougados M., Fitzgerald O., Gladman D.D., Kavanaugh A., Landewé R., Mease P., Sieper J., et al. Treating axial spondyloarthritis and peripheral spondyloarthritis, especially psoriatic arthritis, to target: 2017 update of recommendations by an international task force. Ann. Rheum. Dis. 2018;77:3–17. doi: 10.1136/annrheumdis-2017-211734.
    1. Sieper J., Poddubnyy D. New evidence on the management of spondyloarthritis. Nat. Rev. Rheumatol. 2016;12:282–295. doi: 10.1038/nrrheum.2016.42.
    1. O’Shea J.J., Laurence A., McInnes I.B. Back to the future: Oral targeted therapy for RA and other autoimmune diseases. Nat. Rev. Rheumatol. 2013;9:173–182. doi: 10.1038/nrrheum.2013.7.
    1. Sieper J., Poddubnyy D., Miossec P. The IL-23-IL-17 pathway as a therapeutic target in axial spondyloarthritis. Nat. Rev. Rheumatol. 2019;15:747–757. doi: 10.1038/s41584-019-0294-7.
    1. Veale D.J., McGonagle D., McInnes I.B., Krueger J.G., Ritchlin C.T., Elewaut D., Kanik K.S., Hendrikx T., Berstein G., Hodge J., et al. The rationale for Janus kinase inhibitors for the treatment of spondyloarthritis. Rheumatology. 2019;58:197–205. doi: 10.1093/rheumatology/key070.
    1. Perrotta F.M., Lories R., Lubrano E. To move or not to move: The paradoxical effect of physical exercise in axial spondyloarthritis. RMD Open. 2021;7:e001480. doi: 10.1136/rmdopen-2020-001480.
    1. Jacques P., Lambrecht S., Verheugen E., Pauwels E., Kollias G., Armaka M., Verhoye M., van der Linden A., Achten R., Lories R.J., et al. Proof of concept: Enthesitis and new bone formation in spondyloarthritis are driven by mechanical strain and stromal cells. Ann. Rheum. Dis. 2014;73:437–445. doi: 10.1136/annrheumdis-2013-203643.
    1. Benjamin M., Toumi H., Suzuki D., Redman S., Emery P., McGonagle D. Microdamage and altered vascularity at the enthesis-bone interface provides an anatomic explanation for bone involvement in the HLA-B27-associated spondylarthritides and allied disorders. Arthritis Rheumatol. 2007;56:224–233. doi: 10.1002/art.22290.
    1. Reveille J.D., Arnett F.C. Spondyloarthritis: Update on pathogenesis and management. Am. J. Med. 2005;118:592–603. doi: 10.1016/j.amjmed.2005.01.001.
    1. de Koning A., Schoones J.W., van der Heijde D., van Gaalen F.A. Pathophysiology of axial spondyloarthritis: Consensus and controversies. Eur. J. Clin. Investig. 2018;48:e12913. doi: 10.1111/eci.12913.
    1. Lories R.J., Schett G. Pathophysiology of new bone formation and ankylosis in spondyloarthritis. Rheum. Dis. Clin. N. Am. 2012;38:555–567. doi: 10.1016/j.rdc.2012.08.003.
    1. Toussirot E. Pharmacological management of axial spondyloarthritis in adults. Expert Opin. Pharmacother. 2019;20:1483–1491. doi: 10.1080/14656566.2019.1617853.
    1. Sherlock J.P., Joyce-Shaikh B., Turner S.P., Chao C.C., Sathe M., Grein J., Gorman D.M., Bowman E.P., McClanahan T.K., Yearley J.H., et al. IL-23 induces spondyloarthropathy by acting on ROR-γt+CD3+CD4−CD8− entheseal resident T cells. Nat. Med. 2012;18:1069–1076. doi: 10.1038/nm.2817.
    1. Schett G., Coates L.C., Ash Z.R., Finzel S., Conaghan P.G. Structural damage in rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis: Traditional views, novel insights gained from TNF blockade, and concepts for the future. Arthritis Res. Ther. 2011;13((Suppl. 1)):S4. doi: 10.1186/1478-6354-13-S1-S4.
    1. O’Shea J.J., Kontzias A., Yamaoka K., Tanaka Y., Laurence A. Janus kinase inhibitors in autoimmune diseases. Ann. Rheum. Dis. 2013;72((Suppl. 2)):ii111–ii115. doi: 10.1136/annrheumdis-2012-202576.
    1. Schwartz D.M., Kanno Y., Villarino A., Ward M., Gadina M., O’Shea J.J. JAK inhibition as a therapeutic strategy for immune and inflammatory diseases. Nat. Rev. Drug Discov. 2017;16:843–862. doi: 10.1038/nrd.2017.201.
    1. Raychaudhuri S., Cheema K.S., Raychaudhuri S.K., Raychaudhuri S.P. Janus kinase-signal transducers and activators of transcription cell signaling in Spondyloarthritis: Rationale and evidence for JAK inhibition. Curr. Opin. Rheumatol. 2021;33:348–355. doi: 10.1097/BOR.0000000000000810.
    1. Miceli-Richard C., Dougados M. Tracking JAKs in spondyloarthritis: Rationale and expectations. Ann. Rheum. Dis. 2017;76:1325–1326. doi: 10.1136/annrheumdis-2016-210886.
    1. McInnes I.B., Szekanecz Z., McGonagle D., Maksymowych W.P., Pfeil A., Lippe R., Song I.H., Lertratanakul A., Sornasse T., Biljan A., et al. A review of JAK-STAT signalling in the pathogenesis of spondyloarthritis and the role of JAK inhibition. Rheumatology. 2021:keab740. doi: 10.1093/rheumatology/keab740.
    1. Hammitzsch A., Lorenz G., Moog P. Impact of Janus Kinase Inhibition on the Treatment of Axial Spondyloarthropathies. Front. Immunol. 2020;11:591176. doi: 10.3389/fimmu.2020.591176.
    1. Chen C., Zhang X., Wang Y. Analysis of JAK2 and STAT3 polymorphisms in patients with ankylosing spondylitis in Chinese Han population. Clin. Immunol. 2010;136:442–446. doi: 10.1016/j.clim.2010.05.003.
    1. Dendrou C.A., Cortes A., Shipman L., Evans H.G., Attfield K.E., Jostins L., Barber T., Kaur G., Kuttikkatte S.B., Leach O.A., et al. Resolving TYK2 locus genotype-to-phenotype differences in autoimmunity. Sci. Transl. Med. 2016;8:363ra149. doi: 10.1126/scitranslmed.aag1974.
    1. Ellinghaus D., Ellinghaus E., Nair R.P., Stuart P.E., Esko T., Metspalu A., Debrus S., Raelson J.V., Tejasvi T., Belouchi M., et al. Combined analysis of genome-wide association studies for Crohn disease and psoriasis identifies seven shared susceptibility loci. Am. J. Hum. Genet. 2012;90:636–647. doi: 10.1016/j.ajhg.2012.02.020.
    1. Maeda Y., Stavre Z., Huang T., Manning C., Shaughn B., Macoritto M., Hyland D., Waegell W., Gravallese E.M. Blockade of the JAK/STAT Pathway Inhibits Inflammation and Bone Formation inTwo Murine Models of Spondyloarthritis. [(accessed on 20 January 2022)];Arthritis Rheumatol. 2018 10((Suppl. 10)):2065. Available online:
    1. Hammitzsch A., Chen L., de Wit J., Al-Mossawi M.H., Ridley A., Sekine T., Simone D., Doig K., Skapenko A., Bowness P. Inhibiting ex-vivo Th17 responses in Ankylosing Spondylitis by targeting Janus kinases. Sci. Rep. 2018;8:15645. doi: 10.1038/s41598-018-34026-1.
    1. Gracey E., Hromadová D., Lim M., Qaiyum Z., Zeng M., Yao Y., Srinath A., Baglaenko Y., Yeremenko N., Westlin W., et al. TYK2 inhibition reduces type 3 immunity and modifies disease progression in murine spondyloarthritis. J. Clin. Investig. 2020;130:1863–1878. doi: 10.1172/JCI126567.
    1. De Wilde K., Martens A., Lambrecht S., Jacques P., Drennan M.B., Debusschere K., Govindarajan S., Coudenys J., Verheugen E., Windels F., et al. A20 inhibition of STAT1 expression in myeloid cells: A novel endogenous regulatory mechanism preventing development of enthesitis. Ann. Rheum. Dis. 2017;76:585–592. doi: 10.1136/annrheumdis-2016-209454.
    1. Scott L.J. Tofacitinib: A review of its use in adult patients with rheumatoid arthritis. Drugs. 2013;73:857–874. doi: 10.1007/s40265-013-0065-8.
    1. van der Heijde D., Deodhar A., Wei J.C., Drescher E., Fleishaker D., Hendrikx T., Li D., Menon S., Kanik K.S. Tofacitinib in patients with ankylosing spondylitis: A phase II, 16-week, randomised, placebo-controlled, dose-ranging study. Ann. Rheum. Dis. 2017;76:1340–1347. doi: 10.1136/annrheumdis-2016-210322.
    1. Deodhar A., Sliwinska-Stanczyk P., Xu H., Baraliakos X., Gensler L.S., Fleishaker D., Wang L., Wu J., Menon S., Wang C., et al. Tofacitinib for the treatment of ankylosing spondylitis: A phase III, randomised, double-blind, placebo-controlled study. Ann. Rheum. Dis. 2021;80:1004–1013. doi: 10.1136/annrheumdis-2020-219601.
    1. Maksymowych W.P., van der Heijde D., Baraliakos X., Deodhar A., Sherlock S.P., Li D., Fleishaker D., Hendrikx T., Kanik K.S. Tofacitinib is associated with attainment of the minimally important reduction in axial magnetic resonance imaging inflammation in ankylosing spondylitis patients. Rheumatology. 2018;57:1390–1399. doi: 10.1093/rheumatology/key104.
    1. Duggan S., Keam S.J. Upadacitinib: First Approval. Drugs. 2019;79:1819–1828. doi: 10.1007/s40265-019-01211-z.
    1. van der Heijde D., Song I.H., Pangan A.L., Deodhar A., van den Bosch F., Maksymowych W.P., Kim T.H., Kishimoto M., Everding A., Sui Y., et al. Efficacy and safety of upadacitinib in patients with active ankylosing spondylitis (SELECT-AXIS 1): A multicentre, randomised, double-blind, placebo-controlled, phase 2/3 trial. Lancet. 2019;394:2108–2117. doi: 10.1016/S0140-6736(19)32534-6.
    1. Deodhar A., van der Heijde D., Sieper J., van den Bosch F., Maksymowych W.P., Kim T.H., Kishimoto M., Ostor A., Combe B., Sui Y., et al. Safety and Efficacy of Upadacitinib in Patients With Active Ankylosing Spondylitis and an Inadequate Response to Nonsteroidal Antiinflammatory Drug Therapy: One-Year Results of a Double-Blind, Placebo-Controlled Study and Open-Label Extension. Arthritis Rheumatol. 2022;74:70–80. doi: 10.1002/art.41911.
    1. Dhillon S., Keam S.J. Filgotinib: First Approval. Drugs. 2020;80:1987–1997. doi: 10.1007/s40265-020-01439-0.
    1. van der Heijde D., Baraliakos X., Gensler L.S., Maksymowych W.P., Tseluyko V., Nadashkevich O., Abi-Saab W., Tasset C., Meuleners L., Besuyen R., et al. Efficacy and safety of filgotinib, a selective Janus kinase 1 inhibitor, in patients with active ankylosing spondylitis (TORTUGA): Results from a randomised, placebo-controlled, phase 2 trial. Lancet. 2018;392:2378–2387. doi: 10.1016/S0140-6736(18)32463-2.
    1. Maksymowych W.P., Østergaard M., Landewé R., Barchuk W., Liu K., Gilles L., Hendrikx T., Besuyen R., Baraliakos X. Filgotinib decreases both vertebral body and posterolateral spine inflammation in ankylosing spondylitis: Results from the TORTUGA trial. Rheumatology. 2021:keab758. doi: 10.1093/rheumatology/keab758.
    1. Maksymowych W.P., Østergaard M., Landewé R., Barchuk W., Liu K., Tasset C., Gilles L., Hendrikx T., Besuyen R., Baraliakos X. Impact of filgotinib on sacroiliac joint MRI structural lesions at 12 weeks in patients with active ankylosing spondylitis (TORTUGA trial) Rheumatology. 2021:keab543. doi: 10.1093/rheumatology/keab543.
    1. A Study to Evaluate Efficacy and Safety of Upadacitinib in Adult Participants with Axial Spondyloarthritis (SELECT AXIS 2) [(accessed on 20 January 2022)]; Available online: .
    1. Abbvie Press Release. Oct 7, 2021. [(accessed on 20 January 2022)]. Available online: .
    1. Kuo C.M., Tung T.H., Wang S.H., Chi C.C. Efficacy and safety of tofacitinib for moderate-to-severe plaque psoriasis: A systematic review and meta-analysis of randomized controlled trials. J. Eur. Acad. Dermatol. Venereol. 2018;32:355–362. doi: 10.1111/jdv.14695.
    1. Sandborn W.J., Feagan B.G., Loftus E.V., Jr., Peyrin-Biroulet L., Van Assche G., D’Haens G., Schreiber S., Colombel J.F., Lewis J.D., Ghosh S., et al. Efficacy and Safety of Upadacitinib in a Randomized Trial of Patients with Crohn’s Disease. Gastroenterology. 2020;158:2123–2138.e8. doi: 10.1053/j.gastro.2020.01.047.
    1. Hromadová D., Elewaut D., Inman R.D., Strobl B., Gracey E. From Science to Success? Targeting Tyrosine Kinase 2 in Spondyloarthritis and Related Chronic Inflammatory Diseases. Front. Genet. 2021;12:685280. doi: 10.3389/fgene.2021.685280.
    1. Papp K., Gordon K., Thaçi D., Morita A., Gooderham M., Foley P., Girgis I.G., Kundu S., Banerjee S. Phase 2 Trial of Selective Tyrosine Kinase 2 Inhibition in Psoriasis. N. Engl. J. Med. 2018;379:1313–1321. doi: 10.1056/NEJMoa1806382.
    1. Mease P., Deodhar A., van der Heijde D., Behrens F., Kivitz A., Lehman T., Wei L., Nys M., Banerjee S., Nowak M. Efficacy of Deucravacitinib, an Oral, Selective Tyrosine Kinase 2 Inhibitor, inMusculoskeletal Manifestations of Active PsA in a Phase 2, Randomized, Double-Blind, Placebo-Controlled Trial. [(accessed on 18 January 2022)];Arthritis Rheumatol. 2021 73((Suppl. 10)):1820. Available online:
    1. Ytterberg S., Bhatt D., Mikuls T., Koch G., Fleischmann R., Rivas J., Germino R., Menon S., Sun Y., Wang C., et al. Cardiovascular and Cancer Risk with Tofacitinib in Rheumatoid Arthritis. N. Engl. J. Med. 2022;386:316–326. doi: 10.1056/NEJMoa2109927.
    1. Food and Drug Administration FDA Requires Warnings about Increased Risk of Serious Heart-Related Events, Cancer, Blood Clots, and Death for JAK Inhibitors That Treat Certain Chronic Inflammatory Conditions. Approved Uses Also Being Limited to Certain Patients. [(accessed on 22 January 2022)]; Available online: .
    1. Toussirot E. The Risk of Cardiovascular Diseases in Axial Spondyloarthritis. Current Insights. Front. Med. 2021;8:782150. doi: 10.3389/fmed.2021.782150.

Source: PubMed

3
Abonneren