Neural Effects of Cognitive Behavioral Therapy in Psychiatric Disorders: A Systematic Review and Activation Likelihood Estimation Meta-Analysis

Shiting Yuan, Huiqin Wu, Yun Wu, Huazhen Xu, Jianping Yu, Yuan Zhong, Ning Zhang, Jinyang Li, Qianwen Xu, Chun Wang, Shiting Yuan, Huiqin Wu, Yun Wu, Huazhen Xu, Jianping Yu, Yuan Zhong, Ning Zhang, Jinyang Li, Qianwen Xu, Chun Wang

Abstract

Background: Cognitive behavioral therapy (CBT) is a first-line psychotherapeutic treatment that has been recommended for psychiatric disorders. Prior neuroimaging studies have provided preliminary evidence suggesting that CBT can have an impact on the activity of brain regions and functional integration between regions. However, the results are far from conclusive. The present article aimed to detect characteristic changes in brain activation following CBT across psychiatric disorders.

Method: Web of Science, Cochrane Library, Scopus, and PubMed databases were searched to identify whole-brain functional neuroimaging studies of CBT through 4 August 2021. To be included in the meta-analysis, studies were required to examine functional activation changes between pre-and post-CBT. The included studies were then divided into subgroups according to different task paradigms. Then, an activation likelihood estimation algorithm (ALE) was performed in the different meta-analyses to identify whether brain regions showed consistent effects. Finally, brain regions identified from the meta-analysis were categorized into eight functional networks according to the spatial correlation values between independent components and the template.

Results: In total, 13 studies met inclusion criteria. Three different meta-analyses were performed separately for total tasks, emotion tasks, and cognition tasks. In the total task ALE meta-analysis, the left precuneus was found to have decreased activation. For the cognition task ALE meta-analysis, left anterior cingulate (ACC) and left middle frontal gyrus (MFG) were found to have decreased activation following CBT. However, the emotion task ALE meta-analysis did not find any specific brain regions showing consistent effects. A review of included studies revealed default mode network (DMN), executive control network (ECN), and salience network (SN) were the most relevant among the eight functional networks.

Conclusion: The results revealed that the altered activation in the prefrontal cortex and precuneus were key regions related to the effects of CBT. Therefore, CBT may modulate the neural circuitry of emotion regulation. This finding provides recommendations for the rapidly developing literature.

Keywords: brain network; cognitive behavioral therapy (CBT); meta-analysis; neuroimaging; psychiatric disorder.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2022 Yuan, Wu, Wu, Xu, Yu, Zhong, Zhang, Li, Xu and Wang.

Figures

FIGURE 1
FIGURE 1
Flowchart of the searching strategy and study selection process, based on PRISMA template (Liberati et al., 2009; Moher et al., 2009).
FIGURE 2
FIGURE 2
In the cognition paradigm, significantly decreased activations across the left anterior cingulate (L ACC) and left middle frontal gyrus (L MFG) were found in patients with psychiatric disorders after CBT (p < 0.05).
FIGURE 3
FIGURE 3
In all paradigms, significantly decreased activation in the left cuneus was found in patients with psychiatric disorders after CBT (p < 0.05).
FIGURE 4
FIGURE 4
This figure shows regions that have been reported to show CBT-related changes and the overlap between regions involved in different brain networks. The subscript number next to the brain region represents the number of articles related to that brain region.

References

    1. Álvarez-Pérez Y. Rivero F. Herrero M. Viña C. Fumero A. Betancort M. et al. (2021). Changes in brain activation through cognitive-behavioral therapy with exposure to virtual reality: a neuroimaging study of specific phobia. J. Clin. Med. 10. 10.3390/jcm10163505
    1. Andrews-Hanna J. R., Smallwood J., Spreng R. N. (2014). The default network and self-generated thought: component processes, dynamic control, and clinical relevance. Ann. N.Y. Acad. Sci. 1316 29–52. 10.1111/nyas.12360
    1. Baggio H. C., Junqué C. (2019). Functional MRI in parkinson’s disease cognitive impairment. Int. Rev. Neurobiol. 144, 29–58. 10.1016/bs.irn.2018.09.010
    1. Beck A. T., Dozois D. J. (2011). Cognitive therapy: current status and future directions. Annu. Rev. Med. 62 397–409. 10.1146/annurev-med-052209-100032
    1. Bomyea J., Ball T. M., Simmons A. N., Campbell-Sills L., Paulus M. P., Stein M. B. (2020). Change in neural response during emotion regulation is associated with symptom reduction in cognitive behavioral therapy for anxiety disorders. J. Affect. Dis. 271 207–214. 10.1016/j.jad.2020.04.001
    1. Broyd S. J., Demanuele C., Debener S., Helps S. K., James C. J., Sonuga-Barke E. J. (2009). Default-mode brain dysfunction in mental disorders: a systematic review. Neurosci. Biobehav. Rev. 33 279–296. 10.1016/j.neubiorev.2008.09.002
    1. Butler A. C., Chapman J. E., Forman E. M., Beck A. T. (2006). The empirical status of cognitive-behavioral therapy: a review of meta-analyses. Clin. Psychol. Rev. 26 17–31. 10.1016/j.cpr.2005.07.003
    1. Cavanna A. E., Trimble M. R. (2006). The precuneus: a review of its functional anatomy and behavioural correlates. Brain 129 564–583. 10.1093/brain/awl004
    1. Chen J. E., Glover G. H. (2015). Functional magnetic resonance imaging methods. Neuropsychol. Rev. 25, 289–313. 10.1007/s11065-015-9294-9
    1. Cuijpers P., Hollon S. D., Van Straten A., Bockting C., Berking M., Andersson G. (2013). Does cognitive behavior therapy have an enduring effect that is superior to keeping patients on continuation pharmacotherapy? A meta-analysis. BMJ Open 3:e002542. 10.1136/bmjopen-2012-002542
    1. Devito E. E., Worhunsky P. D., Carroll K. M., Rounsaville B. J., Kober H., Potenza M. N. (2012). A preliminary study of the neural effects of behavioral therapy for substance use disorders. Drug Alcohol Depend 122 228–235. 10.1016/j.drugalcdep.2011.10.002
    1. Eickhoff S. B., Bzdok D., Laird A. R., Kurth F., Fox P. T. (2012). Activation likelihood estimation meta-analysis revisited. Neuroimage 59 2349–2361. 10.1016/j.neuroimage.2011.09.017
    1. Eickhoff S. B., Laird A. R., Grefkes C., Wang L. E., Zilles K., Fox P. T. (2009). Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: a random-effects approach based on empirical estimates of spatial uncertainty. Hum. Brain Mapp. 30 2907–2926. 10.1002/hbm.20718
    1. Etkin A., Egner T., Kalisch R. (2011). Emotional processing in anterior cingulate and medial prefrontal cortex. Trends Cogn. Sci. 15, 85–93. 10.1016/j.tics.2010.11.004
    1. Fonzo G. A., Ramsawh H. J., Flagan T. M., Sullivan S. G., Simmons A. N., Paulus M. P., et al. (2014). Cognitive-behavioral therapy for generalized anxiety disorder is associated with attenuation of limbic activation to threat-related facial emotions. J. Affect. Dis. 169 76–85. 10.1016/j.jad.2014.07.031
    1. Franklin G., Carson A. J., Welch K. A. (2016). Cognitive behavioural therapy for depression: systematic review of imaging studies. Acta Neuropsychiatr. 28 61–74. 10.1017/neu.2015.41
    1. Fu C. H., Williams S. C., Cleare A. J., Scott J., Mitterschiffthaler M. T., Walsh N. D., et al. (2008). Neural responses to sad facial expressions in major depression following cognitive behavioral therapy. Biol. Psychiatr. 64 505–512. 10.1016/j.biopsych.2008.04.033
    1. Goodkind M., Eickhoff S. B., Oathes D. J., Jiang Y., Chang A., Jones-Hagata L. B., et al. (2015). Identification of a common neurobiological substrate for mental illness. JAMA Psychiatr. 72 305–315. 10.1001/jamapsychiatry.2014.2206
    1. Gorka S. M., Young C. B., Klumpp H., Kennedy A. E., Francis J., Ajilore O., et al. (2019). Emotion-based brain mechanisms and predictors for SSRI and CBT treatment of anxiety and depression: a randomized trial. Neuropsychopharmacology 44 1639–1648. 10.1038/s41386-019-0407-7
    1. Hauner K. K., Mineka S., Voss J. L., Paller K. A. (2012). Exposure therapy triggers lasting reorganization of neural fear processing. Proc. Natl. Acad. Sci. U.S.A. 109 9203–9208. 10.1073/pnas.1205242109
    1. Herold D., Spengler S., Sajonz B., Usnich T., Bermpohl F. (2016). Common and distinct networks for self-referential and social stimulus processing in the human brain. Brain Struct. Funct. 221 3475–3485. 10.1007/s00429-015-1113-9
    1. Hofmann S. G., Asnaani A., Vonk I. J., Sawyer A. T., Fang A. (2012). The Efficacy of Cognitive Behavioral Therapy: A Review of Meta-analyses. Cognit. Ther. Res. 36 427–440. 10.1007/s10608-012-9476-1
    1. Ipser J. C., Singh L., Stein D. J. (2013). Meta-analysis of functional brain imaging in specific phobia. Psychiatry Clin. Neurosci. 67 311–322. 10.1111/pcn.12055
    1. Kim S. J., Lee Y. J., Kim N., Kim S., Choi J. W., Park J., et al. (2017). Exploration of changes in the brain response to sleep-related pictures after cognitive-behavioral therapy for psychophysiological insomnia. Sci. Rep. 7:12528. 10.1038/s41598-017-13065-0
    1. Kircher T., Arolt V., Jansen A., Pyka M., Reinhardt I., Kellermann T., et al. (2013). Effect of cognitive-behavioral therapy on neural correlates of fear conditioning in panic disorder. Biol. Psychiatr. 73 93–101. 10.1016/j.biopsych.2012.07.026
    1. Kumari V., Fannon D., Peters E. R., Ffytche D. H., Sumich A. L., Premkumar P., et al. (2011). Neural changes following cognitive behaviour therapy for psychosis: a longitudinal study. Brain 134 2396–2407. 10.1093/brain/awr154
    1. La Buissonniere-Ariza V., Fitzgerald K., Meoded A., Williams L. L., Liu G., Goodman W. K., et al. (2021). Neural correlates of cognitive behavioral therapy response in youth with negative valence disorders: A systematic review of the literature. J. Affect. Dis. 282 1288–1307. 10.1016/j.jad.2020.12.182
    1. Liberati A., Altman D. G., Tetzlaff J., Mulrow C., Gøtzsche P. C., Ioannidis J. P., et al. (2009). The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med. 6:e1000100. 10.1371/journal.pmed.1000100
    1. Månsson K. N., Carlbring P., Frick A., Engman J., Olsson C. J., Bodlund O., et al. (2013). Altered neural correlates of affective processing after internet-delivered cognitive behavior therapy for social anxiety disorder. Psychiatry Res. 214 229–237. 10.1016/j.pscychresns.2013.08.012
    1. Mason L., Peters E., Kumari V. (2016). Functional connectivity predictors and mechanisms of cognitive behavioural therapies: A systematic review with recommendations. Aust. N.Z. J. Psychiatr. 50 311–321. 10.1177/0004867415624970
    1. Matsumoto K., Hamatani S., Shimizu E. (2021). Effectiveness of videoconference-delivered cognitive behavioral therapy for adults with psychiatric disorders: systematic and meta-analytic review. J. Med. Internet Res. 23:e31293. 10.2196/31293
    1. McMain S., Newman M. G., Segal Z. V., Derubeis R. J. (2015). Cognitive behavioral therapy: current status and future research directions. Psychother. Res. 25 321–329. 10.1080/10503307.2014.1002440
    1. McTeague L. M., Rosenberg B. M., Lopez J. W., Carreon D. M., Huemer J., Jiang Y., et al. (2020). Identification of Common Neural Circuit Disruptions in Emotional Processing Across Psychiatric Disorders. Am. J. Psychiatr. 177 411–421. 10.1176/appi.ajp.2019.18111271
    1. Menon V. (2011). Large-scale brain networks and psychopathology: a unifying triple network model. Trends Cogn. Sci. 15 483–506. 10.1016/j.tics.2011.08.003
    1. Mohan A., Roberto A. J., Mohan A., Lorenzo A., Jones K., Carney M. J., et al. (2016). The Significance of the Default Mode Network (DMN) in Neurological and Neuropsychiatric Disorders: A Review. Yale J. Biol. Med. 89 49–57.
    1. Moher D., Liberati A., Tetzlaff J., Altman D. G. (2009). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ 339:b2535.
    1. Monosov I. E., Haber S. N., Leuthardt E. C., Jezzini A. (2020). Anterior Cingulate Cortex and the Control of Dynamic Behavior in Primates. Curr. Biol. 30 R1442–R1454. 10.1016/j.cub.2020.10.009
    1. Qian H., Wang Z., Li C., Gao X. (2020). Prioritised self-referential processing is modulated by emotional arousal. Q. J. Exp. Psychol. 73 688–697. 10.1177/1747021819892158
    1. Reinecke A., Thilo K. V., Croft A., Harmer C. J. (2018). Early effects of exposure-based cognitive behaviour therapy on the neural correlates of anxiety. Transl. Psychiatr. 8:225. 10.1038/s41398-018-0277-5
    1. Riga D., Matos M. R., Glas A., Smit A. B., Spijker S., Van Den Oever M. C. (2014). Optogenetic dissection of medial prefrontal cortex circuitry. Front. Syst. Neurosci. 8:230. 10.3389/fnsys.2014.00230
    1. Rubin-Falcone H., Weber J., Kishon R., Ochsner K., Delaparte L., Doré B., et al. (2020). Neural predictors and effects of cognitive behavioral therapy for depression: the role of emotional reactivity and regulation. Psychol. Med. 50 146–160. 10.1017/s0033291718004154
    1. Sankar A., Scott J., Paszkiewicz A., Giampietro V. P., Steiner H., Fu C. H. (2015). Neural effects of cognitive-behavioural therapy on dysfunctional attitudes in depression. Psychol. Med. 45 1425–1433. 10.1017/S0033291714002529
    1. Seeley W. W. (2019). The Salience Network: A Neural System for Perceiving and Responding to Homeostatic Demands. J. Neurosci. 39 9878–9882. 10.1523/JNEUROSCI.1138-17.2019
    1. Sha Z., Wager T. D., Mechelli A., He Y. (2019). Common Dysfunction of Large-Scale Neurocognitive Networks Across Psychiatric Disorders. Biol. Psychiatr. 85 379–388. 10.1016/j.biopsych.2018.11.011
    1. Shirer W. R., Ryali S., Rykhlevskaia E., Menon V., Greicius M. D. (2012). Decoding subject-driven cognitive states with whole-brain connectivity patterns. Cereb. Cortex 22 158–165. 10.1093/cercor/bhr099
    1. Simon R., Engström M. (2015). The default mode network as a biomarker for monitoring the therapeutic effects of meditation. Front. Psychol. 6:776. 10.3389/fpsyg.2015.00776
    1. Van Dis E. A. M., Van Veen S. C., Hagenaars M. A., Batelaan N. M., Bockting C. L. H., Van Den Heuvel R. M., et al. (2020). Long-term Outcomes of Cognitive Behavioral Therapy for Anxiety-Related Disorders: A Systematic Review and Meta-analysis. JAMA Psychiatry 77 265–273. 10.1001/jamapsychiatry.2019.3986
    1. Vocks S., Schulte D., Busch M., Grönemeyer D., Herpertz S., Suchan B. (2011). Changes in neuronal correlates of body image processing by means of cognitive-behavioural body image therapy for eating disorders: a randomized controlled fMRI study. Psychol. Med. 41 1651–1663. 10.1017/S0033291710002382
    1. Vuper T. C., Philippi C. L., Bruce S. E. (2021). Altered resting-state functional connectivity of the default mode and central executive networks following cognitive processing therapy for PTSD. Behav. Brain Res. 409:113312. 10.1016/j.bbr.2021.113312
    1. Whitfield-Gabrieli S., Ford J. M. (2012). Default mode network activity and connectivity in psychopathology. Annu. Rev. Clin. Psychol. 8 49–76. 10.1146/annurev-clinpsy-032511-143049
    1. Xu P., Chen A., Li Y., Xing X., Lu H. (2019). Medial prefrontal cortex in neurological diseases. Physiol. Genom. 51 432–442. 10.1152/physiolgenomics.00006.2019
    1. Xu W., Chen S., Xue C., Hu G., Ma W., Qi W., et al. (2020). Functional MRI-Specific Alterations in Executive Control Network in Mild Cognitive Impairment: An ALE Meta-Analysis. Front. Aging Neurosci. 12:578863. 10.3389/fnagi.2020.578863
    1. Yeshurun Y., Nguyen M., Hasson U. (2021). The default mode network: where the idiosyncratic self meets the shared social world. Nat. Rev. Neurosci. 22 181–192. 10.1038/s41583-020-00420-w
    1. Yoshimura S., Okamoto Y., Onoda K., Matsunaga M., Okada G., Kunisato Y., et al. (2014). Cognitive behavioral therapy for depression changes medial prefrontal and ventral anterior cingulate cortex activity associated with self-referential processing. Soc. Cogn. Affect. Neurosci. 9 487–493. 10.1093/scan/nst009
    1. Zhang R., Volkow N. D. (2019). Brain default-mode network dysfunction in addiction. Neuroimage 200 313–331. 10.1016/j.neuroimage.2019.06.036
    1. Zhou W., Yuan Z., Yingliang D., Chaoyong X., Ning Z., Chun W. (2021). Differential patterns of dynamic functional connectivity variability in major depressive disorder treated with cognitive behavioral therapy. J. Affect. Dis. 291 322–328. 10.1016/j.jad.2021.05.017

Source: PubMed

3
Abonneren