Micronutrient status during paediatric critical illness: A scoping review

L V Marino, F V Valla, R M Beattie, S C A T Verbruggen, L V Marino, F V Valla, R M Beattie, S C A T Verbruggen

Abstract

Background: No evidence based recommendations for micronutrient requirements during paediatric critical illness are available, other than those arising from recommended nutrient intakes (RNI) for healthy children and expert opinion.

Objectives: The objective of this review is to examine the available evidence from micronutrient status in critically ill children considering studies which describe 1) micronutrient levels, 2) associations between micronutrient levels and clinical outcome, and 3) impact on clinical outcome with micronutrient supplementation during PICU admission.

Design: Scoping review.

Eligibility criteria: Any study which used a qualitative and quantitative design considering causes and consequences of micronutrient levels or micronutrient supplementation during paediatric critical illness.

Sources of evidence: NICE Healthcare Databases Advanced Search website (https://hdas.nice.org.uk/) was used as a tool for multiple searches, with a content analysis and charting of data extracted.

Results: 711 records were identified, 35 were included in the review. Studies evaluated serum micronutrient status was determined on admission day in majority of patients. A content analysis identified (n = 49) initial codes, (n = 14) sub-categories and (n = 5) overarching themes during critical illness, which were identified as: i) low levels of micronutrients, ii) causes of aberrant micronutrient levels, iii) associations between micronutrients levels and outcome, iv) supplementation of micronutrients.

Conclusion: During critical illness, micronutrients should be provided in sufficient amounts to meet reference nutrient intakes for age. Although, there is insufficient data to recommend routine supplementations of micronutrients at higher doses during critical illness, the 'absence of evidence should not imply evidence of absence', and well designed prospective studies are urgently needed to elucidate paediatric micronutrient requirements during critical illness. The absence of reliable biomarkers make it challenging to determine whether low serum levels are reflective of a true deficiency or as a result redistribution, particularly during the acute phase of critical illness. As more children continue to survive a PICU admission, particularly those with complex diseases micronutrient supplementation research should also be inclusive of the recovery phase following critical illness.

Keywords: Critically ill children; Micronutrients; Nutrition; Paediatric intensive care; Vitamins.

Copyright © 2020 The Author(s). Published by Elsevier Ltd.. All rights reserved.

Figures

Fig. 1
Fig. 1
Search results through to inclusion.
Fig. 2
Fig. 2
Framework used to characterize concepts of micronutrient status in critically ill children.
Fig. 3
Fig. 3
Schematic of factors impacting on micronutrient status during critical illness. In the early phase of critical illness, aberrant serum micronutrient levels may be due to 1) redistribution from central circulation to tissues and organs during the acute phase inflammatory response to critical illness, 2) micronutrient losses due to exudative or stomas losses, 3) reduced stores of enzyme co-factors due to increased requirements during illness and 4) low endogenous levels due to pre-existing diseases. Adapted with permission from Casaer M et al. [8].
Fig. 4
Fig. 4
Schematic of World Health Organisation (WHO) recommendations for the management of severe malnutrition. Adapted with permission WHO [86].

References

    1. World Health O. World Health Organisation; 2019. Micronutrients Geneva, Switzerland. Available from:
    1. CfDCa Prevention. US Department of Health and Human Services; 2019. Micronutrients Washington DC. Available from:
    1. (PICANET) PICAN Annual report 20172017 27 may 2018. Available from:
    1. Kerklaan D., Fivez T., Mehta N.M., Mesotten D., van Rosmalen J., Hulst J.M. Worldwide survey of nutritional practices in PICUs. Pediatr Crit Care Med. 2016;17(1):10–18.
    1. Mehta N.M., Bechard L.J., Cahill N., Wang M., Day A., Duggan C.P. Nutritional practices and their relationship to clinical outcomes in critically ill children--an international multicenter cohort study∗. Crit Care Med. 2012;40(7):2204–2211.
    1. Mehta N.M., Bechard L.J., Zurakowski D., Duggan C.P., Heyland D.K. Adequate enteral protein intake is inversely associated with 60-d mortality in critically ill children: a multicenter, prospective, cohort study. Am J Clin Nutr. 2015;102(1):199–206.
    1. Joffe A., Anton N., Lequier L., Vandermeer B., Tjosvold L., Larsen B. Nutritional support for critically ill children. Cochrane Database Syst Rev. 2016;(5)
    1. Casaer M.P., Bellomo R. Micronutrient deficiency in critical illness: an invisible foe? Intensive Care Med. 2019;45(8):1136–1139.
    1. Kamel A.Y., Dave N.J., Zhao V.M., Griffith D.P., Connor M.J., Jr., Ziegler T.R. Micronutrient alterations during continuous renal replacement therapy in critically ill adults: a retrospective study. Nutr Clin Pract : official publication of the American Society for Parenteral and Enteral Nutrition. 2018;33(3):439–446.
    1. Manzanares W., Hardy G. Thiamine supplementation in the critically ill. Curr Opin Clin Nutr Metab Care. 2011;14(6):610–617.
    1. Dao D.T., Anez-Bustillos L., Cho B.S. Assessment of micronutrient status in critically ill children: challenges and opportunities. Nutrients. 2017;9(11)
    1. Ong C., Han W.M., Wong J.J., Lee J.H. Nutrition biomarkers and clinical outcomes in critically ill children: a critical appraisal of the literature. Clin Nutr. 2014;33(2):191–197.
    1. Braegger C., Decsi T., Dias J.A., Hartman C., Kolacek S., Koletzko B. Practical approach to paediatric enteral nutrition: a comment by the ESPGHAN committee on nutrition. J Pediatr Gastroenterol Nutr. 2010;51(1):110–122.
    1. Bronsky J., Campoy C., Braegger C. ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition: Vitamins. Clin Nutr. 2018;37(6 Pt B):2366–2378.
    1. Domellof M., Szitanyi P., Simchowitz V., Franz A., Mimouni F. ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition: iron and trace minerals. Clin Nutr. 2018;37(6 Pt B):2354–2359.
    1. Arksey H.O.M.L. Scoping studies: towards a methodological framework. Int J Soc Res Methodol: Theor Pract. 2015;8:19–32.
    1. Peters M.D., Godfrey C.M., Khalil H., McInerney P., Parker D., Soares C.B. Guidance for conducting systematic scoping reviews. Int J Evid Base Healthc. 2015;13(3):141–146.
    1. Tricco A.C., Lillie E., Zarin W., O'Brien K.K., Colquhoun H., Levac D. PRISMA extension for scoping reviews (PRISMA-ScR): checklist and explanation. Ann Intern Med. 2018;169(7):467–473.
    1. Levac D., Colquhoun H., O'Brien K.K. Scoping studies: advancing the methodology. Implement Sci. 2010;5:69.
    1. Carcillo J., Holubkov R., Dean J.M., Berger J., Meert K.L., Anand K.J. Rationale and design of the pediatric critical illness stress-induced immune suppression (CRISIS) prevention trial. J Parenter Enteral Nutr. 2009;33(4):368–374.
    1. Carcillo J.A., Dean J.M., Holubkov R., Berger J., Meert K.L., Anand K.J. The randomized comparative pediatric critical illness stress-induced immune suppression (CRISIS) prevention trial. Pediatr Crit Care Med. 2012;13(2):165–173.
    1. Carcillo J.A., Dean J.M., Holubkov R., Berger J., Meert K.L., Anand K.J.S. Interaction between 2 nutraceutical treatments and host immune status in the pediatric critical illness stress-induced immune suppression comparative effectiveness trial. J Parenter Enteral Nutr. 2017;41(8):1325–1335.
    1. Micronutrients Atalanta, USA centres for disease control and prevention. 2019. Available from:
    1. Nutrition International (formerly Micronutrient Initiative) 2009. FFI, Global Alliance for Improved Nutrition, USAID, the World Bank, UNICEF. Investing in the future: a united call to action on vitamin and mineral deficiencies.
    1. Pollock J.S., Ryan M.J., Samson W.K., Brooks D.P. Water and electrolyte homeostasis brings balance to physiology. Am J Physiol Regul Integr Comp Physiol. 2014;307(5):R481–R483.
    1. Sirajudeen S., Shah I., Al Menhali A. A narrative role of vitamin D and its receptor: with current evidence on the gastric tissues. Int J Mol Sci. 2019;20(15)
    1. Rousseau A.F., Losser M.R., Ichai C., Berger M.M. ESPEN endorsed recommendations: nutritional therapy in major burns. Clin Nutr. 2013;32(4):497–502.
    1. Hsieh H.F., Shannon H.E. Three approaches to qualitative content analysis. Qual Health Res. 2005;15(9):1277–1288.
    1. Vaismoradi M., Turunen H., Bondas T. Content analysis and thematic analysis: implications for conducting a qualitative descriptive study. Nurs Health Sci. 2013;15(3):398–405.
    1. Bayir H., Kagan V.E., Tyurina Y.Y., Tyurin V., Ruppel R.A., Adelson P.D. Assessment of antioxidant reserves and oxidative stress in cerebrospinal fluid after severe traumatic brain injury in infants and children. Pediatr Res. 2002;51(5):571–578.
    1. Lima L.F., Leite H.P., Taddei J.A. Low blood thiamine concentrations in children upon admission to the intensive care unit: risk factors and prognostic significance. Am J Clin Nutr. 2011;93(1):57–61.
    1. Weiss S.L., Blowey B., Keele L., Ganetzky R., Murali C.N., Fitzgerald J.C. Matched retrospective cohort study of thiamine to treat persistent hyperlactatemia in pediatric septic shock. Pediat Crit Care Med. 2019
    1. Teagarden A.M., Leland B.D., Rowan C.M., Lutfi R. Thiamine deficiency leading to refractory lactic acidosis in a pediatric patient. Case reports in critical care. 2017;2017:5121032.
    1. Simalti A.K., Joshi R., Aggarwal N., Agarwal M., Joshi R.K. An unusual cause of persisting hyperlactatemia in a neonate undergoing open heart surgery. World J Pediatr Congenit Heart Surg. 2015;6(1):130–134.
    1. Codazzi D., Sala F., Parini R., Langer M. Coma and respiratory failure in a child with severe vitamin B(12) deficiency. Pediatr Crit Care Med. 2005;6(4):483–485.
    1. Baird J.S., Ravindranath T.M. Vitamin B deficiencies in a critically ill autistic child with a restricted diet. Nutr Clin Pract. 2015;30(1):100–103.
    1. Iglesias S.B., Leite H.P., Paes A.T., Oliveira S.V., Sarni R.O. Low plasma selenium concentrations in critically ill children: the interaction effect between inflammation and selenium deficiency. Crit Care. 2014;18(3):R101.
    1. Zappitelli M., Juarez M., Castillo L., Coss-Bu J., Goldstein S.L. Continuous renal replacement therapy amino acid, trace metal and folate clearance in critically ill children. Intensive Care Med. 2009;35(4):698–706.
    1. Zhang X., Yang K., Chen L., Liao X., Deng L., Chen S. Vitamin A deficiency in critically ill children with sepsis. Crit Care. 2019;23(1):267.
    1. Mehta N.M. Micronutrients in critical illness: essential and enigmatic. Pediatr Crit Care Med. 2018;19(9):907–908.
    1. Mehta N.M., Duggan C.P. Nutritional deficiencies during critical illness. Pediatr Clin. 2009;56(5):1143–1160.
    1. Seear M., Lockitch G., Jacobson B., Quigley G., MacNab A. Thiamine, riboflavin, and pyridoxine deficiencies in a population of critically ill children. J Pediatr. 1992;121(4):533–538.
    1. Wang G., Wang D., Jiang X., Yu X., Ma L., Zhong J. Blood zinc, iron, and copper levels in critically ill neonates. Biol Trace Elem Res. 2015;164(1):8–11.
    1. Valla F.V., Bost M., Roche S., Pitance M., Cuerq C., Ridout J. Multiple micronutrient plasma level changes are related to oxidative stress intensity in critically ill children. Pediatr Crit Care Med. 2018;19(9):e455–e463.
    1. Gottschlich M.M., Mayes T., Khoury J., Kagan R.J. Clinical trial of vitamin D2 vs D3 supplementation in critically ill pediatric burn patients. J Parenter Enteral Nutr. 2017;41(3):412–421.
    1. Cvijanovich N.Z., King J.C., Flori H.R., Gildengorin G., Vinks A.A., Wong H.R. Safety and dose escalation study of intravenous zinc supplementation in pediatric critical illness. J Parenter Enteral Nutr. 2016;40(6):860–868.
    1. Shamir R., Dagan O., Abramovitch D., Abramovitch T., Vidne B.A., Dinari G. Thiamine deficiency in children with congenital heart disease before and after corrective surgery. J Parenter Enteral Nutr. 2000;24(3):154–158.
    1. Saleh N.Y., Abo El Fotoh W.M.M. Low serum zinc level: the relationship with severe pneumonia and survival in critically ill children. Int J Clin Pract. 2018;72(6)
    1. Cvijanovich N.Z., King J.C., Flori H.R., Gildengorin G., Wong H.R. Zinc homeostasis in pediatric critical illness. Pediatr Crit Care Med. 2009;10(1):29–34.
    1. Negm F.F., Soliman D.R., Ahmed E.S., Elmasry R.A. Assessment of serum zinc, selenium, and prolactin concentrations in critically ill children. Pediatr Health Med Therapeut. 2016;7:17–23.
    1. Heidemann S.M., Holubkov R., Meert K.L., Dean J.M., Berger J., Bell M. Baseline serum concentrations of zinc, selenium, and prolactin in critically ill children. Pediatr Crit Care Med. 2013;14(4):e202–e206.
    1. Wang G., Feng X., Yu X., Xu X., Wang D., Yang H. Prognostic value of blood zinc, iron, and copper levels in critically ill children with pediatric risk of mortality score III. Biol Trace Elem Res. 2013;152(3):300–304.
    1. Broman M., Lindfors M., Norberg A., Hebert C., Rooyackers O., Wernerman J. Low serum selenium is associated with the severity of organ failure in critically ill children. Clin Nutr. 2018;37(4):1399–1405.
    1. Holzer R., Bockenkamp B., Booker P., Newland P., Ciotti G., Pozzi M. The impact of cardiopulmonary bypass on selenium status, thyroid function, and oxidative defense in children. Pediatr Cardiol. 2004;25(5):522–528.
    1. Dos Reis Santos M., Leite H.P., Luiz Pereira A.M., Dell'Acqua Cassao B., de Oliveira Iglesias S.B. Factors associated with not meeting the recommendations for micronutrient intake in critically ill children. Nutrition. 2016;32(11–12):1217–1222.
    1. Leite H.P., Nogueira P.C., Iglesias S.B., de Oliveira S.V., Sarni R.O. Increased plasma selenium is associated with better outcomes in children with systemic inflammation. Nutrition. 2015;31(3):485–490.
    1. Flaring U., Finkel Y. Nutritional support to patients within the pediatric intensive setting. Paediatr Anaesth. 2009;19(4):300–312.
    1. Frank L.L. Thiamin in clinical practice. J Parenter Enteral Nutr. 2015;39(5):503–520.
    1. Agarwal A.K.P., Baidya D., Arora M. Trace elements in critical illness. J Endocrinol Metabol. 2011;1(2):57–63.
    1. McGregor G.P., Biesalski H.K. Rationale and impact of vitamin C in clinical nutrition. Curr Opin Clin Nutr Metab Care. 2006;9(6):697–703.
    1. Obeid R., Herrmann W. Homocysteine, folic acid and vitamin B12 in relation to pre- and postnatal health aspects. Clin Chem Lab Med. 2005;43(10):1052–1057.
    1. Quasim T., McMillan D.C., Talwar D., Vasilaki A., St J.O.R.D., Kinsella J. The relationship between plasma and red cell B-vitamin concentrations in critically-ill patients. Clin Nutr. 2005;24(6):956–960.
    1. Talwar D., Quasim T., McMillan D.C., Kinsella J., Williamson C., O'Reilly D.S. Optimisation and validation of a sensitive high-performance liquid chromatography assay for routine measurement of pyridoxal 5-phosphate in human plasma and red cells using pre-column semicarbazide derivatisation. J chromatogr B, Analytical technologies in the biomedical and life sciences. 2003;792(2):333–343.
    1. Ghashut R.A., McMillan D.C., Kinsella J., Talwar D. Erythrocyte concentrations of B1, B2, B6 but not plasma C and E are reliable indicators of nutrition status in the presence of systemic inflammation. Clin Nutr ESPEN. 2017;17:54–62.
    1. Lerner R.K., Pessach I., Rubinstein M., Paret G. Lactic acidosis as presenting symptom of thiamine deficiency in children with hematologic malignancy. J Pediatr Intensive Care. 2017;6(2):132–135.
    1. Calder P.C., Jackson A.A. Undernutrition, infection and immune function. Nutr Res Rev. 2000;13(1):3–29.
    1. Calder P.C. Feeding the immune system. Proc Nutr Soc. 2013;72(3):299–309.
    1. De Cosmi V., Mehta N.M., Boccazzi A., Milani G.P., Esposito S., Bedogni G. Nutritional status, metabolic state and nutrient intake in children with bronchiolitis. Int J Food Sci Nutr. 2017;68(3):378–383.
    1. De Cosmi V., Milani G.P. The metabolic response to stress and infection in critically ill children: the opportunity of an individualized approach. Nutrients. 2017;9(9)
    1. Wesselink E., Koekkoek W.A.C., Grefte S., Witkamp R.F., van Zanten A.R.H. Feeding mitochondria: potential role of nutritional components to improve critical illness convalescence. Clin Nutr. 2019;38(3):982–995.
    1. Reid D.W., Lam Q.T., Schneider H., Walters E.H. Airway iron and iron-regulatory cytokines in cystic fibrosis. Eur Respir J. 2004;24(2):286–291.
    1. Fraenkel P.G. Anemia of inflammation: a review. Med Clin. 2017;101(2):285–296.
    1. Subramanian Vignesh K., Landero Figueroa J.A., Porollo A., Caruso J.A., Deepe G.S., Jr. Zinc sequestration: arming phagocyte defense against fungal attack. PLoS Pathog. 2013;9(12)
    1. Gomez-Cabrera M.C., Domenech E., Romagnoli M., Arduini A., Borras C., Pallardo F.V. Oral administration of vitamin C decreases muscle mitochondrial biogenesis and hampers training-induced adaptations in endurance performance. Am J Clin Nutr. 2008;87(1):142–149.
    1. Paulsen G., Cumming K.T., Holden G., Hallen J., Ronnestad B.R., Sveen O. Vitamin C and E supplementation hampers cellular adaptation to endurance training in humans: a double-blind, randomised, controlled trial. The J Physiol. 2014;592(8):1887–1901.
    1. Hess J., Slavin J. Snacking for a cause: nutritional insufficiencies and excesses of U.S. children, a critical review of food consumption patterns and macronutrient and micronutrient intake of U.S. children. Nutrients. 2014;6(11):4750–4759.
    1. Golden M.H. The nature of nutritional deficiency in relation to growth failure and poverty. Acta Paediatr Scand Suppl. 1991;374:95–110.
    1. Golden M.H. Specific deficiencies versus growth failure: type I and type II nutrients. SCN news. 1995;(12):10–14.
    1. Yang C.F., Duro D., Zurakowski D., Lee M., Jaksic T., Duggan C. High prevalence of multiple micronutrient deficiencies in children with intestinal failure: a longitudinal study. J Pediatr. 2011;159(1):39–44. e1.
    1. Jonckheer J., Vergaelen K., Spapen H., Malbrain M., De Waele E. Modification of nutrition therapy during continuous renal replacement therapy in critically ill pediatric patients: a narrative review and recommendations. Nutr Clin Pract: official publication of the American Society for Parenteral and Enteral Nutrition. 2019;34(1):37–47.
    1. Golden M.H. Proposed recommended nutrient densities for moderately malnourished children. Food Nutr Bull. 2009;30(3 Suppl):S267–S342.
    1. Prentice A.M., Ward K.A., Goldberg G.R., Jarjou L.M., Moore S.E., Fulford A.J. Critical windows for nutritional interventions against stunting. Am J Clin Nutr. 2013;97(5):911–918.
    1. Leite H.P., de Lima L.F.P., Taddei J., Paes A.T. Effect of blood thiamine concentrations on mortality: influence of nutritional status. Nutrition. 2018;48:105–110.
    1. Weinberg E.D. Iron and susceptibility to infectious disease. Science. 1974;184(4140):952–956.
    1. Choong K., Awladthani S., Khawaji A., Clark H., Borhan A., Cheng J. Early exercise in critically ill youth and children, a preliminary evaluation: the wEECYCLE pilot trial. Pediatr Crit Care Med. 2017;18(11):e546–e554.
    1. World Health Organisation . WHO; Geneva, Switzerland: 1999. Management of severe malnutrition: a manual for physicians and other senior health workers.
    1. Valla F.V., Baudin F., Gaillard Le Roux B., Ford-Chessel C., Gervet E., Giraud C. Nutritional status deterioration occurs frequently during children's ICU stay. Pediatr Crit Care Med. 2019;20(8):714–721.
    1. Grippa R.B., Silva P.S., Barbosa E., Bresolin N.L., Mehta N.M., Moreno Y.M. Nutritional status as a predictor of duration of mechanical ventilation in critically ill children. Nutrition. 2017;33:91–95.
    1. Cohen N., Golik A. Zinc balance and medications commonly used in the management of heart failure. Heart Fail Rev. 2006;11(1):19–24.
    1. Perisson C., Nathan N., Larroquet M., Corvol H. An idiopathic congenital chylothorax: surgery or conservative management? BMJ Case Rep. 2014;2014
    1. Kliegman R., Stanton B., St Geme J., Schor N., Behrman R. Elsevier; Philadelphia, USA: 2011. Nelson textbook of paediatrics.
    1. Gregory G., Andropolous D., editors. Gregory's pediatric anesthesia. 5th ed. Blackwell Publishing Ltd; 2012.
    1. Laboratory handbook. Sheffields Childrens Hospital; Sheffield, UK: 2018.
    1. Mayo C. Mayo Clinic Laboratories; USA: 2018. Rochester 2018 interpretive handbook Minnesota. Available from:
    1. Ueland P.M., McCann A., Midttun O., Ulvik A. Inflammation, vitamin B6 and related pathways. Mol Aspect Med. 2017;53:10–27.
    1. Thakur K., Tomar S.K., Singh A.K., Mandal S., Arora S. Riboflavin and health: a review of recent human research. Crit Rev Food Sci Nutr. 2017;57(17):3650–3660.
    1. Naderi N., House J.D. Recent developments in folate nutrition. Adv Food Nutr Res. 2018;83:195–213.
    1. Stephensen C.B. Vitamin A, infection, and immune function. Annu Rev Nutr. 2001;21:167–192.
    1. Padayatty S.J., Levine M. Vitamin C: the known and the unknown and Goldilocks. Oral Dis. 2016;22(6):463–493.
    1. Azzi A. Tocopherols, tocotrienols and tocomonoenols: many similar molecules but only one vitamin E. Redox Biol. 2019;26:101259.
    1. Hordyjewska A., Popiolek L., Kocot J. The many "faces" of copper in medicine and treatment. Biometals : an international journal on the role of metal ions in biology, biochemistry, and medicine. 2014;27(4):611–621.
    1. Cerami C. Iron nutriture of the fetus, neonate, infant, and child. Ann Nutr Metab. 2017;71(Suppl 3):8–14.
    1. Vincent J.B., Lukaski H.C. Chromium. Adv Nutr. 2018;9(4):505–506.
    1. O'Neal S.L., Zheng W. Manganese toxicity upon overexposure: a decade in review. Curr Environ Health Reports. 2015;2(3):315–328.
    1. World Health Organisation/Food and Agriculture Organistation of United Nations . Bangkok; Thailand: 2001. Human vitamin and mineral requirements.
    1. European Food Standards Agency . EU; Brussels, Belgium: 2017. Overview on dietary reference values for the EU in: panel on dietetic products NaAN.
    1. European Food Standards Agency . 2019. Dieraty reference value finder: EFSA. Available from:

Source: PubMed

3
Abonneren