Treatment of cystic fibrosis related bone disease

Jagdeesh Ullal, Katherine Kutney, Kristen M Williams, David R Weber, Jagdeesh Ullal, Katherine Kutney, Kristen M Williams, David R Weber

Abstract

The advent of highly effective CFTR modulator therapies has slowed the progression of pulmonary complications in people with cystic fibrosis. There is increased interest in cystic fibrosis bone disease (CFBD) due to the increasing longevity of people with cystic fibrosis. CFBD is a complex and multifactorial disease. CFBD is a result of hypomineralized bone leading to poor strength, structure and quality leading to susceptibility to fractures. The development of CFBD spans different age groups. The management must be tailored to each group with nuance and based on available guidelines while balancing therapeutic benefits to risks of long-term use of bone-active medication. For now, the mainstay of treatment includes bisphosphonates. However, the long-term effects of bisphosphonate treatment in people with CF are not fully understood. We describe newer agents available for osteoporosis treatment. Still, the lack of data behooves trials of monoclonal antibodies treatments such as Denosumab and Romozosumab and anabolic bone therapy such as teriparatide and Abaloparatide. In this review, we also summarize screening and non-pharmacologic treatment of CFBD and describe the various options available for the pharmacotherapy of CFBD. We address the prospect of CFTR modulators on bone health while awaiting long-term trials to describe the effects of these medications on bone health.

Keywords: Bisphosphonates; Bone density; Bone density screening; Cystic fibrosis; Cystic fibrosis bone disease.

Conflict of interest statement

Conflict of Interest or Competing Interest: My coauthors and I do not have any conflict of interest other than the fact that 3 of us were funded by the Cystic Fibrosis Foundation. A Declaration of Interest: there is no financial/personal interest or belief that could affect our objectivity, and there is no potential competing interests.

© 2021 The Authors.

Figures

Fig. 1
Fig. 1
Cystic Fibrosis bone disease (CFBD) is a multifactorial problem that necessitates a multipronged approach to treatment and mitigation. The figure below highlights the major factors that contribute to the pathogenesis of CFBD (shown in boxes) and the appropriate mitigation strategy (shown with arrows) that should be considered along with pharmaceutical therapy if indicated. (Abbreviations: PERT, pancreatic enzyme replacement therapy; CFTR, Cystic Fibrosis Transmembrane Conductance Regulator; GH, Growth Hormone; IGF-1, insulin-like growth factor-1; CFRD, cystic fibrosis related diabetes).

References

    1. Shteinberg M., Haq I.J., Polineni D., Davies J.C. Cystic fibrosis. Lancet. 2021;397(10290):2195–2211.
    1. DiMango E., Spielman D.B., Overdevest J., Keating C., Francis S.F., Dansky D., et al. Effect of highly effective modulator therapy on quality of life in adults with cystic fibrosis. Int Forum Allergy Rhinol. 2021;11(1):75–78.
    1. Mora Vallellano J., et al. Evaluation of bone metabolism in children with cystic fibrosis. Bone. 2021;147
    1. Sands D., Mielus M., Umławska W., Lipowicz A., Oralewska B., Walkowiak J. Evaluation of factors related to bone disease in Polish children and adolescents with cystic fibrosis. Adv Med Sci. 2015;60(2):315–320.
    1. Sheikh S., Gemma S., Patel A. Factors associated with low bone mineral density in patients with cystic fibrosis. J Bone Miner Metab. 2015;33(2):180–185.
    1. Sermet-Gaudelus I., Bianchi M.L., Garabédian M., Aris R.M., Morton A., Hardin D.S., et al. European cystic fibrosis bone mineralisation guidelines. J Cyst Fibros. 2011;10:S16–S23.
    1. Gordon C.M., Leonard M.B., Zemel B.S. 2013 Pediatric Position Development Conference: executive summary and reflections. J Clin Densitom. 2014;17(2):219–224.
    1. Sermet-Gaudelus I., Castanet M., Retsch-Bogart G., Aris R.M. Update on cystic fibrosis-related bone disease: a special focus on children. Paediatr Respir Rev. 2009;10(3):134–142.
    1. Simm P.J., Biggin A., Zacharin M.R., Rodda C.P., Tham E., Siafarikas A., et al. Consensus guidelines on the use of bisphosphonate therapy in children and adolescents. J Paediatr Child Health. 2018;54(3):223–233.
    1. Sermet-Gaudelus I., et al. Bone health in cystic fibrosis. Arch Pediatr. 2009;16(6):616–618.
    1. Aris R.M., Merkel P.A., Bachrach L.K., Borowitz D.S., Boyle M.P., Elkin S.L., et al. Guide to bone health and disease in cystic fibrosis. J Clin Endocrinol Metab. 2005;90(3):1888–1896.
    1. Cosman F., de Beur S.J., LeBoff M.S., Lewiecki E.M., Tanner B., Randall S., et al. Clinician's Guide to Prevention and Treatment of Osteoporosis. Osteoporos Int. 2014;25(10):2359–2381.
    1. Aris R.M., et al. Adverse alterations in bone metabolism are associated with lung infection in adults with cystic fibrosis. Am J Respir Crit Care Med. 2000;162(5):1674–1678.
    1. Elkin S.L., Fairney A., Burnett S., Kemp M., Kyd P., Burgess J., et al. Vertebral deformities and low bone mineral density in adults with cystic fibrosis: a cross-sectional study. Osteoporos Int. 2001;12(5):366–372.
    1. Henderson R.C., Madsen C.D. Bone mineral content and body composition in children and young adults with cystic fibrosis. Pediatr Pulmonol. 1999;27(2):80–84.
    1. Legroux-Gerot I., et al. Bone loss in adults with cystic fibrosis: prevalence, associated factors, and usefulness of biological markers. Joint Bone Spine. 2012;79(1):73–77.
    1. Frangolias D.D., Paré P.D., Kendler D.L., Davidson A.G.F., Wong L., Raboud J., et al. Role of exercise and nutrition status on bone mineral density in cystic fibrosis. J Cyst Fibros. 2003;2(4):163–170.
    1. Brodlie M., Orchard W.A., Reeks G.A., Pattman S., McCabe H., O'Brien C.J., et al. Vitamin D in children with cystic fibrosis. Arch Dis Child. 2012;97(11):982–984.
    1. Kueper J., et al. Evidence for the adverse effect of starvation on bone quality: a review of the literature. Int J Endocrinol. 2015;2015
    1. Stallings V.A., Stark L.J., Robinson K.A., Feranchak A.P., Quinton H. Evidence-based practice recommendations for nutrition-related management of children and adults with cystic fibrosis and pancreatic insufficiency: results of a systematic review. J Am Diet Assoc. 2008;108(5):832–839.
    1. Nielsen, B.U., et al., Associations Between Glucose Tolerance, Insulin Secretion, Muscle and Fat Mass in Cystic Fibrosis. Clin Med Insights Endocrinol Diabetes, 2021. 14: p. 11795514211038259.
    1. Granados A., Beach E.A., Christiansen A.J., Patterson B.W., Wallendorf M., Arbeláez A.M. The association between body composition, leptin levels and glucose dysregulation in youth with cystic fibrosis. J Cyst Fibros. 2021;20(5):796–802.
    1. Reid I.R., Baldock P.A., Cornish J. Effects of Leptin on the Skeleton. Endocr Rev. 2018;39(6):938–959.
    1. Kanazawa I., Sugimoto T. Diabetes Mellitus-induced Bone Fragility. Intern Med. 2018;57(19):2773–2785.
    1. Farlay D., Armas ., Gineyts E., Akhter M.P., Recker R.R., Boivin G. Nonenzymatic Glycation and Degree of Mineralization Are Higher in Bone From Fractured Patients With Type 1 Diabetes Mellitus. J Bone Miner Res. 2016;31(1):190–195.
    1. Mathiesen I.H., Hitz M.F., Katzenstein T.L., Oturai P., Skov M., Jørgensen N.R., et al. Markers of bone turnover are reduced in patients with CF related diabetes; the role of glucose. J Cyst Fibros. 2019;18(3):436–441.
    1. Crabtree N.J., Arabi A., Bachrach L.K., Fewtrell M., El-Hajj Fuleihan G., Kecskemethy H.H., et al. Dual-energy X-ray absorptiometry interpretation and reporting in children and adolescents: the revised 2013 ISCD Pediatric Official Positions. J Clin Densitom. 2014;17(2):225–242.
    1. Lee D.Y., Wetzsteon R.J., Zemel B.S., Shults J., Organ J.M., Foster B.J., et al. Muscle torque relative to cross-sectional area and the functional muscle-bone unit in children and adolescents with chronic disease. J Bone Miner Res. 2015;30(3):575–583.
    1. Lannefors L., Button B.M., McIlwaine M. Physiotherapy in infants and young children with cystic fibrosis: current practice and future developments. J R Soc Med. 2004;97(Suppl 44):8–25.
    1. Hind K., Truscott J.G., Conway S.P. Exercise during childhood and adolescence: a prophylaxis against cystic fibrosis-related low bone mineral density? Exercise for bone health in children with cystic fibrosis. J Cyst Fibros. 2008;7(4):270–276.
    1. Bhudhikanok G.S., et al. Correlates of osteopenia in patients with cystic fibrosis. Pediatrics. 1996;97(1):103–111.
    1. Conway S.P., et al. Osteoporosis and osteopenia in adults and adolescents with cystic fibrosis: prevalence and associated factors. Thorax. 2000;55(9):798–804.
    1. Galindo-Zavala R., Bou-Torrent R., Magallares-López B., Mir-Perelló C., Palmou-Fontana N., Sevilla-Pérez B., et al. Expert panel consensus recommendations for diagnosis and treatment of secondary osteoporosis in children. Pediatr Rheumatol Online J. 2020;18(1) doi: 10.1186/s12969-020-0411-9.
    1. Howe, T.E., et al., Exercise for preventing and treating osteoporosis in postmenopausal women. Cochrane Database Syst Rev, 2011(7): p. CD000333.
    1. Beaudoin NADIA, Bouvet G.F., Coriati ADÈLE, Rabasa-lhoret RÉMI, Berthiaume YVES. Combined exercise training improves glycemic control in adult with cystic fibrosis. Med Sci Sports Exerc. 2017;49(2):231–237.
    1. Moorcroft A.J., et al. Individualised unsupervised exercise training in adults with cystic fibrosis: a 1 year randomised controlled trial. Thorax. 2004;59(12):1074–1080.
    1. Watson S.L., Weeks B.K., Weis L.J., Harding A.T., Horan S.A., Beck B.R. High-Intensity Resistance and Impact Training Improves Bone Mineral Density and Physical Function in Postmenopausal Women With Osteopenia and Osteoporosis: The LIFTMOR Randomized Controlled Trial. J Bone Miner Res. 2018;33(2):211–220.
    1. Greer F.R., Krebs N.F., N. American Academy of Pediatrics Committee on, Optimizing bone health and calcium intakes of infants, children, and adolescents. Pediatrics. 2006;117(2):578–585.
    1. in Dietary Reference Intakes for Calcium, Phosphorus, Magnesium, Vitamin D, and Fluoride. 1997: Washington (DC).
    1. Putman M.S., Anabtawi A., Le T., Tangpricha V., Sermet-Gaudelus I. Cystic fibrosis bone disease treatment: Current knowledge and future directions. J Cyst Fibros. 2019;18:S56–S65.
    1. Haworth C.S., Jones A.M., Adams J.E., Selby P.L., Webb A.K. Randomised double blind placebo controlled trial investigating the effect of calcium and vitamin D supplementation on bone mineral density and bone metabolism in adult patients with cystic fibrosis. J Cyst Fibros. 2004;3(4):233–236.
    1. Papaioannou A., Kennedy C.C., Freitag A., Ioannidis G., O'Neill J., Webber C., et al. Alendronate once weekly for the prevention and treatment of bone loss in Canadian adult cystic fibrosis patients (CFOS trial) Chest. 2008;134(4):794–800.
    1. Terribile M., Capuano M., Cangiano G., Carnovale V., Ferrara P., Petrarulo M., et al. Factors increasing the risk for stone formation in adult patients with cystic fibrosis. Nephrol Dial Transplant. 2006;21(7):1870–1875.
    1. Khazai N.B., Judd S.E., Jeng L., Wolfenden L.L., Stecenko A., Ziegler T.R., et al. Treatment and prevention of vitamin D insufficiency in cystic fibrosis patients: comparative efficacy of ergocalciferol, cholecalciferol, and UV light. J Clin Endocrinol Metab. 2009;94(6):2037–2043.
    1. Tangpricha V., Kelly A., Stephenson A., Maguiness K., Enders J., Robinson K.A., et al. An update on the screening, diagnosis, management, and treatment of vitamin D deficiency in individuals with cystic fibrosis: evidence-based recommendations from the Cystic Fibrosis Foundation. J Clin Endocrinol Metab. 2012;97(4):1082–1093.
    1. Drury D., Grey V.L., Ferland G., Gundberg C., Lands L.C. Efficacy of high dose phylloquinone in correcting vitamin K deficiency in cystic fibrosis. J Cyst Fibros. 2008;7(5):457–459.
    1. Jagannath, V.A., et al., Vitamin K supplementation for cystic fibrosis. Cochrane Database Syst Rev, 2017. 8: p. CD008482.
    1. Micic D., Rao V.L., Semrad C.E. Celiac Disease and Its Role in the Development of Metabolic Bone Disease. J Clin Densitom. 2020;23(2):190–199.
    1. Putman M.S., et al. Celiac Disease in Patients with Cystic Fibrosis-Related Bone Disease. Case Rep Endocrinol. 2017;2017:2652403.
    1. Hjelm M., Shaikhkhalil A.K. Celiac Disease in Patients With Cystic Fibrosis on Ivacaftor: A Case Series. J Pediatr Gastroenterol Nutr. 2020;71(2):257–260.
    1. Emiralioglu N., et al. Does cystic fibrosis make susceptible to celiac disease? Eur J Pediatr. 2021;180(9):2807–2813.
    1. West N.E., Lechtzin N., Merlo C.A., Turowski J.B., Davis M.E., Ramsay M.Z., et al. Appropriate goal level for 25-hydroxyvitamin D in cystic fibrosis. Chest. 2011;140(2):469–474.
    1. Lee S.Y., et al. Thyroid Function in Patients with Cystic Fibrosis: No Longer a Concern? Thyroid. 2016;26(7):875–879.
    1. Le T.N., Anabtawi A., Putman M.S., Tangpricha V., Stalvey M.S. Growth failure and treatment in cystic fibrosis. J Cyst Fibros. 2019;18:S82–S87.
    1. Hardin D.S., Ahn C., Prestidge C., Seilheimer D.K., Ellis K.J. Growth hormone improves bone mineral content in children with cystic fibrosis. J Pediatr Endocrinol Metab. 2005;18(6) doi: 10.1515/JPEM.2005.18.6.589.
    1. Linkson L., Macedo P., Perrin F.M.R., Elston C.M. Anorexia nervosa in cystic fibrosis. Paediatr Respir Rev. 2018;26:24–26.
    1. Palmert M.R., Dunkel L. Clinical practice. Delayed puberty. N Engl J Med. 2012;366(5):443–453.
    1. Goldsweig B., Kaminski B., Sidhaye A., Blackman S.M., Kelly A. Puberty in cystic fibrosis. J Cyst Fibros. 2019;18:S88–S94.
    1. Kelly A., Schall J.I., Stallings V.A., Zemel B.S. Deficits in bone mineral content in children and adolescents with cystic fibrosis are related to height deficits. J Clin Densitom. 2008;11(4):581–589.
    1. Elhakeem A., Frysz M., Tilling K., Tobias J.H., Lawlor D.A. Association Between Age at Puberty and Bone Accrual From 10 to 25 Years of Age. JAMA Netw Open. 2019;2(8):e198918. doi: 10.1001/jamanetworkopen.2019.8918.
    1. Bianchi M.L., Romano G., Saraifoger S., Costantini D., Limonta C., Colombo C. BMD and body composition in children and young patients affected by cystic fibrosis. J Bone Miner Res. 2006;21(3):388–396.
    1. Leifke E., Friemert M., Heilmann M., Puvogel N., Smaczny C., von zur Muhlen A., et al. Sex steroids and body composition in men with cystic fibrosis. Eur J Endocrinol. 2003:551–557. doi: 10.1530/eje.0.1480551.
    1. Behre H.M., Kliesch S., Leifke E., Link T.M., Nieschlag E. Long-term effect of testosterone therapy on bone mineral density in hypogonadal men. J Clin Endocrinol Metab. 1997;82(8):2386–2390.
    1. Schram C.A., Stephenson A.L., Hannam T.G., Tullis E. Cystic fibrosis (cf) and ovarian reserve: A cross-sectional study examining serum anti-mullerian hormone (amh) in young women. J Cyst Fibros. 2015;14(3):398–402.
    1. Wu M., Bettermann E.L., Arora N., Hunt W.R., McCracken C., Tangpricha V. Relationship Between Estrogen Treatment and Skeletal Health in Women With Cystic Fibrosis. Am J Med Sci. 2020;360(5):581–590.
    1. Cromer B., Bonny A., Stager M., Lazebnik R., Rome E., Ziegler J., et al. Bone mineral density in adolescent females using injectable or oral contraceptives: a 24-month prospective study. Fertil Steril. 2008;90(6):2060–2067.
    1. Mailhot G., Dion N., Farlay D., Rizzo S., Bureau N.J., Jomphe V., et al. Impaired rib bone mass and quality in end-stage cystic fibrosis patients. Bone. 2017;98:9–17.
    1. Lambrechts M.J., Smith M.J., Choma T.J. Orthopedic Manifestations of Cystic Fibrosis. Orthopedics. 2021;44(3):e440–e445.
    1. Dong R., Chen L., Gu Y., Han G., Yang H., Tang T., et al. Improvement in respiratory function after vertebroplasty and kyphoplasty. Int Orthop. 2009;33(6):1689–1694.
    1. Conwell L.S., Chang A.B. Bisphosphonates for osteoporosis in people with cystic fibrosis. Cochrane Database Syst Rev. 2014;3 p. CD002010.
    1. Nasomyont N., Hornung L.N., Gordon C.M., Wasserman H. Outcomes following intravenous bisphosphonate infusion in pediatric patients: A 7-year retrospective chart review. Bone. 2019;121:60–67.
    1. Bianchi M.L., Colombo C., Assael B.M., Dubini A., Lombardo M., Quattrucci S., et al. Treatment of low bone density in young people with cystic fibrosis: a multicentre, prospective, open-label observational study of calcium and calcifediol followed by a randomised placebo-controlled trial of alendronate. Lancet Respir Med. 2013;1(5):377–385.
    1. Stalvey M.S., Clines K.L., Havasi V., McKibbin C.R., Dunn L.K., Chung W.J., et al. Osteoblast CFTR inactivation reduces differentiation and osteoprotegerin expression in a mouse model of cystic fibrosis-related bone disease. PLoS One. 2013;8(11):e80098.
    1. Lamy O., Stoll D., Aubry-Rozier B., Rodriguez E.G. Stopping Denosumab. Curr Osteoporos Rep. 2019;17(1):8–15.
    1. Silverman S.L., Chines A.A., Kendler D.L., Kung A.W.C., Teglbjærg C.S., Felsenberg D., et al. Sustained efficacy and safety of bazedoxifene in preventing fractures in postmenopausal women with osteoporosis: results of a 5-year, randomized, placebo-controlled study. Osteoporos Int. 2012;23(1):351–363.
    1. Wells G., Chernoff J., Gilligan J.P., Krause D.S. Does salmon calcitonin cause cancer? A review and meta-analysis. Osteoporos Int. 2016;27(1):13–19.
    1. Estell E.G., Rosen C.J. Emerging insights into the comparative effectiveness of anabolic therapies for osteoporosis. Nat Rev Endocrinol. 2021;17(1):31–46.
    1. Siwamogsatham O., Stephens K., Tangpricha V. Evaluation of teriparatide for treatment of osteoporosis in four patients with cystic fibrosis: a case series. Case Rep Endocrinol. 2014;2014
    1. Brent M.B. Abaloparatide: A review of preclinical and clinical studies. Eur J Pharmacol. 2021;909
    1. Brent M.B., Thomsen J.S., Bruel A. Short-term glucocorticoid excess blunts abaloparatide-induced increase in femoral bone mass and strength in mice. Sci Rep. 2021;11(1):12258.
    1. Cosman F., Crittenden D.B., Adachi J.D., Binkley N., Czerwinski E., Ferrari S., et al. Romosozumab Treatment in Postmenopausal Women with Osteoporosis. N Engl J Med. 2016;375(16):1532–1543.
    1. Paik J., Scott L.J. Romosozumab: A Review in Postmenopausal Osteoporosis. Drugs Aging. 2020;37(11):845–855.
    1. Cairoli E., Eller-Vainicher C., Morlacchi L.C., Tarsia P., Rossetti V., Pappalettera M., et al. Bone involvement in young adults with cystic fibrosis awaiting lung transplantation for end-stage respiratory failure. Osteoporos Int. 2019;30(6):1255–1263.
    1. Giorgia G., et al. Impact of bone-active drugs and underlying disease on bone health after lung transplantation: A longitudinal study. J Cyst Fibros. 2021
    1. Gramegna A., Contarini M., Aliberti S., Casciaro R., Blasi F., Castellani C. From Ivacaftor to Triple Combination: A Systematic Review of Efficacy and Safety of CFTR Modulators in People with Cystic Fibrosis. Int J Mol Sci. 2020;21(16):5882. doi: 10.3390/ijms21165882.
    1. Tangpricha V. Correction of the Gene Defect in Cystic Fibrosis: Is It Too Late for Bone? J Clin Endocrinol Metab. 2021;106(5):e2359–e2361.
    1. Velard F., Delion M., Le Henaff C., Guillaume C., Gangloff S., Jacquot J., et al. Cystic fibrosis and bone disease: defective osteoblast maturation with the F508del mutation in cystic fibrosis transmembrane conductance regulator. Am J Respir Crit Care Med. 2014;189(6):746–748.
    1. Velard F., et al. Cystic fibrosis bone disease: is the CFTR corrector C18 an option for therapy? Eur Respir J. 2015;45(3):845–848.
    1. Sermet-Gaudelus I., Delion M., Durieu I., Jacquot J., Hubert D. Bone demineralization is improved by ivacaftor in patients with cystic fibrosis carrying the p.Gly551Asp mutation. J Cyst Fibros. 2016;15(6):e67–e69.
    1. Putman M.S., Greenblatt L.B., Bruce M., Joseph T., Lee H., Sawicki G., et al. The Effects of Ivacaftor on Bone Density and Microarchitecture in Children and Adults with Cystic Fibrosis. J Clin Endocrinol Metab. 2021;106(3):e1248–e1261.
    1. Nichols D.P., Donaldson S.H., Frederick C.A., Freedman S.D., Gelfond D., Hoffman L.R., et al. PROMISE: Working with the CF community to understand emerging clinical and research needs for those treated with highly effective CFTR modulator therapy. J Cyst Fibros. 2021;20(2):205–212.
    1. Turck D., Braegger C.P., Colombo C., Declercq D., Morton A., Pancheva R., et al. ESPEN-ESPGHAN-ECFS guidelines on nutrition care for infants, children, and adults with cystic fibrosis. Clin Nutr. 2016;35(3):557–577.
    1. Sermet-Gaudelus I., et al. Recommendations for the management of bone demineralization in cystic fibrosis. Arch Pediatr. 2008;15(3):301–312.
    1. van der Haak N., King S.J., Crowder T., Kench A., Painter C., Saxby N. Highlights from the nutrition guidelines for cystic fibrosis in Australia and New Zealand. J Cyst Fibros. 2020;19(1):16–25.
    1. Aris R.M., Lester G.E., Caminiti M., Blackwood A.D., Hensler M., Lark R.K., et al. Efficacy of alendronate in adults with cystic fibrosis with low bone density. Am J Respir Crit Care Med. 2004;169(1):77–82.
    1. Haworth C.S., Sharples L., Hughes V., Elkin S.L., Hodson M.E., Conway S.P., et al. Multicentre trial of weekly risedronate on bone density in adults with cystic fibrosis. J Cyst Fibros. 2011;10(6):470–476.
    1. Aris R.M., et al. Efficacy of pamidronate for osteoporosis in patients with cystic fibrosis following lung transplantation. Am J Respir Crit Care Med. 2000;162(3):941–946.
    1. Haworth C.S., et al. Effect of intravenous pamidronate on bone mineral density in adults with cystic fibrosis. Thorax. 2001;56(4):314–316.
    1. Chapman I., Greville H., Ebeling P.R., King S.J., Kotsimbos T., Nugent P., et al. Intravenous zoledronate improves bone density in adults with cystic fibrosis (CF) Clin Endocrinol (Oxf) 2009;70(6):838–846.

Source: PubMed

3
Abonneren