Natural killer-cell immunoglobulin-like receptors trigger differences in immune response to SARS-CoV-2 infection

Roberto Littera, Luchino Chessa, Silvia Deidda, Goffredo Angioni, Marcello Campagna, Sara Lai, Maurizio Melis, Selene Cipri, Davide Firinu, Simonetta Santus, Alberto Lai, Rita Porcella, Stefania Rassu, Federico Meloni, Daniele Schirru, William Cordeddu, Marta Anna Kowalik, Paola Ragatzu, Monica Vacca, Federica Cannas, Francesco Alba, Mauro Giovanni Carta, Stefano Del Giacco, Angelo Restivo, Simona Deidda, Antonella Palimodde, Paola Congera, Roberto Perra, Germano Orrù, Francesco Pes, Martina Loi, Claudia Murru, Enrico Urru, Simona Onali, Ferdinando Coghe, Sabrina Giglio, Andrea Perra, Roberto Littera, Luchino Chessa, Silvia Deidda, Goffredo Angioni, Marcello Campagna, Sara Lai, Maurizio Melis, Selene Cipri, Davide Firinu, Simonetta Santus, Alberto Lai, Rita Porcella, Stefania Rassu, Federico Meloni, Daniele Schirru, William Cordeddu, Marta Anna Kowalik, Paola Ragatzu, Monica Vacca, Federica Cannas, Francesco Alba, Mauro Giovanni Carta, Stefano Del Giacco, Angelo Restivo, Simona Deidda, Antonella Palimodde, Paola Congera, Roberto Perra, Germano Orrù, Francesco Pes, Martina Loi, Claudia Murru, Enrico Urru, Simona Onali, Ferdinando Coghe, Sabrina Giglio, Andrea Perra

Abstract

Background: The diversity in the clinical course of COVID-19 has been related to differences in innate and adaptative immune response mechanisms. Natural killer (NK) lymphocytes are critical protagonists of human host defense against viral infections. It would seem that reduced circulating levels of these cells have an impact on COVID-19 progression and severity. Their activity is strongly regulated by killer-cell immuno-globulin-like receptors (KIRs) expressed on the NK cell surface. The present study's focus was to investigate the impact of KIRs and their HLA Class I ligands on SARS-CoV-2 infection.

Methods: KIR gene frequencies, KIR haplotypes, KIR ligands and combinations of KIRs and their HLA Class I ligands were investigated in 396 Sardinian patients with SARS-CoV-2 infection. Comparisons were made between 2 groups of patients divided according to disease severity: 240 patients were symptomatic or paucisymptomatic (Group A), 156 hospitalized patients had severe disease (Group S). The immunogenetic characteristics of patients were also compared to a population group of 400 individuals from the same geographical areas.

Results: Substantial differences were obtained for KIR genes, KIR haplotypes and KIR-HLA ligand combinations when comparing patients of Group S to those of Group A. Patients in Group S had a statistically significant higher frequency of the KIR A/A haplotype compared to patients in Group A [34.6% vs 23.8%, OR = 1.7 (95% CI 1.1-2.6); P = 0.02, Pc = 0.04]. Moreover, the KIR2DS2/HLA C1 combination was poorly represented in the group of patients with severe symptoms compared to those of the asymptomatic-paucisymptomatic group [33.3% vs 50.0%, OR = 0.5 (95% CI 0.3-0.8), P = 0.001, Pc = 0.002]. Multivariate analysis confirmed that, regardless of the sex and age of the patients, the latter genetic variable correlated with a less severe disease course [ORM = 0.4 (95% CI 0.3-0.7), PM = 0.0005, PMC = 0.005].

Conclusions: The KIR2DS2/HLA C1 functional unit resulted to have a strong protective effect against the adverse outcomes of COVID-19. Combined to other well known factors such as advanced age, male sex and concomitant autoimmune diseases, this marker could prove to be highly informative of the disease course and thus enable the timely intervention needed to reduce the mortality associated with the severe forms of SARS-CoV-2 infection. However, larger studies in other populations as well as experimental functional studies will be needed to confirm our findings and further pursue the effect of KIR receptors on NK cell immune-mediated response to SARS-Cov-2 infection.

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Fig 1. Frequency of the KIR2DS2 /…
Fig 1. Frequency of the KIR2DS2/HLA C1 functional unit compared between patients stratified according to the severity of COVID-19 clinical manifestations [Group A (N = 120/240, 50.0%), alive in Group S (N = 50/142, 35.2%) and deceased patients in group S (N = 2/14, 14.3%)].
The comparison between Group A (N = 120/240, 50.0%) and the population group (N = 177/400, 44.3%) showed a similar frequency in the two groups. The error bars represent the 95% confidence intervals of the KIR2DS2/HLA C1 frequency in each group of patients and the population group.

References

    1. World Health Organization. (2020). Virtual press conference on COVID-19. [Accessed April 21, 2021]
    1. WHO Solidarity Trial Consortium, Pan H, Peto R, Henao-Restrepo AM, Preziosi MP, Sathiyamoorthy V, et al.. Repurposed Antiviral Drugs for Covid-19—Interim WHO Solidarity Trial Results. N Engl J Med 2020. Dec 2:NEJMoa2023184. doi: 10.1056/NEJMoa2023184
    1. Melis M, Littera R. Undetected infectives in the Covid-19 pandemic. Int J Infect Dis 2021. Jan. doi: 10.1016/j.ijid.2021.01.010
    1. Backer JA, Klinkenberg D, Wallinga J. Incubation period of 2019 novel coronavirus (2019-nCoV) infections among travellers from Wuhan, China, 20–28 January 2020. Euro Surveill 2020;25(5):pii = 2000062. doi: 10.2807/1560-7917.ES.2020.25.5.2000062
    1. Lai CC, Shih T-P, Ko W-C, Tang H-J, Hsueh P-R. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. Int J of Antimicrob Agents 2020;55(3):105924. doi: 10.1016/j.ijantimicag.2020.105924
    1. Ye Q, Wang B, Mao J. The pathogenesis and treatment of the `Cytokine Storm’ in COVID-19. J Infect 2020;80:607–13. doi: 10.1016/j.jinf.2020.03.037
    1. Kochi AN, Tagliari AP, Forleo GB, Fassini GM, Tondo C. Cardiac and arrhythmic complications in patients with COVID‐19. J of Cardiovasc Electrophysiol 2020;31:1003–8. doi: 10.1111/jce.14479
    1. Baig AM. Neurological manifestations in COVID‐19 caused by SARS‐CoV‐2. CNS Neurosci Ther 2020;26:499–501. doi: 10.1111/cns.13372
    1. I-Cheng L, Huo T-I, Huang Y-H. Gastrointestinal and liver manifestations in patients with COVID-19. J Chin Med Assoc 2020. doi: 10.1097/JCMA.0000000000000319
    1. Phelan AL, Katz R, Gostin LO. The novel coronavirus originating in Wuhan, China: challenges for global health governance. JAMA 2020;323:709–10. doi: 10.1001/jama.2020.1097
    1. Li Q, Guan X, Wu P, Wang X, Z Lei, Tong Y et al.. Early transmission dynamics in Wuhan, China, of novel coronavirus‐infected pneumonia. N Engl J Med 2020;382:1199–207. doi: 10.1056/NEJMoa2001316
    1. Shlomai A, Ben-Zvi H, Glusman Bendersky A, Shafran N, Goldberg E, Sklan EH. Nasopharyngeal viral load predicts hypoxemia and disease outcome in admitted COVID-19 patients. Crit Care. 2020;24:539. doi: 10.1186/s13054-020-03244-3
    1. Janice Oh H-L, Ken‐En Gan S, Bertoletti A, Tan Y-J. Understanding the T cell immune response in SARS coronavirus infection. Emerg Microbes Infect 2012; 1:e23. doi: 10.1038/emi.2012.26
    1. Smed-Sörensen A, Oh DY, Oshiumi H, Hsu AC. Editorial: Emerging Viruses: Host Immunity and Novel Therapeutic Interventions. Front Immunol 2018;9:2828. doi: 10.3389/fimmu.2018.02828
    1. Mangalmurti N, Hunter CA. Cytokine Storms: Understanding COVID-19. Immunity 2020; 53:19–25. doi: 10.1016/j.immuni.2020.06.017
    1. Kikkert M. Innate immune evasion by human respiratory RNA viruses. J Innate Immun. 2020; 12:4–20. doi: 10.1159/000503030
    1. Janeway CA Jr, Medzhitov R. Innate immune recognition. Annu Rev Immunol 2002;20:197–216. doi: 10.1146/annurev.immunol.20.083001.084359
    1. McNab F, Mayer-Barber K, Sher A, Wack A, O’Garra A. Type I interferons in infectious disease. Nat Rev Immunol 2015;15:87–103. doi: 10.1038/nri3787
    1. Takeuchi O, Akira S. Innate immunity to virus infection. Immunol Rev 2009;227:75–86. doi: 10.1111/j.1600-065X.2008.00737.x
    1. Martin TR, Frevert CW. Innate immunity in the lungs. Proc Am Thorac Soc 2005;2:403–11. doi: 10.1513/pats.200508-090JS
    1. Murira A, Lamarre A. Type-I interferon responses: from friend to foe in the battle against chronic viral infection. Front Immunol 2016;7:609. doi: 10.3389/fimmu.2016.00609
    1. Paolini R, Bernardini G, Molfetta R, Santoni A. NK cells and interferons. Cytokine Growth Factor Rev 2015;26:113–20. doi: 10.1016/j.cytogfr.2014.11.003
    1. Vivier E, Raulet DH, Moretta A, Caligiuri MA, Zitvogel L, Lanier LL, et al.. Innate or adaptive immunity? The example of natural killer cells. Science 2011;331:44–9. doi: 10.1126/science.1198687
    1. Lodoen MB, Lanier LL. Natural killer cells as an initial defense against pathogens. Curr Opin Immunol 2006;18:391–8. doi: 10.1016/j.coi.2006.05.002
    1. Brandstadter JD, Yang Y. Natural killer cell responses to viral infection. J Innate Immun 2011;3:274–9. doi: 10.1159/000324176
    1. Jost S, Altfeld M. Control of human viral infections by natural killer cells. Annu Rev Immunol 2013;31:163–94. doi: 10.1146/annurev-immunol-032712-100001
    1. Li F, Zhu H, Sun R, Wei H, Tian Z. Natural killer cells are involved in acute lung immune injury caused by respiratory syncytial virus infection. J Virol 2012;86:2251–8. doi: 10.1128/JVI.06209-11
    1. Frank K and Paust S. Dynamic Natural Killer Cell and T Cell Responses to Influenza Infection. Front. Cell. Infect. Microbiol 2020;10:425. doi: 10.3389/fcimb.2020.00425
    1. Abdul-Careem MF, Mian MF, Yue G, Gillgrass A, Chenoweth MJ, Barra NG, et al.. Critical role of natural killer cells in lung immunopathology during influenza infection in mice. J Infect Dis 2012;206:167–77. doi: 10.1093/infdis/jis340
    1. Zhou G, Juang SWW, Kane KP. NK cells exacerbate the pathology of influenza virus infection in mice. Eur J Immunol 2013;43:929–38. doi: 10.1002/eji.201242620
    1. McKinstry KK, Alam F, Flores-Malavet V, Nagy MZ, Sell S, Cooper AM, et al.. Memory CD4 T cell-derived IL-2 synergizes with viral infection to exacerbate lung inflammation. PLoS Pathog 2019;15:e1007989. doi: 10.1371/journal.ppat.1007989
    1. Scharenberg M, Vangeti S, Kekäläinen E, Bergman P, Al-Ameri M, Johansson N, et al.. Influenza A virus infection induces hyperresponsiveness in human lung tissue-resident and peripheral blood NK cells. Front Immunol 2019;10:1116. doi: 10.3389/fimmu.2019.01116
    1. Ghosh S, Nandi M, Pal S, Mukhopadhyay D, Chakraborty BC, Khatun M, et al.. Natural killer cells contribute to hepatic injury and help in viral persistence during progression of hepatitis B e-antigen-negative chronic hepatitis B virus infection. Clin Microbiol Infect 2016;22:733.e9–733.e19. doi: 10.1016/j.cmi.2016.05.009
    1. Littera R, Zamboni F, Tondolo V, Fantola G, Chessa L, Orrù N, et al.. Absence of activating killer immunoglobulin-like receptor genes combined with hepatitis C viral genotype is predictive of hepatocellular carcinoma. Hum Immunol. 2013;74:1288–94. doi: 10.1016/j.humimm.2013.05.007
    1. National Research Project for SARS, Beijing Group. The involvement of natural killer cells in the pathogenesis of severe acute respiratory syndrome. Am J Clin Pathol 2004;121:507–511. doi: 10.1309/WPK7-Y2XK-NF4C-BF3R
    1. Marquardt N, Kekäläinen E, Chen P, Kvedaraite E, Wilson JN, Ivarsson MA, et al.. Human lung natural killer cells are predominantly comprised of highly differentiated hypofunctional CD69– CD56dim cells. J Allergy Clin Immunol 2017;139:1321–30.e4. doi: 10.1016/j.jaci.2016.07.043
    1. Qin C, Zhou L, Hu Z, Zhang S, Yang S, Tao Y, et al.. Dysregulation of Immune Response in Patients With Coronavirus 2019 (COVID-19) in Wuhan, China. Clin Infect Dis 2020;71:762–768. doi: 10.1093/cid/ciaa248
    1. Soleimanian S, Yaghobi R. Harnessing Memory NK Cell to Protect Against COVID-19. Front Pharmacol 2020;11:1309. doi: 10.3389/fphar.2020.01309
    1. Lanier LL. Up on the tightrope: natural killer cell activation and inhibition. Nat Immunol 2008; 9:495–502. doi: 10.1038/ni1581
    1. Bashirova AA, Martin MP, McVicar DW, Carrington M. The killer immunoglobulin-like receptor gene cluster: tuning the genome for defense. Annu Rev Genomics Hum Genet 2006; 7:277–300. doi: 10.1146/annurev.genom.7.080505.115726
    1. Uhrberg M, Valiante NM, Shum BP, Shilling HG, Lienert-Weidenbach K, Corliss B, et al.. Human diversity in killer cell inhibitory receptor genes. Immunity 1997;7:753–763. doi: 10.1016/s1074-7613(00)80394-5
    1. Cerwenka A, Lanier LL. Ligands for Natural Killer cell receptors: redundancy or specificity. Immunol Rev 2001;181:158–169. doi: 10.1034/j.1600-065x.2001.1810113.x
    1. Parham P. MHC class I molecules and KIRs in human history, healthy and survival. Nat Rev Immunol 2005;5:201–214. doi: 10.1038/nri1570
    1. Gumperz J, Litwin V, Philips JH, Lanier LL, Parham P. The Bw4 public epitope of HLA-B molecules confers reactivity with natural killer cell clones that express NKB1, a putative HLA receptor. J Exp Med 1995;181:1133–1144. doi: 10.1084/jem.181.3.1133
    1. David G, Djaoud Z, Willem C, Legrand N, Rettman P, Gagne K, et al.. Large spectrum of HLA-C recognition by killer Ig-like receptor (KIR)2DL2 and KIR2DL3 and restricted C1 specificity of KIR2DS2: dominant impact of KIR2DL2/KIR2DS2 on KIR2D NK cell repertoire formation. J Immunol 2013;191:4778–88. doi: 10.4049/jimmunol.1301580
    1. World Health Organization. (‎2020)‎. Clinical management of COVID-19: interim guidance, 27 May 2020. World Health Organization. . License: CC BY-NC-SA 3.0 IGO.
    1. Contu L, Arras M, Carcassi C, La Nasa G, Mulargia M. HLA structure of the Sardinian population: a haplotype study of 551 families. Tissue Antigens 1992;40:165–74. doi: 10.1111/j.1399-0039.1992.tb02041.x
    1. Jiang W, Johnson C, Jayaraman J, Simecek N, Noble J, Moffatt MF, et al.. Copy number variation leads to considerable diversity for B but not A haplotypes of the human KIR genes encoding NK cell receptors. Genome Res 2012;22(10):1845–54. doi: 10.1101/gr.137976.112
    1. Gómez-Lozano N, Vilches C. Genotyping of human killer-cell immunoglobulin-like receptor genes by polymerase chain reaction with sequence-specific primers: an update. Tissue Antigens. 2002;59:184–93. doi: 10.1034/j.1399-0039.2002.590302.x
    1. Vilches C, Castaño J, Gómez-Lozano N, Estefanía E. Facilitation of KIR genotyping by a PCR-SSP method that amplifies short DNA fragments. Tissue Antigens. 2007;70:415–22. doi: 10.1111/j.1399-0039.2007.00923.x
    1. Yawata M, Yawata N, Draghi M, Little AM, Partheniou F, Parham P. Roles for HLA and KIR polymorphisms in natural killer cell repertoire selection and modulation of effector function. J Exp Med 2006;203:633–645. Erratum in: J Exp Med 2006; 203:1131. doi: 10.1084/jem.20051884
    1. Hsu KC, Liu X‐ R, Selvakumar A, Mickelson E, O’Reilly RJ, Dupont B. Killer Ig‐like receptor haplotype analysis by gene content: Evidence for genomic diversity with a minimum of six basic framework haplotypes, each with multiple subsets. J Immunol 2002;169:5118–129. doi: 10.4049/jimmunol.169.9.5118
    1. Khakoo SI, Carrington M. KIR and disease: a model system or system of models? Immunol Rev. 2006;214:186–201. doi: 10.1111/j.1600-065X.2006.00459.x
    1. Marsh SG, Parham P, Dupont B, Geraghty DE, Trowsdale J, Middleton D, et al.. Killer-cell immunoglobulin-like receptor (KIR) nomenclature report, 2002. Hum Immunol 2003;64:648–54. doi: 10.1016/s0198-8859(03)00067-3
    1. Martin AM, Kulski JK, Gaudieri S, Witt CS, Freitas EM, Trowsdale J, et al.. Comparative genomic analysis, diversity and evolution of two KIR haplotypes A and B. Gene 2004;335:121–31. doi: 10.1016/j.gene.2004.03.018
    1. Pyo CW, Wang R, Vu Q, Cereb N, Yang SY, Duh FM, et al.. Recombinant structures expand and contract inter and intragenic diversification at the KIR locus. BMC Genomics 20138;14:89. doi: 10.1186/1471-2164-14-89
    1. Cisneros E, Moraru M, Gómez-Lozano N, Muntasell A, López-Botet M, Vilches C. Haplotype-Based Analysis of KIR-Gene Profiles in a South European Population-Distribution of Standard and Variant Haplotypes, and Identification of Novel Recombinant Structures. Front Immunol 2020;11:440. doi: 10.3389/fimmu.2020.00440
    1. R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; (2020). Available at
    1. Littera R, Campagna M, Deidda S, Angioni G, Cipri S, Melis M, et al.. Human Leukocyte Antigen Complex and Other Immunogenetic and Clinical Factors Influence Susceptibility or Protection to SARS-CoV-2 Infection and Severity of the Disease Course. The Sardinian Experience. Front Immunol 2020;11:605688. doi: 10.3389/fimmu.2020.605688
    1. Vierra-Green C, Roe D, Hou L, Hurley CK, Rajalingam R, Reed E, et al.. Allele-level haplotype frequencies and pairwise linkage disequilibrium for 14 KIR loci in 506 European-American individuals. PLoS One 2012;7(11):e47491. doi: 10.1371/journal.pone.0047491
    1. Noale M, Trevisan C, Maggi S, Antonelli Incalzi R, Pedone C, Di Bari M, et al.. The Association between Influenza and Pneumococcal Vaccinations and SARS-Cov-2 Infection: Data from the EPICOVID19 Web-Based Survey. Vaccines (Basel). 2020;8:471. doi: 10.3390/vaccines8030471
    1. Liu Y-M, Mahumud S-A, Chen X, Chen T-H, Liao K-S, Lo J-M. Carbohydrate-Binding Protein from the Edible Lablab Beans Effectively Blocks the Infections of Influenza Viruses and SARS-CoV-2. Cell Rep 2020;32:108016. doi: 10.1016/j.celrep.2020.108016
    1. Wenzhong L, Hualan L. COVID-19: attacks the 1-beta chain of hemoglobin and captures the porphyrin to inhibit human heme metabolism. ChemRxiv (2020). doi: 10.26434/chemrxiv.11938173.v4
    1. Zheng M, Gao Y, Wang G, Song G, Liu S, Sun D, et al.. Functional exhaustion of antiviral lymphocytes in COVID-19 patients. Cell Mol Immunol 2020;17:533–5. doi: 10.1038/s41423-020-0402-2
    1. Middleton D, Gonzalez A, Gilmore PM. Studies on the expression of the deleted KIR2DS4*003 gene product and distribution of KIR2DS4 deleted and non‐deleted versions in different populations. Hum Immunol 2007;68:128–134. doi: 10.1016/j.humimm.2006.12.007
    1. Brillantes M, Beaulieu AM. Memory and Memory-Like NK Cell Responses to Microbial Pathogens. Front Cell Infect Microbiol 2020; 25;10:102. doi: 10.3389/fcimb.2020.00102
    1. Wu C, Chen X, Cai Y, Xia J, Zhou X, Xu S, et al.. Risk Factors Associated With Acute Respiratory Distress Syndrome and Death in Patients With Coronavirus Disease 2019 Pneumonia in Wuhan, China. JAMA Intern Med 2020;180:934–43. doi: 10.1001/jamainternmed.2020.0994
    1. Market M, Angka L, Martel AB, Bastin D, Olanubi O, Tennakoon G, et al.. Flattening the COVID-19 Curve With Natural Killer Cell Based Immunotherapies. Front Immunol 2020;11:1512. doi: 10.3389/fimmu.2020.01512
    1. Forel J-M, Chiche L, Thomas G, Mancini J, Farnarier C, Cognet C, et al.. Phenotype and functions of natural killer cells in critically-ill septic patients. PLoS One 2012;7:e50446. doi: 10.1371/journal.pone.0050446
    1. Guo Y, Patil NK, Luan L, Bohannon JK, Sherwood ER. the biology of natural killer cells during sepsis. Immunology 2018;153:190–202. doi: 10.1111/imm.12854
    1. Gonzalez-Galarza FF, McCabe A, Dos Santos EJM, Jones J, Takeshita L, Ortega-Rivera ND, et al.. Allele frequency net database (AFND) 2020 update: gold-standard data classification, open access genotype data and new query tools, Nucleic Acids Research, Volume 48, Issue D1, 08 January 2020, Pages D783–D788, doi: 10.1093/nar/gkz1029

Source: PubMed

3
Abonneren