Dance training is superior to repetitive physical exercise in inducing brain plasticity in the elderly

Kathrin Rehfeld, Angie Lüders, Anita Hökelmann, Volkmar Lessmann, Joern Kaufmann, Tanja Brigadski, Patrick Müller, Notger G Müller, Kathrin Rehfeld, Angie Lüders, Anita Hökelmann, Volkmar Lessmann, Joern Kaufmann, Tanja Brigadski, Patrick Müller, Notger G Müller

Abstract

Animal research indicates that a combination of physical activity and sensory enrichment has the largest and the only sustaining effect on adult neuroplasticity. Dancing has been suggested as a human homologue to this combined intervention as it poses demands on both physical and cognitive functions. For the present exploratory study, we designed an especially challenging dance program in which our elderly participants constantly had to learn novel and increasingly difficult choreographies. This six-month-long program was compared to conventional fitness training matched for intensity. An extensive pre/post-assessment was performed on the 38 participants (63-80 y), covering general cognition, attention, memory, postural and cardio-respiratory performance, neurotrophic factors and-most crucially-structural MRI using an exploratory analysis. For analysis of MRI data, a new method of voxel-based morphometry (VBM) designed specifically for pairwise longitudinal group comparisons was employed. Both interventions increased physical fitness to the same extent. Pronounced differences were seen in the effects on brain volumes: Dancing compared to conventional fitness activity led to larger volume increases in more brain areas, including the cingulate cortex, insula, corpus callosum and sensorimotor cortex. Only dancing was associated with an increase in plasma BDNF levels. Regarding cognition, both groups improved in attention and spatial memory, but no significant group differences emerged. The latter finding may indicate that cognitive benefits may develop later and after structural brain changes have taken place. The present results recommend our challenging dance program as an effective measure to counteract detrimental effects of aging on the brain.

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Fig 1. Flow chart of the study…
Fig 1. Flow chart of the study design.
After all drop outs, we compared the data from 20 individuals in the experimental dance group with the data sets from 18 sportspersons in the control group.
Fig 2. Gray matter volume increases for…
Fig 2. Gray matter volume increases for the contrast dance > sport (red-colored) and for the contrast sport > dance (blue-colored).
Annotation. ACC: anterior cingulate cortex, MCC: medial cingulate cortex, SMA: supplementary motor area, V1: primary visual cortex.
Fig 3. Comparison of white matter volume…
Fig 3. Comparison of white matter volume increases for the contrast dance > sport (red-colored) and for the contrast sport > dance (blue-colored).
Annotation. AWS: anterior white matter, OWS: occipital white matter, TWS: temporal white matter.
Fig 4. Intraindividual changes in plasma BDNF…
Fig 4. Intraindividual changes in plasma BDNF level after intervention.

References

    1. Hedden T, Gabrieli J-D (2004) Insights into the ageing mind: a view from cognitive neuroscience. Nature reviews neuroscience 5(2): 87–96. doi:
    1. Resnick S-M, Pham D-L, Kraut M-A, Zonderman A-B, Davatzikos C (2003) Longitudinal magnetic resonance imaging studies of older adults: a shrinking brain. Journal of Neu-roscience 23(8): 3295–3301.
    1. Haug H, Eggers R (1991) Morphometry of the human cortex cerebri and corpus striatum during aging. Neurobiology of aging 12(4): 336–338.
    1. Gunning‐Dixon F-M, Brickman A-M, Cheng J-C, Alexopoulos G-S (2009) Aging of cerebral white matter: a review of MRI findings. International journal of geriatric psychiatry 24(2): 109–117. doi:
    1. Terry R-D, Katzman R (2001) Life span and synapses: will there be a primary senile dementia? Neurobiology of Aging 22(3): 347–348.
    1. Buckner R-L (2004) Memory and executive function in aging and AD: multiple factors that cause decline and reserve factors that compensate. Neuron 44(1): 195–208. doi:
    1. Berchtold N-C, Cotman C-W (2009) Normal and pathological aging: from animals to humans. In Animal Models of Human Cognitive Aging (Humana Press), pp 1–28.
    1. Colcombe S-J, Erickson K-I, Scalf P-E, Kim J-S, Prakash R, McAuley E, et al. (2006) Aerobic exercise training increases brain volume in aging humans. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences 61(11): 1166–1170.
    1. Erickson K-I, Prakash R-S, Voss M-W, Chaddock L, Hu L, Morris K-S, et al. (2009) Aerobic fitness is associated with hippocampal volume in elderly humans. Hippocampus 19(10): 1030–1039. doi:
    1. Erickson K-I, Voss M-W, Prakash R-S, Basak C, Szabo A, Chaddock L, et al. (2011) Exercise training increases size of hippocampus and improves memory. Proceedings of the National Academy of Sciences 108(7): 3017–3022.
    1. Maass A, Düzel S, Goerke M, Becke A, Sobieray U, Neumann K, et al. (2015). Vascular hippocampal plasticity after aerobic exercise in older adults. Molecular psychiatry 20(5): 585–593. doi:
    1. Pereira A-C, Huddleston D-E, Brickman A-M, Sosunov A-A, Hen R, McKhann G-M, et al. (2007) An in vivo correlate of exercise-induced neurogenesis in the adult dentate gyrus. Proceedings of the National Academy of Sciences 104(13): 5638–5643.
    1. Flöel A, Ruscheweyh R, Krüger K, Willemer C, Winter B, Völker K, et al. (2010) Physical activity and memory functions: are neurotrophins and cerebral gray matter volume the missing link?. Neuroimage 49(3): 2756–2763. doi:
    1. Edelmann E, Leßmann V, Brigadski T (2014) Pre-and postsynaptic twists in BDNF secretion and action in synaptic plasticity. Neuropharmacology 76: 610–627. doi:
    1. Huang E-J, Reichardt L-F (2001) Neurotrophins: roles in neuronal development and function. Annual review of neuroscience 24: 677–736. doi:
    1. Klein R (1994) Role of neurotrophins in mouse neuronal development. The FASEB Journal 8(10): 738–744.
    1. Leßmann V, Brigadski T (2009) Mechanisms, locations, and kinetics of synaptic BDNF secretion: an update. Neuroscience research 65(1): 11–22. doi:
    1. Park H, Poo M-M (2013) Neurotrophin regulation of neural circuit development and function. Nature Reviews Neuroscience 14(1): 7–23. doi:
    1. Brigadski T, Leßmann V (2014) BDNF: a regulator of learning and memory processes with clinical potential. e-Neuroforum 5(1): 1–11.
    1. Rasmussen P, Brassard P, Adser H, Pedersen M-V, Leick L, Hart E, et al. (2009). Evidence for a release of brain‐derived neurotrophic factor from the brain during exercise. Experimental physiology 94(10): 1062–1069. doi:
    1. Huang T, Larsen K-T, Ried‐Larsen M, Møller N-C, Andersen L-B (2014) The effects of physical activity and exercise on brain‐derived neurotrophic factor in healthy humans: A review. Scandinavian journal of medicine & science in sports 24(1): 1–10.
    1. Vega S-R, Strüder H-K, Wahrmann B-V, Schmidt A, Bloch W, Hollmann W (2006) Acute BDNF and cortisol response to low intensity exercise and following ramp incremental exercise to exhaustion in humans. Brain research 1121(1): 59–65. doi:
    1. Zoladz J-A, Pilc A, Majerczak J, Grandys M, Zapart-Bukowska J, Duda K (2008) Endurance training increases plasma brain-derived neurotrophic factor concentration in young healthy men. J Physiol Pharmacol 59: 119–132.
    1. Seifert T, Brassard P, Wissenberg M, Rasmussen P, Nordby P, Stallknecht B, et al. (2010) Endurance training enhances BDNF release from the human brain. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 298(2): R372–R377.
    1. Van Praag H, Shubert T, Zhao C, Gage F-H (2005) Exercise enhances learning and hippocampal neurogenesis in aged mice. The Journal of neuroscience 25(38): 8680–8685. doi:
    1. Kempermann G, Fabel K, Ehninger D, Babu H, Leal-Galicia P, Garthe A, et al. (2010) Why and how physical activity promotes experience-induced brain plasticity. Frontiers in neuroscience 4(189): 1–9.
    1. Kattenstroth J-C, Kolankowska I, Kalisch T, Dinse H-R (2010) Superior sensory, motor, and cognitive performance in elderly individuals with multi-year dancing activities. Frontiers in Aging Neuroscience 2(31): 1–9.
    1. Rehfeld K, Hökelmann A, Lehmann W, Blaser P (2014) Auswirkungen einer Tanz- und Kraft-Ausdauer-Intervention auf kognitive Fähigkeiten älterer Menschen. Zeitschrift für Neuropsychologie 25(2): 99–108.
    1. Brown S, Martinez M-J, Parsons L-M (2006) The neural basis of human dance. Cerebral cortex 16(8): 1157–1167. doi:
    1. Hänggi J, Koeneke S, Bezzola L, Jäncke L (2010) Structural neuroplasticity in the sensorimotor network of professional female ballet dancers. Human brain mapping 31(8): 1196–1206. doi:
    1. Hüfner K, Binetti C, Hamilton D-A, Stephan T, Flanagin V-L, Linn J, et al. (2011) Structural and functional plasticity of the hippocampal formation in professional dancers and slackliners. Hippocampus 21(8): 855–865. doi:
    1. Folstein M-F, Folstein S-E, McHugh P-R (1975) “Mini-mental” state. A practical method for grading the state of patients for the clinician. Journal of Psychiatric Research 12(3): 189–198.
    1. Beck A-T, Brown G-K, Steer R-A (2006) Beck-Depressions-Inventar BDI-II, Manual. 2. Auflage (Harcourt Test Services, Frankfurt/M: ).
    1. Brehm W, Janke A, Sygusch R, Wagner P (2006) Gesund durch Gesundheitssport (Juventa, München: ), pp 16–23.
    1. Ashburner J, Ridgway G-R (2013) Symmetric diffeomorphic modeling of longitudinal structural MRI. Frontiers in neuroscience 6 (197): 1–19.
    1. Ashburner J (2007) A fast diffeomorphic image registration algorithm. Neuroimage 38(1): 95–113. doi:
    1. Melzer T-R, Myall D-J, MacAskill M-R, Pitcher T-L, Livingston L, Watts R, et al. (2015) Tracking Parkinson’s Disease over One Year with Multimodal Magnetic Resonance Imaging in a Group of Older Patients with Moderate Disease. PloS one 10(12): 1–14.
    1. Boyke J, Driemeyer J, Gaser C, Büchel C, May A (2008) Training-induced brain structure changes in the elderly. The Journal of neuroscience 28(28): 7031–7035. doi:
    1. Draganski B, Gaser C, Busch V, Schuierer G, Bogdahn U, May A (2004) Neuroplasticity: changes in grey matter induced by training. Nature 427(6972): 311–312. doi:
    1. Schega L, Peter B, Brigadski T, Leßmann V, Isermann B, Hamacher D, et al. (2016) Effect of intermittent normobaric hypoxia on aerobic capacity and cognitive function in older people. Journal of Science and Medicine in Sport.
    1. Petzold A, Psotta L, Brigadski T, Endres T, Lessmann V (2015) Chronic BDNF deficiency leads to an age-dependent impairment in spatial learning. Neurobiology of learning and memory 120: 52–60. doi:
    1. Zimmermann P, Fimm B (2002) Testbatterie zur Aufmerksamkeitsprüfung (TAP), Version 1.7, Handbuch (Psytest, Würselen: ).
    1. Oswald W-D, Roth E (1978) Der Zahlen-Verbindungs-Test (ZVT), Ein sprachfreier Intelligenz-Test zur Messung der “kognitiven Leistungsgeschwindigkeit”, Handanweisung, 2. Auflage (Hogrefe Verlag für Psychologie, Göttingen: ).
    1. Aschenbrenner S, Tucha O, Lange K-W (2000) Manual zum RWT (Regensburger Wortflüssigkeits-Test), Handanweisung (Hogrefe Verlag, Göttingen: ).
    1. Härting C, Markowitsch H-J, Neufeld H, Calabrese P, Deisinger K, Kessler J (2000) Wechsler Gedächtnis Test-Revidierte Fassung (WMS-R) (Huber, Bern: ).
    1. Helmstaedter C, Lendt M, Lux S (2001) Verbaler Lern- und Merkfähigkeitstest, VLMT, Manual (Beltz Test, Göttingen: ).
    1. Meyers J-E, Meyers K-R (1995) Rey Complex Figure Test and Recognition Trial. (Psychological Assessment Resources, Florida: ).
    1. Stemper T (2003) Lehrbuch Lizenzierter Fitness-Trainer DSSV (SSV-Verlag, Hamburg: ).
    1. McCarthy G, Puce A, Constable R-T, Krystal J-H, Gore J-C, Goldman-Rakic P (1996) Activation of human prefrontal cortex during spatial and nonspatial working memory tasks measured by functional MRI. Cerebral Cortex 6(4): 600–611.
    1. Kukolja J, Fink G-R (2011) Amnesie. Neurologische Differenzialdiagnostik. Evidenzbasierte Entscheidungsprozesse und diagnostische Pfade, eds Bewermeyer H, Fink G-R, Limmroth V (Schattauer, Stuttgart: ), pp 41–50.
    1. Mayer J-S, Bittner R-A, Nikolić D, Bledowski C, Goebel R, Linden D-E-J (2007) Common neural substrates for visual working memory and attention. Neuroimage 36(2): 441–453. doi:
    1. Soros P, Marmurek J, Tam F, Baker N, Staines W-R, Graham S-J (2007) Functional MRI of working memory and selective attention in vibrotactile frequency discrimination. BMC. Neuroscience 8(1): 48.
    1. Kattenstroth J-C, Kalisch T, Holt S, Tegenthoff M, Dinse H-R (2013) Six months of dance intervention enhances postural, sensorimotor, and cognitive performance in elderly without affecting cardio-respiratory functions. Frontiers in aging neuroscience 5(5): 1–9.
    1. Picard N, Strick P-L (2001) Imaging the premotor areas. Current opinion in neurobiology 11(6): 663–672.
    1. Ball T, Schreiber A, Feige B, Wagner M, Lücking C-H, Kristeva-Feige R (1999) The role of higher-order motor areas in voluntary movement as revealed by high-resolution EEG and fMRI. Neuroimage 10(6): 682–694. doi:
    1. Leff A-P, Schofield T-M, Crinion J-T, Seghier M-L, Grogan A, Green D-W, et al. (2009) The left superior temporal gyrus is a shared substrate for auditory short-term memory and speech comprehension: evidence from 210 patients with stroke. Brain 132(12): 3401–3410.
    1. Stevenson R-A, James T-W (2008) Audiovisual integration in human superior temporal sulcus: Inverse effectiveness and the neural processing of speech and object recognition. Neuroimage 44(3): 1210–1223. doi:
    1. Willems R-M, Özyürek A, Hagoort P (2009) Differential roles for left inferior frontal and superior temporal cortex in multimodal integration of action and language. NeuroImage, 47(4): 1992–2004. doi:
    1. O’Sullivan M, Jones D-K, Summers P-E, Morris R-G, Williams S-C-R, Markus H-S (2001) Evidence for cortical “disconnection” as a mechanism of age-related cognitive decline. Neurology 57(4): 632–638.
    1. Thach W-T (1998) A role for the cerebellum in learning movement coordination. Neurobiology of learning and memory 70(1): 177–188.
    1. Doyon J, Penhune V, Ungerleider L-G (2003) Distinct contribution of the cortico-striatal and cortico-cerebellar systems to motor skill learning. Neuropsychologia 41(3): 252–262.
    1. Haber S-N, Calzavara R (2009) The cortico-basal ganglia integrative network: the role of the thalamus. Brain research bulletin 78(2): 69–74.
    1. Kanwisher N, McDermott J, Chun M-M (1997) The fusiform face area: a module in human extrastriate cortex specialized for face perception. The Journal of neuroscience 17(11): 4302–4311.
    1. Wagner A-P, Schmoll H, Badan I, Platt D, Kessler C (2000) Brain plasticity: to what extent do aged animals retain the capacity to coordinate gene activity in response to acute challenges. Experimental gerontology 35(9): 1211–1227.
    1. Colucci‐D'Amato L, di Porzio U (2008) Neurogenesis in adult CNS: from denial to opportunities and challenges for therapy. Bioessays: 30(2): 135–145. doi:
    1. Van Praag H, Kempermann G, Gage F-H (1999) Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nature neuroscience 2(3): 266–270. doi:
    1. Kronenberg G, Reuter K, Steiner B, Brandt M-D, Jessberger S, Yamaguchi M, et al. (2003) Subpopulations of proliferating cells of the adult hippocampus respond differently to physiologic neurogenic stimuli. Journal of Comparative Neurology 467(4): 455–463. doi:
    1. Tapia-Arancibia L, Aliaga E, Silhol M, Arancibia S (2008) New insights into brain BDNF function in normal aging and Alzheimer disease. Brain research reviews 59(1): 201–220. doi:
    1. Smith S-M, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols T-E, Mackay C-E, et al. (2006) Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage 31(4): 1487–1505. doi:

Source: PubMed

3
Abonneren