Surveillance of the major pathogenic arboviruses of public health concern in Gabon, Central Africa: increased risk of West Nile virus and dengue virus infections

Yuri Ushijima, Haruka Abe, Georgelin Nguema Ondo, Rodrigue Bikangui, Marguerite Massinga Loembé, Vahid R Zadeh, Joseph G E Essimengane, Armel V N Mbouna, Emmanuel B Bache, Selidji T Agnandji, Bertrand Lell, Jiro Yasuda, Yuri Ushijima, Haruka Abe, Georgelin Nguema Ondo, Rodrigue Bikangui, Marguerite Massinga Loembé, Vahid R Zadeh, Joseph G E Essimengane, Armel V N Mbouna, Emmanuel B Bache, Selidji T Agnandji, Bertrand Lell, Jiro Yasuda

Abstract

Background: Increasing arbovirus infections have been a global burden in recent decades. Many countries have experienced the periodic emergence of arbovirus diseases. However, information on the prevalence of arboviruses is largely unknown or infrequently updated because of the lack of surveillance studies, especially in Africa.

Methods: A surveillance study was conducted in Gabon, Central Africa, on arboviruses, which are a major public health concern in Africa, including: West Nile virus (WNV), dengue virus (DENV), Zika virus (ZIKV), yellow fever virus (YFV), chikungunya virus (CHIKV), and Rift Valley fever virus (RVFV). Serological and molecular assays were performed to investigate past infection history and the current status of infection, using serum samples collected from healthy individuals and febrile patients, respectively.

Results: The overall seroprevalence during 2014-2017 was estimated to be 25.3% for WNV, 20.4% for DENV, 40.3% for ZIKV, 60.7% for YFV, 61.2% for CHIKV, and 14.3% for RVFV. No significant differences were found in the seroprevalence of any of the viruses between the male and female populations. However, a focus on the mean age in each arbovirus-seropositive individual showed a significantly younger age in WNV- and DENV-seropositive individuals than in CHIKV-seropositive individuals, indicating that WNV and DENV caused a relatively recent epidemic in the region, whereas CHIKV had actively circulated before. Of note, this indication was supported by the detection of both WNV and DENV genomes in serum samples collected from febrile patients after 2016.

Conclusions: This study revealed the recent re-emergence of WNV and DENV in Gabon as well as the latest seroprevalence state of the major arboviruses, which indicated the different potential risks of virus infections and virus-specific circulation patterns. This information will be helpful for public health organizations and will enable a rapid response towards these arbovirus infections, thereby preventing future spread in the country.

Keywords: Africa; Arboviruses; Dengue virus; Gabon; Surveillance; West Nile virus.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Location of the study area, Lambaréné, and major cities in Gabon. Black star: Lambaréné; Black square: the capital city; Black circle: other major cities mentioned in the main text and Additional file 3. The dotted line indicates each province in the country
Fig. 2
Fig. 2
Number of seropositive-arboviruses. NS: Not significance
Fig. 3
Fig. 3
Comparison of mean age of each arbovirus-seropositive individual. Black circle: Mean; Error bar: 95% CI; *: p < 0.05; **: p < 0.01

References

    1. Gubler DJ. Human Arbovirus infections worldwide. Ann N Y Acad Sci. 2006;951(1):13–24. doi: 10.1111/j.1749-6632.2001.tb02681.x.
    1. Brady OJ, Gething PW, Bhatt S, Messina JP, Brownstein JS, Hoen AG, Moyes CL, Farlow AW, Scott TW, Hay SI. Refining the global spatial limits of dengue virus transmission by evidence-based consensus. PLoS Negl Trop Dis. 2012;6(8):e1760. doi: 10.1371/journal.pntd.0001760.
    1. Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, Drake JM, Brownstein JS, Hoen AG, Sankoh O, et al. The global distribution and burden of dengue. Nature. 2013;496(7446):504–507. doi: 10.1038/nature12060.
    1. Petersen E, Wilson ME, Touch S, McCloskey B, Mwaba P, Bates M, Dar O, Mattes F, Kidd M, Ippolito G, et al. Rapid spread of Zika virus in the Americas--implications for public health preparedness for mass gatherings at the 2016 Brazil Olympic games. Int J Infect Dis. 2016;44:11–15. doi: 10.1016/j.ijid.2016.02.001.
    1. Petersen LR, Brault AC, Nasci RS. West nile virus: review of the literature. JAMA. 2013;310:308–315. doi: 10.1001/jama.2013.8042.
    1. Wilder-Smith A, Monath TP. Responding to the threat of urban yellow fever outbreaks. Lancet Infect Dis. 2017;17(3):248–250. doi: 10.1016/S1473-3099(16)30588-6.
    1. Giovanetti M, de Mendonca MCL, Fonseca V, Mares-Guia MA, Fabri A, Xavier J, de Jesus JG, Graf T, Dos Santos Rodrigues CD, Dos Santos CC, et al. Yellow Fever Virus Reemergence and Spread in Southeast Brazil, 2016–2019. J Virol. 2019; 94(1):pii: e01623–e01619.
    1. Fritzell C, Rousset D, Adde A, Kazanji M, Van Kerkhove MD, Flamand C. Current challenges and implications for dengue, chikungunya and Zika seroprevalence studies worldwide: a scoping review. PLoS Negl Trop Dis. 2018;12(7):e0006533. doi: 10.1371/journal.pntd.0006533.
    1. Marchi S, Trombetta CM, Montomoli E. Emerging and re-emerging Arboviral diseases as a Global Health problem. In: public health - emerging and re-emerging issues. London: IntechOpen; 2018.
    1. Gould E, Pettersson J, Higgs S, Charrel R, de Lamballerie X. Emerging arboviruses: why today? One Health. 2017;4:1–13. doi: 10.1016/j.onehlt.2017.06.001.
    1. Duong V, Lambrechts L, Paul RE, Ly S, Lay RS, Long KC, Huy R, Tarantola A, Scott TW, Sakuntabhai A, et al. Asymptomatic humans transmit dengue virus to mosquitoes. Proc Natl Acad Sci U S A. 2015;112(47):14688–14693. doi: 10.1073/pnas.1508114112.
    1. Ten Bosch QA, Clapham HE, Lambrechts L, Duong V, Buchy P, Althouse BM, Lloyd AL, Waller LA, Morrison AC, Kitron U, et al. Contributions from the silent majority dominate dengue virus transmission. PLoS Pathog. 2018;14(5):e1006965. doi: 10.1371/journal.ppat.1006965.
    1. Paupy C, Kassa Kassa F, Caron M, Nkoghe D, Leroy EM. A chikungunya outbreak associated with the vector Aedes albopictus in remote villages of Gabon. Vector Borne Zoonotic Dis. 2012;12(2):167–169. doi: 10.1089/vbz.2011.0736.
    1. Caron M, Grard G, Paupy C, Mombo IM, Bikie Bi Nso B, Kassa Kassa FR, Nkoghe D, Leroy EM. First evidence of simultaneous circulation of three different dengue virus serotypes in Africa. PLoS One. 2013;8(10):e78030. doi: 10.1371/journal.pone.0078030.
    1. Vazeille M, Moutailler S, Pages F, Jarjaval F, Failloux AB. Introduction of Aedes albopictus in Gabon: what consequences for dengue and chikungunya transmission? Tropical Med Int Health. 2008;13(9):1176–1179. doi: 10.1111/j.1365-3156.2008.02123.x.
    1. Caron M, Paupy C, Grard G, Becquart P, Mombo I, Nso BB, Kassa Kassa F, Nkoghe D, Leroy EM. Recent introduction and rapid dissemination of Chikungunya virus and dengue virus serotype 2 associated with human and mosquito coinfections in Gabon, Central Africa. Clin Infect Dis. 2012;55(6):e45–e53. doi: 10.1093/cid/cis530.
    1. Abe H, Ushijima Y, Loembe MM, Bikangui R, Nguema-Ondo G, Mpingabo PI, Zadeh VR, Pemba CM, Kurosaki Y, Igasaki Y, et al. Re-emergence of dengue virus serotype 3 infections in Gabon in 2016-2017, and evidence for the risk of repeated dengue virus infections. Int J Infect Dis. 2019;91:129–136. doi: 10.1016/j.ijid.2019.12.002.
    1. Abe H, Ushijima Y, Bikangui R, Ondo GN, Zadeh VR, Pemba CM, Mpingabo PI, Igasaki Y, de Vries SG, Grobusch MP, et al. First evidence for continuous circulation of hepatitis a virus subgenotype IIA in Central Africa. J Viral Hepat. 2020;27(11):1234–1242. doi: 10.1111/jvh.13348.
    1. Vázquez A, Herrero L, Negredo A, Hernández L, Sánchez-Seco MP, Tenorio A. Real time PCR assay for detection of all known lineages of West Nile virus. J Virol Methods. 2016;236:266–270. doi: 10.1016/j.jviromet.2016.07.026.
    1. Santiago GA, Vergne E, Quiles Y, Cosme J, Vazquez J, Medina JF, Medina F, Colón C, Margolis H, Muñoz-Jordán JL. Analytical and clinical performance of the CDC real time RT-PCR assay for detection and typing of dengue virus. PLoS Negl Trop Dis. 2013;7(7):e2311. doi: 10.1371/journal.pntd.0002311.
    1. Fernandes-Monteiro AG, Trindade GF, Yamamura AM, Moreira OC, de Paula VS, Duarte AC, Britto C, Lima SM. New approaches for the standardization and validation of a real-time qPCR assay using TaqMan probes for quantification of yellow fever virus on clinical samples with high quality parameters. Hum Vaccin Immunother. 2015;11(7):1865–1871. doi: 10.4161/21645515.2014.990854.
    1. Bird BH, Bawiec DA, Ksiazek TG, Shoemaker TR, Nichol ST. Highly sensitive and broadly reactive quantitative reverse transcription-PCR assay for high-throughput detection of Rift Valley fever virus. J Clin Microbiol. 2007;45(11):3506–3513. doi: 10.1128/JCM.00936-07.
    1. Cabre O, Grandadam M, Marie JL, Gravier P, Prange A, Santinelli Y, Rous V, Bourry O, Durand JP, Tolou H, et al. West Nile virus in horses, sub-Saharan Africa. Emerg Infect Dis. 2006;12(12):1958–1960. doi: 10.3201/eid1212.060042.
    1. Pourrut X, Nkoghe D, Paweska J, Leroy E. First serological evidence of West Nile virus in human rural populations of Gabon. Virol J. 2010;7:132–134. doi: 10.1186/1743-422X-7-132.
    1. Mandji Lawson JM, Mounguengui D, Ondounda M, Nguema Edzang B, Vandji J, Tchoua R. A case of meningo-encephalitis due to West Nile virus in Libreville, Gabon. Med Trop (Mars) 2009;69(5):501–502.
    1. Sule WF, Oluwayelu DO, Hernandez-Triana LM, Fooks AR, Venter M, Johnson N. Epidemiology and ecology of West Nile virus in sub-Saharan Africa. Parasit Vectors. 2018;11(1):414–423. doi: 10.1186/s13071-018-2998-y.
    1. Jupp PG. The ecology of West Nile virus in South Africa and the occurrence of outbreaks in humans. Ann N Y Acad Sci. 2001;951:143–152. doi: 10.1111/j.1749-6632.2001.tb02692.x.
    1. Nur YA, Groen J, Heuvelmans H, Tuynman W, Copra C, Osterhaus AD. An outbreak of West Nile fever among migrants in Kisangani, Democratic Republic of Congo. Am J Trop Med Hyg. 1999;61(6):885–888. doi: 10.4269/ajtmh.1999.61.885.
    1. Depoortere E, Kavle J, Keus K, Zeller H, Murri S, Legros D. Outbreak of West Nile virus causing severe neurological involvement in children, Nuba Mountains, Sudan, 2002. Tropical Med Int Health. 2004;9(6):730–736. doi: 10.1111/j.1365-3156.2004.01253.x.
    1. Simo FBN, Bigna JJ, Kenmoe S, Ndangang MS, Temfack E, Moundipa PF, Demanou M. Dengue virus infection in people residing in Africa: a systematic review and meta-analysis of prevalence studies. Sci Rep. 2019;9(1):13626–13634. doi: 10.1038/s41598-019-50135-x.
    1. Vaughn DW, Green S, Kalayanarooj S, Innis BL, Nimmannitya S, Suntayakorn S, Endy TP, Raengsakulrach B, Rothman AL, Ennis FA, et al. Dengue viremia titer, antibody response pattern, and virus serotype correlate with disease severity. J Infect Dis. 2000;181(1):2–9. doi: 10.1086/315215.
    1. Salje H, Cummings DAT, Rodriguez-Barraquer I, Katzelnick LC, Lessler J, Klungthong C, Thaisomboonsuk B, Nisalak A, Weg A, Ellison D, et al. Reconstruction of antibody dynamics and infection histories to evaluate dengue risk. Nature. 2018;557(7707):719–723. doi: 10.1038/s41586-018-0157-4.
    1. Saluzzo JF, Ivanoff B, Languillat G, Georges AJ. Serological survey for arbovirus antibodies in the human and simian populations of the south-east of Gabon. [article in French] Bull Soc Pathol Exot Filiales. 1982;75(3):262–266.
    1. Jan C, Languillat G, Renaudet J, Robin Y. A serological survey of arboviruses in Gabon. [article in French] Bull Soc Pathol Exot Filiales. 1978;71(2):140–146.
    1. Grard G, Caron M, Mombo IM, Nkoghe D, Mboui Ondo S, Jiolle D, Fontenille D, Paupy C, Leroy EM. Zika virus in Gabon (Central Africa)--2007: a new threat from Aedes albopictus? PLoS Negl Trop Dis. 2014;8(2):e2681. doi: 10.1371/journal.pntd.0002681.
    1. Boyer S, Calvez E, Chouin-Carneiro T, Diallo D, Failloux AB. An overview of mosquito vectors of Zika virus. Microbes Infect. 2018;20(11–12):646–660. doi: 10.1016/j.micinf.2018.01.006.
    1. Hill SC, Vasconcelos J, Neto Z, Jandondo D, Zé-Zé L, Aguiar RS, Xavier J, Thézé J, Mirandela M, Micolo Cândido AL, et al. Emergence of the Asian lineage of Zika virus in Angola: an outbreak investigation. Lancet Infect Dis. 2019;19(10):1138–1147. doi: 10.1016/S1473-3099(19)30293-2.
    1. World Health Organization: WHO vaccine-preventable diseases: monitoring system. 2019 global summary. . Accessed 4 Jan 2020.
    1. Simo FBN, Bigna JJ, Well EA, Kenmoe S, Sado FBY, Weaver SC, Moundipa PF, Demanou M. Chikungunya virus infection prevalence in Africa: a contemporaneous systematic review and meta-analysis. Public Health. 2019;166:79–88. doi: 10.1016/j.puhe.2018.09.027.
    1. World Health Organization: Chikungunya, Desease outbreak news. . Accessed 4 Jan 2020.
    1. Moyen N, Thiberville SD, Pastorino B, Nougairede A, Thirion L, Mombouli JV, Dimi Y, Leparc-Goffart I, Capobianchi MR, Lepfoundzou AD, et al. First reported chikungunya fever outbreak in the republic of Congo, 2011. PLoS One. 2014;9(12):e115938. doi: 10.1371/journal.pone.0115938.
    1. Zahouli JBZ, Koudou BG, Muller P, Malone D, Tano Y, Utzinger J. Urbanization is a main driver for the larval ecology of Aedes mosquitoes in arbovirus-endemic settings in south-eastern cote d'Ivoire. PLoS Negl Trop Dis. 2017;11(7):e0005751. doi: 10.1371/journal.pntd.0005751.
    1. Kraemer MUG, Reiner RC, Jr, Brady OJ, Messina JP, Gilbert M, Pigott DM, Yi D, Johnson K, Earl L, Marczak LB, et al. Past and future spread of the arbovirus vectors Aedes aegypti and Aedes albopictus. Nat Microbiol. 2019;4(5):854–863. doi: 10.1038/s41564-019-0376-y.
    1. Pourrut X, Nkoghe D, Souris M, Paupy C, Paweska J, Padilla C, Moussavou G, Leroy EM. Rift Valley fever virus seroprevalence in human rural populations of Gabon. PLoS Negl Trop Dis. 2010;4(7):e763. doi: 10.1371/journal.pntd.0000763.
    1. Daubney R, Hudson JR, Garnham PC. Enzootic Hepatitis or Rift Valley Fever, An Undescribed Virus Disease of Sheep Cattle and Man from East Africa. J Pathol Bacteriol. 1931;34(4):545–579. doi: 10.1002/path.1700340418.
    1. Clark MHA, Warimwe GM, Di Nardo A, Lyons NA, Gubbins S. Systematic literature review of Rift Valley fever virus seroprevalence in livestock, wildlife and humans in Africa from 1968 to 2016. PLoS Negl Trop Dis. 2018;12(7):e0006627. doi: 10.1371/journal.pntd.0006627.
    1. Archer BN, Weyer J, Paweska J, Nkosi D, Leman P, Tint KS, Blumberg L. Outbreak of Rift Valley fever affecting veterinarians and farmers in South Africa, 2008. S Afr Med J. 2011;101(4):263–266. doi: 10.7196/SAMJ.4544.
    1. Gray GC, Anderson BD, LaBeaud AD, Heraud JM, Fevre EM, Andriamandimby SF, Cook EAJ, Dahir S, de Glanville WA, Heil GL, et al. Seroepidemiological study of Interepidemic Rift Valley fever virus infection among persons with intense ruminant exposure in Madagascar and Kenya. Am J Trop Med Hyg. 2015;93(6):1364–1370. doi: 10.4269/ajtmh.15-0383.
    1. LaBeaud AD, Pfeil S, Muiruri S, Dahir S, Sutherland LJ, Traylor Z, Gildengorin G, Muchiri EM, Morrill J, Peters CJ, et al. Factors associated with severe human Rift Valley fever in Sangailu, Garissa County, Kenya. PLoS Negl Trop Dis. 2015;9(3):e0003548. doi: 10.1371/journal.pntd.0003548.
    1. Maganga GD, Abessolo Ndong AL, Mikala Okouyi CS, Makiala Mandanda S, N'Dilimabaka N, Pinto A, Agossou E, Cossic B, Akue JP, Leroy EM. Serological evidence for the circulation of Rift Valley fever virus in domestic small ruminants in southern Gabon. Vector Borne Zoonotic Dis. 2017;17(6):443–446. doi: 10.1089/vbz.2016.2065.

Source: PubMed

3
Abonneren