Pathogenesis Underlying Neurological Manifestations of Long COVID Syndrome and Potential Therapeutics

Albert Leng, Manuj Shah, Syed Ameen Ahmad, Lavienraj Premraj, Karin Wildi, Gianluigi Li Bassi, Carlos A Pardo, Alex Choi, Sung-Min Cho, Albert Leng, Manuj Shah, Syed Ameen Ahmad, Lavienraj Premraj, Karin Wildi, Gianluigi Li Bassi, Carlos A Pardo, Alex Choi, Sung-Min Cho

Abstract

The development of long-term symptoms of coronavirus disease 2019 (COVID-19) more than four weeks after primary infection, termed "long COVID" or post-acute sequela of COVID-19 (PASC), can implicate persistent neurological complications in up to one third of patients and present as fatigue, "brain fog", headaches, cognitive impairment, dysautonomia, neuropsychiatric symptoms, anosmia, hypogeusia, and peripheral neuropathy. Pathogenic mechanisms of these symptoms of long COVID remain largely unclear; however, several hypotheses implicate both nervous system and systemic pathogenic mechanisms such as SARS-CoV2 viral persistence and neuroinvasion, abnormal immunological response, autoimmunity, coagulopathies, and endotheliopathy. Outside of the CNS, SARS-CoV-2 can invade the support and stem cells of the olfactory epithelium leading to persistent alterations to olfactory function. SARS-CoV-2 infection may induce abnormalities in innate and adaptive immunity including monocyte expansion, T-cell exhaustion, and prolonged cytokine release, which may cause neuroinflammatory responses and microglia activation, white matter abnormalities, and microvascular changes. Additionally, microvascular clot formation can occlude capillaries and endotheliopathy, due to SARS-CoV-2 protease activity and complement activation, can contribute to hypoxic neuronal injury and blood-brain barrier dysfunction, respectively. Current therapeutics target pathological mechanisms by employing antivirals, decreasing inflammation, and promoting olfactory epithelium regeneration. Thus, from laboratory evidence and clinical trials in the literature, we sought to synthesize the pathophysiological pathways underlying neurological symptoms of long COVID and potential therapeutics.

Keywords: COVID-19; SARS-CoV-2; brain fog; long COVID; neurological complication; neurological manifestations; outcome.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Neuroinvasion and persistent viral shedding. SARS-CoV-2 employs the ACE2 receptor to invade the stem cells, perivascular cells, sustentacular cells, and Bowman’s gland cells in the olfactory epithelium; this leads to chronic thinning of filia and loss of olfactory bulb volume. Additionally, there is an association between areas of hypometabolism in the cortex, cerebellum, and brainstem with the spatial distribution of ACE2 receptors, though there is little evidence for direct neuroinvasion in these areas. Rather, it is hypothesized that these regions experience elevated levels of microglial activation, cytotoxic T lymphocyte infiltration, oxidative stress, and neurodegeneration and demyelination secondary to neuroinvasion. These mechanisms likely persist due to the chronic presence of viral shedding specifically in the gastrointestinal tract where there exists ACE2 co-regulation of DDC and involvement of the dopamine metabolic pathway. Figure was created with the BioRender software.
Figure 2
Figure 2
Systemic and neurological immune response. The systemic immune and inflammatory response to SARS-CoV-2 infection can continue for months after the acute recovery phase, inducing a state of persistent systemic inflammation with upregulated cytokines, such as IFN-β, IFN-λ1, IFN-γ, IL-2, IL-6, IL-17, CXCL8, CXCL9, and CXCL10. This prolonged cytokine release has been linked to activation of specific immune cell populations, such as non-classical and intermediate monocytes, as well as other cell types, such as fibroblasts and myeloid cells. From an aberrant Th2 cytokine pool, production of CCL11 is induced and leads to neuroinflammation with activation of resting microglia, which can further release increased levels of CCL11. This microglial reactivity can in turn cause reduced hippocampal neurogenesis, loss of myelinating oligodendrocytes and oligodendrocyte precursors, and ensuing subcortical white matter demyelination. These systemic and neurological mechanisms have been strongly associated with a range of cognitive impairments and neuropsychiatric symptoms. Figure was created with the BioRender software.
Figure 3
Figure 3
Blood–brain barrier disruption and microclot formation. SARS-CoV-2 can cause increased microclot formation through spike protein interactions with fibrinogen and serum protein A that promote fibril formation and resist fibrinolysis. Antiphospholipid antibodies are also present in long COVID and can precipitate microclot formation through IL-6, IL-8, VEGF, nitric oxide synthase, and NET release. These microclots also contain α2AP which inhibit plasmin and thus prevent the degradation of fibrin, further contributing to their fibrinolysis-resistant nature. Additionally, SARS-CoV-2 can induce BBB disruption through Mpro cleavage of NEMO in endothelial cells leading to cell death and string vessel formation. Figure was created with the BioRender software.

References

    1. Sudre C.H., Murray B., Varsavsky T. Attributes and predictors of long COVID [published correction appears in Nat Med] Nat. Med. 2021;27:626–631. doi: 10.1038/s41591-021-01292-y.
    1. Groff D., Sun A., Ssentongo A.E. Short-term and Long-term Rates of Postacute Sequelae of SARS-CoV-2 Infection: A Systematic Review. JAMA Netw. Open. 2021;4:e2128568. doi: 10.1001/jamanetworkopen.2021.28568.
    1. Taquet M., Geddes J.R., Husain M., Luciano S., Harrison P.J. 6-month neurological and psychiatric outcomes in 236 379 survivors of COVID-19: A retrospective cohort study using electronic health records. Lancet Psychiatry. 2021;8:416–427. doi: 10.1016/S2215-0366(21)00084-5.
    1. Alkodaymi M.S., Omrani O.A., Fawzy N.A. Prevalence of post-acute COVID-19 syndrome symptoms at different follow-up periods: A systematic review and meta-analysis. Clin. Microbiol. Infect. 2022;28:657–666. doi: 10.1016/j.cmi.2022.01.014.
    1. Premraj L., Kannapadi N.V., Briggs J. Mid and long-term neurological and neuropsychiatric manifestations of post-COVID-19 syndrome: A meta-analysis. J. Neurol. Sci. 2022;434:120162. doi: 10.1016/j.jns.2022.120162.
    1. Huang C., Huang L., Wang Y. 6-month consequences of COVID-19 in patients discharged from hospital: A cohort study. Lancet. 2021;397:220–232. doi: 10.1016/S0140-6736(20)32656-8.
    1. Stefanou M.I., Palaiodimou L., Bakola E. Neurological manifestations of long-COVID syndrome: A narrative review. Ther. Adv. Chronic Dis. 2022;13:20406223221076890. doi: 10.1177/20406223221076890.
    1. Nersesjan V., Amiri M., Lebech A.M. Central and peripheral nervous system complications of COVID-19: A prospective tertiary center cohort with 3-month follow-up. J. Neurol. 2021;268:3086–3104. doi: 10.1007/s00415-020-10380-x.
    1. Beghi E., Giussani G., Westenberg E. Acute and post-acute neurological manifestations of COVID-19: Present findings, critical appraisal, and future directions. J. Neurol. 2022;269:2265–2274. doi: 10.1007/s00415-021-10848-4.
    1. Estiri H., Strasser Z.H., Brat G.A. Evolving Phenotypes of non-hospitalized Patients that Indicate Long COVID. medRxiv. 2021 doi: 10.1186/s12916-021-02115-0.
    1. Taquet M., Dercon Q., Luciano S., Geddes J.R., Husain M., Harrison P.J. Incidence, co-occurrence, and evolution of long-COVID features: A 6-month retrospective cohort study of 273,618 survivors of COVID-19. PLoS Med. 2021;18:e1003773. doi: 10.1371/journal.pmed.1003773.
    1. Graham E.L., Clark J.R., Orban Z.S., Lim P.H., Szymanski A.L., Taylor C., DiBiase R.M., Jia D.T., Balabanov R., Ho S.U., et al. Persistent neurologic symptoms and cognitive dysfunction in non-hospitalized COVID-19 “long haulers”. Ann. Clin. Transl. Neurol. 2021;8:1073–1085. doi: 10.1002/acn3.51350.
    1. Bai F., Tomasoni D., Falcinella C. Female gender is associated with long COVID syndrome: A prospective cohort study. Clin. Microbiol. Infect. 2022;28:611.e9–611.e16. doi: 10.1016/j.cmi.2021.11.002.
    1. Hill E., Mehta H., Sharma S. Risk Factors Associated with Post-Acute Sequelae of SARS-CoV-2 in an EHR Cohort: A National COVID Cohort Collaborative (N3C) Analysis as Part of the NIH RECOVER Program. medRxiv. 2022 doi: 10.1101/2022.08.15.22278603. medRxiv:2022.08.15.22278603.
    1. Staffolani S., Iencinella V., Cimatti M., Tavio M. Long COVID-19 syndrome as a fourth phase of SARS-CoV-2 infection. Infez. Med. 2022;30:22–29. doi: 10.53854/liim-3001-3.
    1. Yoo S.M., Liu T.C., Motwani Y. Factors Associated with Post-Acute Sequelae of SARS-CoV-2 (PASC) After Diagnosis of Symptomatic COVID-19 in the Inpatient and Outpatient Setting in a Diverse Cohort. J. Gen. Intern. Med. 2022;37:1988–1995. doi: 10.1007/s11606-022-07523-3.
    1. Parotto M., Myatra S.N., Munblit D., Elhazmi A., Ranzani O.T., Herridge M.S. Recovery after prolonged ICU treatment in patients with COVID-19. Lancet Respir. Med. 2021;9:812–814. doi: 10.1016/S2213-2600(21)00318-0.
    1. Graham E.L., Koralnik I.J., Liotta E.M. Therapeutic Approaches to the Neurologic Manifestations of COVID-19. Neurotherapeutics. 2022;19:1435–1466. doi: 10.1007/s13311-022-01267-y.
    1. Iosifescu A.L., Hoogenboom W.S., Buczek A.J., Fleysher R., Duong T.Q. New-onset and persistent neurological and psychiatric sequelae of COVID-19 compared to influenza: A retrospective cohort study in a large New York City healthcare network. Int. J. Methods Psychiatr. Res. 2022;31:e1914. doi: 10.1002/mpr.1914.
    1. Su Y., Yuan D., Chen D.G. Multiple early factors anticipate post-acute COVID-19 sequelae. Cell. 2022;185:881–895. doi: 10.1016/j.cell.2022.01.014.
    1. Scherer P.E., Kirwan J.P., Rosen C.J. Post-acute sequelae of COVID-19: A metabolic perspective. Elife. 2022;11:e78200. doi: 10.7554/eLife.78200.
    1. Peluso M.J., Deeks S.G. Early clues regarding the pathogenesis of long-COVID. Trends Immunol. 2022;43:268–270. doi: 10.1016/j.it.2022.02.008.
    1. Zhang Y., Hu H., Fokaidis V. Identifying Contextual and Spatial Risk Factors for Post-Acute Sequelae of SARS-CoV-2 Infection: An EHR-Based Cohort Study from the RECOVER Program. medRxiv. 2022 doi: 10.1101/2022.10.13.22281010. medRxiv:2022.10.13.22281010.
    1. Mainous A.G., III, Rooks B.J., Wu V., Orlando F.A. COVID-19 Post-acute Sequelae Among Adults: 12 Month Mortality Risk. Front. Med. 2021;8:2351. doi: 10.3389/fmed.2021.778434.
    1. Meza-Torres B., Delanerolle G., Okusi C. Differences in Clinical Presentation with Long COVID after Community and Hospital Infection and Associations with All-Cause Mortality: English Sentinel Network Database Study. JMIR Public Health Surveill. 2022;8:e37668. doi: 10.2196/37668.
    1. Gao P., Liu J., Liu M. Effect of COVID-19 Vaccines on Reducing the Risk of Long COVID in the Real World: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health. 2022;19:12422. doi: 10.3390/ijerph191912422.
    1. Strain W.D., Sherwood O., Banerjee A., Togt V., Hishmeh L., Rossman J. The Impact of COVID Vaccination on Symptoms of Long COVID: An International Survey of People with Lived Experience of Long COVID. Vaccines. 2022;10:652. doi: 10.3390/vaccines10050652.
    1. Bakhshandeh B., Sorboni S.G., Javanmard A.R., Mottaghi S.S., Mehrabi M.R., Sorouri F., Abbasi A., Jahanafrooz Z. Variants in ACE2; potential influences on virus infection and COVID-19 severity. Infect. Genet. Evol. J. Mol. Epidemiol. Evol. Genet. Infect. Dis. 2021;90:104773. doi: 10.1016/j.meegid.2021.104773.
    1. Möhlendick B., Schönfelder K., Breuckmann K., Elsner C., Babel N., Balfanz P., Dahl E., Dreher M., Fistera D., Herbstreit F., et al. ACE2 polymorphism and susceptibility for SARS-CoV-2 infection and severity of COVID-19. Pharm. Genom. 2021;31:165–171. doi: 10.1097/FPC.0000000000000436.
    1. Maglietta G., Diodati F., Puntoni M., Lazzarelli S., Marcomini B., Patrizi L., Caminiti C. Prognostic Factors for Post-COVID-19 Syndrome: A Systematic Review and Meta-Analysis. J. Clin. Med. 2022;11:1541. doi: 10.3390/jcm11061541.
    1. Fernández-de-Las-Peñas C., Arendt-Nielsen L., Díaz-Gil G., Gómez-Esquer F., Gil-Crujera A., Gómez-Sánchez S.M., Ambite-Quesada S., Palomar-Gallego M.A., Pellicer-Valero O.J., Giordano R. Genetic Association between ACE2 (rs2285666 and rs2074192) and TMPRSS2 (rs12329760 and rs2070788) Polymorphisms with Post-COVID Symptoms in Previously Hospitalized COVID-19 Survivors. Genes. 2022;13:1935. doi: 10.3390/genes13111935.
    1. Gallagher T.M., Buchmeier M.J. Coronavirus spike proteins in viral entry and pathogenesis. Virology. 2001;279:371–374. doi: 10.1006/viro.2000.0757.
    1. Hoffmann M., Kleine-Weber H., Schroeder S. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020;181:271–280. doi: 10.1016/j.cell.2020.02.052.
    1. Heurich A., Hofmann-Winkler H., Gierer S., Liepold T., Jahn O., Pöhlmann S. TMPRSS2 and ADAM17 cleave ACE2 differentially and only proteolysis by TMPRSS2 augments entry driven by the severe acute respiratory syndrome coronavirus spike protein. J. Virol. 2014;88:1293–1307. doi: 10.1128/JVI.02202-13.
    1. Li W., Moore M.J., Vasilieva N. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003;426:450–454. doi: 10.1038/nature02145.
    1. Song E., Zhang C., Israelow B. Neuroinvasion of SARS-CoV-2 in human and mouse brain. J. Exp. Med. 2021;218:e20202135. doi: 10.1084/jem.20202135.
    1. Meinhardt J., Radke J., Dittmayer C. Olfactory transmucosal SARS-CoV-2 invasion as a port of central nervous system entry in individuals with COVID-19. Nat. Neurosci. 2021;24:168–175. doi: 10.1038/s41593-020-00758-5.
    1. Brann D.H., Tsukahara T., Weinreb C. Non-neuronal expression of SARS-CoV-2 entry genes in the olfactory system suggests mechanisms underlying COVID-19-associated anosmia. Sci. Adv. 2020;6:eabc5801. doi: 10.1126/sciadv.abc5801.
    1. Kandemirli S.G., Altundag A., Yildirim D., Tekcan Sanli D.E., Saatci O. Olfactory Bulb MRI and Paranasal Sinus CT Findings in Persistent COVID-19 Anosmia. Acad. Radiol. 2021;28:28–35. doi: 10.1016/j.acra.2020.10.006.
    1. Butowt R., Meunier N., Bryche B., Bartheld C.S. The olfactory nerve is not a likely route to brain infection in COVID-19: A critical review of data from humans and animal models. Acta Neuropathol. 2021;141:809–822. doi: 10.1007/s00401-021-02314-2.
    1. Pellegrini L., Albecka A., Mallery D.L. SARS-CoV-2 Infects the Brain Choroid Plexus and Disrupts the Blood-CSF Barrier in Human Brain Organoids. Cell Stem Cell. 2020;27:951–961. doi: 10.1016/j.stem.2020.10.001.
    1. Muhl L., He L., Sun Y. The SARS-CoV-2 receptor ACE2 is expressed in mouse pericytes but not endothelial cells: Implications for COVID-19 vascular research. Stem Cell Rep. 2022;17:1089–1104. doi: 10.1016/j.stemcr.2022.03.016.
    1. Lewis A., Frontera J., Placantonakis D.G., Galetta S., Balcer L., Melmed K.R. Cerebrospinal fluid from COVID-19 patients with olfactory/gustatory dysfunction: A review. Clin. Neurol. Neurosurg. 2021;207:106760. doi: 10.1016/j.clineuro.2021.106760.
    1. Song E., Bartley C.M., Chow R.D. Divergent and self-reactive immune responses in the CNS of COVID-19 patients with neurological symptoms. Cell Rep. Med. 2021;2:100288. doi: 10.1016/j.xcrm.2021.100288.
    1. Matschke J., Lütgehetmann M., Hagel C. Neuropathology of patients with COVID-19 in Germany: A post-mortem case series. Lancet Neurol. 2020;19:919–929. doi: 10.1016/S1474-4422(20)30308-2.
    1. Thakur K.T., Miller E.H., Glendinning M.D. COVID-19 neuropathology at Columbia University Irving Medical Center/New York Presbyterian Hospital. Brain. 2021;144:2696–2708. doi: 10.1093/brain/awab148.
    1. Yang A.C., Kern F., Losada P.M. Dysregulation of brain and choroid plexus cell types in severe COVID-19 [published correction appears in Nature. Nature. 2021;595:565–571. doi: 10.1038/s41586-021-03710-0.
    1. Ye Q., Zhou J., He Q. SARS-CoV-2 infection in the mouse olfactory system. Cell Discov. 2021;7:49. doi: 10.1038/s41421-021-00290-1.
    1. Tsivgoulis G., Fragkou P.C., Lachanis S. Olfactory bulb and mucosa abnormalities in persistent COVID-19-induced anosmia: A magnetic resonance imaging study. Eur. J. Neurol. 2021;28:e6–e8. doi: 10.1111/ene.14537.
    1. Yamagishi M., Hasegawa S., Nakano Y. Examination and classification of human olfactory mucosa in patients with clinical olfactory disturbances. Arch. Otorhinolaryngol. 1988;245:316–320. doi: 10.1007/BF00464640.
    1. Vaira L.A., Hopkins C., Sandison A. Olfactory epithelium histopathological findings in long-term coronavirus disease 2019 related anosmia. J. Laryngol. Otol. 2020;134:1123–1127. doi: 10.1017/S0022215120002455.
    1. de Melo G.D., Lazarini F., Levallois S., Hautefort C., Michel V., Larrous F., Verillaud B., Aparicio C., Wagner S., Gheusi G., et al. COVID-19-related anosmia is associated with viral persistence and inflammation in human olfactory epithelium and brain infection in hamsters. Sci. Transl. Med. 2021;13:eabf8396. doi: 10.1126/scitranslmed.abf8396.
    1. Wu Y., Guo C., Tang L. Prolonged presence of SARS-CoV-2 viral RNA in faecal samples. Lancet Gastroenterol. Hepatol. 2020;5:434–435. doi: 10.1016/S2468-1253(20)30083-2.
    1. Sun J., Xiao J., Sun R. Prolonged Persistence of SARS-CoV-2 RNA in Body Fluids. Emerg. Infect. Dis. 2020;26:1834–1838. doi: 10.3201/eid2608.201097.
    1. Zuo T., Zhang F., Lui G.C.Y. Alterations in Gut Microbiota of Patients with COVID-19 During Time of Hospitalization. Gastroenterology. 2020;159:944–955. doi: 10.1053/j.gastro.2020.05.048.
    1. Quigley E.M.M. Microbiota-Brain-Gut Axis and Neurodegenerative Diseases. Curr. Neurol. Neurosci. Rep. 2017;17:94. doi: 10.1007/s11910-017-0802-6.
    1. Nataf S., Pays L. Molecular Insights into SARS-CoV2-Induced Alterations of the Gut/Brain Axis. Int. J. Mol. Sci. 2021;22:10440. doi: 10.3390/ijms221910440.
    1. Daulagala S.W.P.L., Noordeen F. Epidemiology and factors influencing varicella infections in tropical countries including Sri Lanka. Virusdisease. 2018;29:277–284. doi: 10.1007/s13337-018-0459-z.
    1. Smatti M.K., Al-Sadeq D.W., Ali N.H., Pintus G., Abou-Saleh H., Nasrallah G.K. Epstein-Barr Virus Epidemiology, Serology, and Genetic Variability of LMP-1 Oncogene Among Healthy Population: An Update. Front. Oncol. 2018;8:211. doi: 10.3389/fonc.2018.00211.
    1. Meng M., Zhang S., Dong X., Sun W., Deng Y., Li W., Li R., Annane D., Wu Z., Chen D. COVID-19 associated EBV reactivation and effects of ganciclovir treatment. Immun. Inflamm. Dis. 2022;10:e597. doi: 10.1002/iid3.597.
    1. Gold J.E., Okyay R.A., Licht W.E., Hurley D.J. Investigation of Long COVID Prevalence and Its Relationship to Epstein-Barr Virus Reactivation. Pathogens. 2021;10:763. doi: 10.3390/pathogens10060763.
    1. Ruiz-Pablos M., Paiva B., Montero-Mateo R., Garcia N., Zabaleta A. Epstein-Barr Virus and the Origin of Myalgic Encephalomyelitis or Chronic Fatigue Syndrome. Front. Immunol. 2021;12:656797. doi: 10.3389/fimmu.2021.656797.
    1. Monje M., Iwasaki A. The neurobiology of long COVID. Neuron. 2022;110:3484–3496. doi: 10.1016/j.neuron.2022.10.006.
    1. Klein J., Wood J., Jaycox J., Lu P., Dhodapkar R.M., Gehlhausen J.R., Tabachnikova A., Tabacof L., Malik A.A., Kamath K., et al. Distinguishing features of Long COVID identified through immune profiling. medRxiv. 2022 doi: 10.1101/2022.08.09.22278592. medRxiv:2022.08.09.22278592.
    1. Martinez-Reviejo R., Tejada S., Adebanjo G.A.R., Chello C., Machado M.C., Parisella F.R., Campins M., Tammaro A., Rello J. Varicella-Zoster virus reactivation following severe acute respiratory syndrome coronavirus 2 vaccination or infection: New insights. Eur. J. Intern. Med. 2022;104:73–79. doi: 10.1016/j.ejim.2022.07.022.
    1. Wen W., Chen C., Tang J. Efficacy and safety of three new oral antiviral treatment (molnupiravir, fluvoxamine and Paxlovid) for COVID-19: A meta-analysis. Ann. Med. 2022;54:516–523. doi: 10.1080/07853890.2022.2034936.
    1. Hammond J., Leister-Tebbe H., Gardner A. Oral Nirmatrelvir for High-Risk, Nonhospitalized Adults with COVID-19. N. Engl. J. Med. 2022;386:1397–1408. doi: 10.1056/NEJMoa2118542.
    1. Dawood A.A. The efficacy of Paxlovid against COVID-19 is the result of the tight molecular docking between Mpro and antiviral drugs (nirmatrelvir and ritonavir) [published online ahead of print, 2 November 2022] Adv. Med. Sci. 2022;68:1–9. doi: 10.1016/j.advms.2022.10.001.
    1. Xie Y., Choi T., Al-Aly Z. Nirmatrelvir and the Risk of Post-Acute Sequelae of COVID-19. Infectious Diseases (except HIV/AIDS) medRixv. 2022 doi: 10.1101/2022.11.03.22281783.
    1. Singh C.V., Jain S., Parveen S. The outcome of fluticasone nasal spray on anosmia and triamcinolone oral paste in dysgeusia in COVID-19 patients. Am. J. Otolaryngol. 2021;42:102892. doi: 10.1016/j.amjoto.2020.102892.
    1. Abdelalim A.A., Mohamady A.A., Elsayed R.A., Elawady M.A., Ghallab A.F. Corticosteroid nasal spray for recovery of smell sensation in COVID-19 patients: A randomized controlled trial. Am. J. Otolaryngol. 2021;42:102884. doi: 10.1016/j.amjoto.2020.102884.
    1. O’Kelly B., Vidal L., McHugh T., Woo J., Avramovic G., Lambert J.S. Safety and efficacy of low dose naltrexone in a long covid cohort; an interventional pre-post study. Brain Behav. Immun. Health. 2022;24:100485. doi: 10.1016/j.bbih.2022.100485.
    1. Mohamad S.A., Badawi A.M., Mansour H.F. Insulin fast-dissolving film for intranasal delivery via olfactory region, a promising approach for the treatment of anosmia in COVID-19 patients: Design, in-vitro characterization and clinical evaluation. Int. J. Pharm. 2021;601:120600. doi: 10.1016/j.ijpharm.2021.120600.
    1. Rezaeian A. Effect of Intranasal Insulin on Olfactory Recovery in Patients with Hyposmia: A Randomized Clinical Trial. Otolaryngol. Head Neck Surg. 2018;158:1134–1139. doi: 10.1177/0194599818764624.
    1. Glynne P., Tahmasebi N., Gant V., Gupta R. Long COVID following mild SARS-CoV-2 infection: Characteristic T cell alterations and response to antihistamines. J. Investig. Med. Off. Publ. Am. Fed. Clin. Res. 2022;70:61–67. doi: 10.1136/jim-2021-002051.
    1. Nguyen L.C., Yang D., Nicolaescu V., Best T.J., Ohtsuki T., Chen S.N., Friesen J.B., Drayman N., Mohamed A., Dann C., et al. Cannabidiol Inhibits SARS-CoV-2 Replication and Promotes the Host Innate Immune Response. bioRxiv. 2021 doi: 10.1101/2021.03.10.432967. bioRxiv:2021.03.10.432967.
    1. Esposito G., Pesce M., Seguella L., Sanseverino W., Lu J., Corpetti C., Sarnelli G. The potential of cannabidiol in the COVID-19 pandemic. Br. J. Pharmacol. 2020;177:4967–4970. doi: 10.1111/bph.15157.
    1. Campos A.C., Fogaça M.V., Sonego A.B., Guimarães F.S. Cannabidiol, neuroprotection and neuropsychiatric disorders. Pharmacol. Res. 2016;112:119–127. doi: 10.1016/j.phrs.2016.01.033.
    1. Castillo A., Tolón M.R., Fernández-Ruiz J., Romero J., Martinez-Orgado J. The neuroprotective effect of cannabidiol in an in vitro model of newborn hypoxic-ischemic brain damage in mice is mediated by CB(2) and adenosine receptors. Neurobiol. Dis. 2010;37:434–440. doi: 10.1016/j.nbd.2009.10.023.
    1. Degerman E., Rauch U., Lindberg S., Caye-Thomasen P., Hultgårdh A., Magnusson M. Expression of insulin signalling components in the sensory epithelium of the human saccule. Cell Tissue Res. 2013;352:469–478. doi: 10.1007/s00441-013-1614-x.
    1. Khani E., Khiali S., Beheshtirouy S., Entezari-Maleki T. Potential pharmacologic treatments for COVID-19 smell and taste loss: A comprehensive review. Eur. J. Pharmacol. 2021;912:174582. doi: 10.1016/j.ejphar.2021.174582.
    1. Ryan F.J., Hope C.M., Masavuli M.G. Long-term perturbation of the peripheral immune system months after SARS-CoV-2 infection. BMC Med. 2022;20:26. doi: 10.1186/s12916-021-02228-6.
    1. Phetsouphanh C., Darley D.R., Wilson D.B. Immunological dysfunction persists for 8 months following initial mild-to-moderate SARS-CoV-2 infection. Nat. Immunol. 2022;23:210–216. doi: 10.1038/s41590-021-01113-x.
    1. Queiroz M.A.F., Neves P.F.M.d., Lima S.S., Lopes J.D., Torres M.K., Vallinoto I.M., Bichara C.D., Santos E.F., de Brito M.T., Da Silva A.L., et al. Cytokine Profiles Associated with Acute COVID-19 and Long COVID-19 Syndrome. Front. Cell. Infect. Microbiol. 2022;12:922422. doi: 10.3389/fcimb.2022.922422.
    1. Arun S., Storan A., Myers B. Mast cell activation syndrome and the link with long COVID. Br. J. Hosp. Med. 2022;83:1–10. doi: 10.12968/hmed.2022.0123.
    1. Weinstock L.B., Brook J.B., Walters A.S., Goris A., Afrin L.B., Molderings G.J. Mast cell activation symptoms are prevalent in Long-COVID. Int. J. Infect. Dis. 2021;112:217–226. doi: 10.1016/j.ijid.2021.09.043.
    1. Peluso M.J., Deitchman A.N., Torres L. Long-term SARS-CoV-2-specific immune and inflammatory responses in individuals recovering from COVID-19 with and without post-acute symptoms. Cell Rep. 2021;36:109518. doi: 10.1016/j.celrep.2021.109518.
    1. Vibholm L.K., Nielsen S.S.F., Pahus M.H. SARS-CoV-2 persistence is associated with antigen-specific CD8 T-cell responses. EBioMedicine. 2021;64:103230. doi: 10.1016/j.ebiom.2021.103230.
    1. Patterson B.K., Francisco E.B., Yogendra R. Persistence of SARS CoV-2 S1 Protein in CD16+ Monocytes in Post-Acute Sequelae of COVID-19 (PASC) up to 15 Months Post-Infection. Front. Immunol. 2022;12:5526. doi: 10.3389/fimmu.2021.746021.
    1. Etter M.M., Martins T.A., Kulsvehagen L., Pössnecker E., Duchemin W., Hogan S., Sanabria-Diaz G., Müller J., Chiappini A., Rychen J., et al. Severe Neuro-COVID is associated with peripheral immune signatures, autoimmunity and neurodegeneration: A prospective cross-sectional study. Nat. Commun. 2022;13:6777. doi: 10.1038/s41467-022-34068-0.
    1. Heming M., Li X., Räuber S. Neurological Manifestations of COVID-19 Feature T Cell Exhaustion and Dedifferentiated Monocytes in Cerebrospinal Fluid. Immunity. 2021;54:164–175. doi: 10.1016/j.immuni.2020.12.011.
    1. Townsend L., Dyer A.H., Naughton A. Longitudinal Analysis of COVID-19 Patients Shows Age-Associated T Cell Changes Independent of Ongoing Ill-Health. Front. Immunol. 2021;12:1593. doi: 10.3389/fimmu.2021.676932.
    1. Yi J.S., Cox M.A., Zajac A.J. T-cell exhaustion: Characteristics, causes and conversion. Immunology. 2010;129:474–481. doi: 10.1111/j.1365-2567.2010.03255.x.
    1. Visvabharathy L., Hanson B., Orban Z. Neuro-COVID long-haulers exhibit broad dysfunction in T cell memory generation and responses to vaccination. medRxiv. 2021 doi: 10.1101/2021.08.08.21261763. medRxiv:2021(08.08.21261763)
    1. Schwabenland M., Salié H., Tanevski J. Deep spatial profiling of human COVID-19 brains reveals neuroinflammation with distinct microanatomical microglia-T-cell interactions. Immunity. 2021;54:1594–1610. doi: 10.1016/j.immuni.2021.06.002.
    1. Li Y., Fu L., Gonzales D.M., Lavi E. Coronavirus neurovirulence correlates with the ability of the virus to induce proinflammatory cytokine signals from astrocytes and microglia. J. Virol. 2004;78:3398–3406. doi: 10.1128/JVI.78.7.3398-3406.2004.
    1. Wallukat G., Hohberger B., Wenzel K. Functional autoantibodies against G-protein coupled receptors in patients with persistent Long-COVID-19 symptoms. J. Transl. Autoimmun. 2021;4:100100. doi: 10.1016/j.jtauto.2021.100100.
    1. Chang S.E., Feng A., Meng W. New-onset IgG autoantibodies in hospitalized patients with COVID-19. Nat. Commun. 2021;12:5417. doi: 10.1038/s41467-021-25509-3.
    1. Arthur J.M., Forrest J.C., Boehme K.W. Development of ACE2 autoantibodies after SARS-CoV-2 infection. PLoS ONE. 2021;16:e0257016. doi: 10.1371/journal.pone.0257016.
    1. Sacchi M.C., Tamiazzo S., Stobbione P. SARS-CoV-2 infection as a trigger of autoimmune response. Clin. Transl. Sci. 2021;14:898–907. doi: 10.1111/cts.12953.
    1. Allahyari F., Hosseinzadeh R., Nejad J.H., Heiat M., Ranjbar R. A case report of simultaneous autoimmune and COVID-19 encephalitis. J. Neurovirol. 2021;27:504–506. doi: 10.1007/s13365-021-00978-w.
    1. Burr T., Barton C., Doll E., Lakhotia A., Sweeney M. N-Methyl-d-Aspartate Receptor Encephalitis Associated with COVID-19 Infection in a Toddler. Pediatr. Neurol. 2021;114:75–76. doi: 10.1016/j.pediatrneurol.2020.10.002.
    1. Flannery P., Yang I., Keyvani M., Sakoulas G. Acute Psychosis Due to Anti-N-Methyl D-Aspartate Receptor Encephalitis Following COVID-19 Vaccination: A Case Report. Front. Neurol. 2021;12:764197. doi: 10.3389/fneur.2021.764197.
    1. Durovic E., Bien C., Bien C.G., Isenmann S. MOG antibody-associated encephalitis secondary to COVID-19: Case report. BMC Neurol. 2021;21:414. doi: 10.1186/s12883-021-02449-5.
    1. da Costa M.D., Rato M.L., Cruz D., Valadas A., Antunes A.P., Albuquerque L. Longitudinally extensive transverse myelitis with anti-myelin oligodendrocyte glycoprotein antibodies following SARS-CoV-2 infection. J. Neuroimmunol. 2021;361:577739. doi: 10.1016/j.jneuroim.2021.577739.
    1. Woodruff M.C., Walker T.A., Truong A.D. Evidence of Persisting Autoreactivity in Post-Acute Sequelae of SARS-CoV-2 Infection. medRxiv. 2021 doi: 10.1101/2021.09.21.21263845. medRxiv:2021.09.21.21263845.
    1. Paterson R.W., Brown R.L., Benjamin L. The emerging spectrum of COVID-19 neurology: Clinical, radiological and laboratory findings. Brain. 2020;143:3104–3120. doi: 10.1093/brain/awaa240.
    1. Peluso M.J., Anglin K., Durstenfeld M.S. Effect of Oral Nirmatrelvir on Long COVID Symptoms: 4 Cases and Rationale for Systematic Studies. Pathog. Immun. 2022;7:95–103. doi: 10.20411/pai.v7i1.518.
    1. Ayoubkhani D., Bermingham C., Pouwels K.B. Trajectory of long covid symptoms after covid-19 vaccination: Community based cohort study. BMJ. 2022;377:e069676. doi: 10.1136/bmj-2021-069676.
    1. Dale A.M., Strickland J., Gardner B., Symanzik J., Evanoff B.A. Assessing agreement of self-reported and observed physical exposures of the upper extremity. Int. J. Occup. Environ. Health. 2010;16:1–10. doi: 10.1179/oeh.2010.16.1.1.
    1. Spuch C., López-García M., Rivera-Baltanás T. Efficacy and Safety of Lithium Treatment in SARS-CoV-2 Infected Patients. Front. Pharmacol. 2022;13:1081. doi: 10.3389/fphar.2022.850583.
    1. Fisher B., Barone F., Jobling K. Syndrome Oeor 132 Ofipwps. Results of a Phase II Randomised, Double-Blind, Placebo-Controlled, Proof of Concept Study. Ann. Rheum. Dis. 2019;78:177. doi: 10.1136/annrheumdis-2019-eular.3098.
    1. Wenzel J., Lampe J., Müller-Fielitz H. The SARS-CoV-2 main protease Mpro causes microvascular brain pathology by cleaving NEMO in brain endothelial cells. Nat. Neurosci. 2021;24:1522–1533. doi: 10.1038/s41593-021-00926-1.
    1. Buckingham S.C., Campbell S.L., Haas B.R., Montana V., Robel S., Ogunrinu T., Sontheimer H. Glutamate release by primary brain tumors induces epileptic activity. Nat. Med. 2011;17:1269–1274. doi: 10.1038/nm.2453.
    1. Verkhratsky A., Parpura V. Astrogliopathology in neurological, neurodevelopmental and psychiatric disorders. Neurobiol. Dis. 2016;85:254–261. doi: 10.1016/j.nbd.2015.03.025.
    1. Fernández-Castañeda A., Lu P., Geraghty A.C. Mild respiratory SARS-CoV-2 infection can cause multi-lineage cellular dysregulation and myelin loss in the brain. bioRxiv. 2022 doi: 10.1101/2022.01.07.475453. bioRxiv:2022(01.07.475453)
    1. Oliveira A.O., Malwade S., Rufino de Sousa N., Goparaju S.K., Gracias J., Orhan F., Steponaviciute L., Schalling M., Sheridan S.D., Perlis R.H., et al. SARS-CoV-2 promotes microglial synapse elimination in human brain organoids. Mol. Psychiatry. 2022;27:3939–3950. doi: 10.1038/s41380-022-01786-2.
    1. Pretorius E., Vlok M., Venter C. Persistent clotting protein pathology in Long COVID/Post-Acute Sequelae of COVID-19 (PASC) is accompanied by increased levels of antiplasmin. Cardiovasc. Diabetol. 2021;20:172. doi: 10.1186/s12933-021-01359-7.
    1. Grobbelaar L.M., Venter C., Vlok M. SARS-CoV-2 spike protein S1 induces fibrin(ogen) resistant to fibrinolysis: Implications for microclot formation in COVID-19. Biosci. Rep. 2021;41:BSR20210611. doi: 10.1042/BSR20210611.
    1. Ryu J.K., Sozmen E.G., Dixit K. SARS-CoV-2 Spike Protein Induces Abnormal Inflammatory Blood Clots Neutralized by Fibrin Immunotherapy. bioRxiv. 2021 doi: 10.1101/2021.10.12.464152. bioRxiv:2021.10.12.464152.
    1. Bouck E.G., Denorme F., Holle L.A. COVID-19 and Sepsis Are Associated with Different Abnormalities in Plasma Procoagulant and Fibrinolytic Activity. Arter. Thromb. Vasc. Biol. 2021;41:401–414. doi: 10.1161/ATVBAHA.120.315338.
    1. Jana A.K., Greenwood A.B., Hansmann U.H.E. Presence of a SARS-CoV-2 protein enhances Amyloid Formation of Serum Amyloid A. bioRxiv. 2021 doi: 10.1021/acs.jpcb.1c04871. bioRxiv:2021(05.18.444723)
    1. Zuo Y., Estes S.K., Ali R.A. Prothrombotic autoantibodies in serum from patients hospitalized with COVID-19. Sci. Transl. Med. 2020;12:eabd3876. doi: 10.1126/scitranslmed.abd3876.
    1. Tung M.L., Tan B., Cherian R., Chandra B. Anti-phospholipid syndrome and COVID-19 thrombosis: Connecting the dots. Rheumatol. Adv. Pract. 2021;5:rkaa081. doi: 10.1093/rap/rkaa081.
    1. Passos F.R.S., Heimfarth L., Monteiro B.S. Oxidative stress and inflammatory markers in patients with COVID-19: Potential role of RAGE, HMGB1, GFAP and COX-2 in disease severity. Int. Immunopharmacol. 2022;104:108502. doi: 10.1016/j.intimp.2021.108502.
    1. Fogarty H., Townsend L., Morrin H. Persistent endotheliopathy in the pathogenesis of long COVID syndrome. J. Thromb. Haemost. 2021;19:2546–2553. doi: 10.1111/jth.15490.
    1. Poyatos P., Luque N., Eizaguirre S. Post-COVID-19 patients show an increased endothelial progenitor cell production. Transl. Res. 2022;243:14–20. doi: 10.1016/j.trsl.2022.01.004.
    1. Christensen R.H., Berg R.M.G. Vascular Inflammation as a Therapeutic Target in COVID-19 “Long Haulers”: HIITing the Spot? Front. Cardiovasc. Med. 2021;8:187. doi: 10.3389/fcvm.2021.643626.
    1. Lee M.H., Perl D.P., Steiner J. Neurovascular injury with complement activation and inflammation in COVID-19. Brain. 2022;145:2555–2568. doi: 10.1093/brain/awac151.
    1. Lambadiari V., Mitrakou A., Kountouri A. Association of COVID-19 with impaired endothelial glycocalyx, vascular function and myocardial deformation 4 months after infection. Eur. J. Heart Fail. 2021;23:1916–1926. doi: 10.1002/ejhf.2326.
    1. Buzhdygan T.P., DeOre B.J., Baldwin-Leclair A. The SARS-CoV-2 spike protein alters barrier function in 2D static and 3D microfluidic in-vitro models of the human blood-brain barrier. Neurobiol. Dis. 2020;146:105131. doi: 10.1016/j.nbd.2020.105131.
    1. Osiaevi I., Schulze A., Evers G. Persistent capillary rarefication in long COVID syndrome [published online ahead of print, 2022 Aug 11. Angiogenesis. 2022;26:53–61. doi: 10.1007/s10456-022-09850-9.
    1. Guedj E., Campion J.Y., Dudouet P. 18F-FDG brain PET hypometabolism in patients with long COVID. Eur. J. Nucl. Med. Mol. Imaging. 2021;48:2823–2833. doi: 10.1007/s00259-021-05215-4.
    1. Yong S.J. Persistent Brainstem Dysfunction in Long-COVID: A Hypothesis. ACS Chem. Neurosci. 2021;12:573–580. doi: 10.1021/acschemneuro.0c00793.
    1. Barnden L.R., Shan Z.Y., Staines D.R. Hyperintense sensorimotor T1 spin echo MRI is associated with brainstem abnormality in chronic fatigue syndrome. Neuroimage Clin. 2018;20:102–109. doi: 10.1016/j.nicl.2018.07.011.
    1. Barnden L.R., Crouch B., Kwiatek R. A brain MRI study of chronic fatigue syndrome: Evidence of brainstem dysfunction and altered homeostasis. NMR Biomed. 2011;24:1302–1312. doi: 10.1002/nbm.1692.
    1. Barnden L.R., Shan Z.Y., Staines D.R. Intra brainstem connectivity is impaired in chronic fatigue syndrome. Neuroimage Clin. 2019;24:102045. doi: 10.1016/j.nicl.2019.102045.

Source: PubMed

3
Abonneren