Preparation of the endometrium for frozen embryo transfer: an update on clinical practices

Yiting Zhang, Xiao Fu, Shuli Gao, Shuzhe Gao, Shanshan Gao, Jinlong Ma, Zi-Jiang Chen, Yiting Zhang, Xiao Fu, Shuli Gao, Shuzhe Gao, Shanshan Gao, Jinlong Ma, Zi-Jiang Chen

Abstract

Over the past decade, the application of frozen-thawed embryo transfer treatment cycles has increased substantially. Hormone replacement therapy and the natural cycle are two popular methods for preparing the endometrium. Hormone replacement therapy is now used at the discretion of the doctors because it is easy to coordinate the timing of embryo thawing and transfer with the schedules of the in-vitro fertilization lab, the treating doctors, and the patient. However, current results suggest that establishing a pregnancy in the absence of a corpus luteum as a result of anovulation may pose significant maternal and fetal risks. Therefore, a 'back to nature' approach that advocates an expanded use of natural cycle FET in ovulatory women has been suggested. Currently, there is increasing interest in how the method of endometrial preparation may influence frozen embryo transfer outcomes specifically, especially when it comes to details such as different types of ovulation monitoring and different luteal support in natural cycles, and the ideal exogenous hormone administration route as well as the endocrine monitoring in hormone replacement cycles. In addition to improving implantation rates and ensuring the safety of the fetus, addressing these points will allow for individualized endometrial preparation, also as few cycles as possible would be canceled.

Keywords: Endocrine monitoring; Endometrial assessment; Endometrial preparation; Frozen–thawed embryo transfer; Hormone replacement therapy; Luteal phase support; Natural cycle.

Conflict of interest statement

We declare that we have no competing interests in present study.

© 2023. The Author(s).

Figures

Fig. 1
Fig. 1
Proposal of timing of embryo transfer in HRT, tNC, and mNC and progesterone LPS in tNC and mNC. Notes: ET: embryo transfer; HRT: hormone replacement therapy; tNC: true natural cycle; mNC: modified natural cycle; ETM: endometrial thickness; E2: estradiol OR: oocyte retrieval; LH: luteinizing hormone; LPS: luteal phase support; hCG: human chorionic gonadotropin D: day; P: progesterone

References

    1. Blockeel C, et al. A fresh look at the freeze-all protocol: a SWOT analysis. Hum Reprod. 2016;31(3):491–7. doi: 10.1093/humrep/dev339.
    1. Mizrachi Y, et al. Ovarian stimulation for freeze-all IVF cycles: a systematic review. Hum Reprod Update. 2020;26(1):118–35. doi: 10.1093/humupd/dmz037.
    1. The use of Preimplantation genetic testing for aneuploidy (PGT-A): a committee opinion. Fertil Steril. 2018;109(3):429–36. doi: 10.1016/j.fertnstert.2018.01.002.
    1. Kuang Y, et al. Medroxyprogesterone acetate is an effective oral alternative for preventing premature luteinizing hormone surges in women undergoing controlled ovarian hyperstimulation for in vitro fertilization. Fertil Steril. 2015;104(1):62–70e3. doi: 10.1016/j.fertnstert.2015.03.022.
    1. Trounson A, Mohr L. Human pregnancy following cryopreservation, thawing and transfer of an eight-cell embryo. Nature. 1983;305(5936):707–9. doi: 10.1038/305707a0.
    1. Hu KL, Zhang D, Li R. Endometrium preparation and perinatal outcomes in women undergoing single-blastocyst transfer in frozen cycles. Fertil Steril. 2021;115(6):1487–94. doi: 10.1016/j.fertnstert.2020.12.016.
    1. Madero S, et al. Endometrial preparation: effect of estrogen dose and administration route on reproductive outcomes in oocyte donation cycles with fresh embryo transfer. Hum Reprod. 2016;31(8):1755–64. doi: 10.1093/humrep/dew099.
    1. Hizkiyahu R, et al. Does increasing estrogen dose during frozen embryo transfer affect pregnancy rate? J Assist Reprod Genet. 2022;39(5):1081–5. doi: 10.1007/s10815-022-02470-8.
    1. Ogawa T, et al. Effect of transdermal estrogen dose regimen for endometrial preparation of frozen-thawed embryo transfer on reproductive and obstetric outcomes. Reprod Med Biol. 2021;20(2):208–14. doi: 10.1002/rmb2.12370.
    1. Şükür YE et al. Impact of an estrogen replacement regimen on live birth rate in frozen-thawed good-quality embryo transfer. Int J Gynaecol Obstet, 2022.
    1. Jiang WJ, Song JY, Sun ZG. Short (seven days) versus standard (fourteen days) oestrogen administration in a programmed frozen embryo transfer cycle: a retrospective cohort study. J Ovarian Res. 2022;15(1):36. doi: 10.1186/s13048-022-00967-5.
    1. Devroey P, Pados G. Preparation of endometrium for egg donation. Hum Reprod Update. 1998;4(6):856–61. doi: 10.1093/humupd/4.6.856.
    1. Bourdon M, et al. Prolonged estrogen (E2) treatment prior to frozen-blastocyst transfer decreases the live birth rate. Hum Reprod. 2018;33(5):905–13. doi: 10.1093/humrep/dey041.
    1. Paulson RJ. Hormonal induction of endometrial receptivity. Fertil Steril. 2011;96(3):530–5. doi: 10.1016/j.fertnstert.2011.07.1097.
    1. Burks H, Paulson R. Cryopreserved embryo transfer: endometrial preparation and timing. Semin Reprod Med. 2015;33(2):145–52. doi: 10.1055/s-0035-1546302.
    1. Krasnow JS, et al. Comparison of transdermal versus oral estradiol on endometrial receptivity. Fertil Steril. 1996;65(2):332–6. doi: 10.1016/S0015-0282(16)58094-7.
    1. Kahraman S, et al. Transdermal versus oral estrogen: clinical outcomes in patients undergoing frozen-thawed single blastocyst transfer cycles without GnRHa suppression, a prospective randomized clinical trial. J Assist Reprod Genet. 2019;36(3):453–9. doi: 10.1007/s10815-018-1380-5.
    1. Davar R, et al. A comparison of the Effects of Transdermal Estradiol and Estradiol Valerate on Endometrial Receptivity in Frozen-thawed embryo transfer cycles: a Randomized Clinical Trial. J Reprod Infertil. 2016;17(2):97–103.
    1. Corroenne R, et al. Endometrial preparation for frozen-thawed embryo transfer in an artificial cycle: transdermal versus vaginal estrogen. Sci Rep. 2020;10(1):985. doi: 10.1038/s41598-020-57730-3.
    1. Dubois E, et al. Impact of the type of endometrial oestrogen preparation for frozen-thawed embryo (vaginal or transdermal) on perinatal outcomes in an artificial cycle. J Gynecol Obstet Hum Reprod. 2021;50(9):102187. doi: 10.1016/j.jogoh.2021.102187.
    1. Child T, et al. Systematic review of the clinical efficacy of vaginal progesterone for luteal phase support in assisted reproductive technology cycles. Reprod Biomed Online. 2018;36(6):630–45. doi: 10.1016/j.rbmo.2018.02.001.
    1. Haddad G, et al. Intramuscular route of progesterone administration increases pregnancy rates during non-downregulated frozen embryo transfer cycles. J Assist Reprod Genet. 2007;24(10):467–70. doi: 10.1007/s10815-007-9168-z.
    1. Kaser DJ, et al. Intramuscular progesterone versus 8% crinone vaginal gel for luteal phase support for day 3 cryopreserved embryo transfer. Fertil Steril. 2012;98(6):1464–9. doi: 10.1016/j.fertnstert.2012.08.007.
    1. Shapiro DB, et al. Progesterone replacement with vaginal gel versus i.m. injection: cycle and pregnancy outcomes in IVF patients receiving vitrified blastocysts. Hum Reprod. 2014;29(8):1706–11. doi: 10.1093/humrep/deu121.
    1. Williams SC, Donahue J, Muasher SJ. Vaginal progesterone therapy during programmed cycles for frozen embryo transfer: an analysis of serum progesterone levels and pregnancy rates. Fertil Steril. 2000;74(3, Supplement 1):S209. doi: 10.1016/S0015-0282(00)01336-4.
    1. Devine K, et al. Vitrified blastocyst transfer cycles with the use of only vaginal progesterone replacement with endometrin have inferior ongoing pregnancy rates: results from the planned interim analysis of a three-arm randomized controlled noninferiority trial. Fertil Steril. 2018;109(2):266–75. doi: 10.1016/j.fertnstert.2017.11.004.
    1. Devine K, et al. Intramuscular progesterone optimizes live birth from programmed frozen embryo transfer: a randomized clinical trial. Fertil Steril. 2021;116(3):633–43. doi: 10.1016/j.fertnstert.2021.04.013.
    1. Wang Y, et al. Crinone Gel for Luteal Phase support in frozen-thawed embryo transfer cycles: a prospective Randomized Clinical Trial in the Chinese Population. PLoS ONE. 2015;10(7):e0133027. doi: 10.1371/journal.pone.0133027.
    1. Lightman A, Kol S, Itskovitz-Eldor J. A prospective randomized study comparing intramuscular with intravaginal natural progesterone in programmed thaw cycles. Hum Reprod. 1999;14(10):2596–9. doi: 10.1093/humrep/14.10.2596.
    1. Lan VT, et al. Progesterone supplementation during cryopreserved embryo transfer cycles: efficacy and convenience of two vaginal formulations. Reprod Biomed Online. 2008;17(3):318–23. doi: 10.1016/S1472-6483(10)60214-3.
    1. de Ziegler D, et al. A randomized trial comparing the endometrial effects of daily subcutaneous administration of 25 mg and 50 mg progesterone in aqueous preparation. Fertil Steril. 2013;100(3):860–6. doi: 10.1016/j.fertnstert.2013.05.029.
    1. Sator M, et al. Pharmacokinetics and safety profile of a novel progesterone aqueous formulation administered by the s.c. route. Gynecol Endocrinol. 2013;29(3):205–8. doi: 10.3109/09513590.2012.736560.
    1. Lockwood G, Griesinger G, Cometti B. Subcutaneous progesterone versus vaginal progesterone gel for luteal phase support in in vitro fertilization: a noninferiority randomized controlled study. Fertil Steril. 2014;101(1):112–119e3. doi: 10.1016/j.fertnstert.2013.09.010.
    1. Baker VL, et al. A randomized, controlled trial comparing the efficacy and safety of aqueous subcutaneous progesterone with vaginal progesterone for luteal phase support of in vitro fertilization. Hum Reprod. 2014;29(10):2212–20. doi: 10.1093/humrep/deu194.
    1. Turkgeldi E, et al. Subcutaneous versus vaginal progesterone for vitrified-warmed blastocyst transfer in artificial cycles. Reprod Biomed Online. 2020;41(2):248–53. doi: 10.1016/j.rbmo.2020.04.007.
    1. Vuong LN, et al. Micronized progesterone plus dydrogesterone versus micronized progesterone alone for luteal phase support in frozen-thawed cycles (MIDRONE): a prospective cohort study. Hum Reprod. 2021;36(7):1821–31. doi: 10.1093/humrep/deab093.
    1. Pabuccu E, et al. Oral, vaginal or intramuscular progesterone in programmed frozen embryo transfer cycles: a pilot randomized controlled trial. Reprod Biomed Online; 2022.
    1. Atzmon Y, et al. Comparable outcomes using oral Dydrogesterone Vs. Micronized vaginal progesterone in frozen embryo transfer: a Retrospective Cohort Study. Reprod Sci. 2021;28(7):1874–81. doi: 10.1007/s43032-020-00376-3.
    1. Macedo L et al. Oral dydrogesterone in frozen-thawed embryo transfer cycles. Rev Assoc Med Bras (1992), 2022. 68(1): p. 100–105.
    1. Ozer G, et al. Oral dydrogesterone vs. micronized vaginal progesterone gel for luteal phase support in frozen-thawed single blastocyst transfer in good prognosis patients. J Gynecol Obstet Hum Reprod. 2021;50(5):102030. doi: 10.1016/j.jogoh.2020.102030.
    1. Liu Y, Wu Y. Progesterone intramuscularly or vaginally Administration May not change live birth rate or neonatal outcomes in Artificial Frozen-Thawed embryo transfer cycles. Front Endocrinol (Lausanne) 2020;11:539427. doi: 10.3389/fendo.2020.539427.
    1. Groenewoud ER, Cohlen BJ, Macklon NS. Programming the endometrium for deferred transfer of cryopreserved embryos: hormone replacement versus modified natural cycles. Fertil Steril. 2018;109(5):768–74. doi: 10.1016/j.fertnstert.2018.02.135.
    1. Ghobara T, Gelbaya TA, Ayeleke RO. Cycle regimens for frozen-thawed embryo transfer. Cochrane Database Syst Rev, 2017. 7(7): p. Cd003414.
    1. Wilcox AJ, Baird DD, Weinberg CR. Time of implantation of the conceptus and loss of pregnancy. N Engl J Med. 1999;340(23):1796–9. doi: 10.1056/NEJM199906103402304.
    1. Imbar T, Hurwitz A. Synchronization between endometrial and embryonic age is not absolutely crucial for implantation. Fertil Steril. 2004;82(2):472–4. doi: 10.1016/j.fertnstert.2004.01.030.
    1. Theodorou E, Forman R. Live birth after blastocyst transfer following only 2 days of progesterone administration in an agonadal oocyte recipient. Reprod Biomed Online. 2012;25(4):355–7. doi: 10.1016/j.rbmo.2012.06.011.
    1. van de Vijver A, et al. What is the optimal duration of progesterone administration before transferring a vitrified-warmed cleavage stage embryo? A randomized controlled trial. Hum Reprod. 2016;31(5):1097–104. doi: 10.1093/humrep/dew045.
    1. Mackens S, et al. Frozen embryo transfer: a review on the optimal endometrial preparation and timing. Hum Reprod. 2017;32(11):2234–42. doi: 10.1093/humrep/dex285.
    1. Yang X, Bu Z, Hu L. Live birth rate of frozen-thawed single blastocyst transfer after 6 or 7 days of Progesterone Administration in hormone replacement therapy cycles: a propensity score-matched cohort study. Front Endocrinol (Lausanne) 2021;12:706427. doi: 10.3389/fendo.2021.706427.
    1. van de Vijver A, et al. Vitrified-warmed blastocyst transfer on the 5th or 7th day of progesterone supplementation in an artificial cycle: a randomised controlled trial. Gynecol Endocrinol. 2017;33(10):783–6. doi: 10.1080/09513590.2017.1318376.
    1. Roelens C, et al. Frozen-warmed blastocyst transfer after 6 or 7 days of progesterone administration: impact on live birth rate in hormone replacement therapy cycles. Fertil Steril. 2020;114(1):125–32. doi: 10.1016/j.fertnstert.2020.03.017.
    1. van de Vijver A, et al. Cryopreserved embryo transfer in an artificial cycle: is GnRH agonist down-regulation necessary? Reprod Biomed Online. 2014;29(5):588–94. doi: 10.1016/j.rbmo.2014.08.005.
    1. Dal Prato L, et al. Endometrial preparation for frozen-thawed embryo transfer with or without pretreatment with gonadotropin-releasing hormone agonist. Fertil Steril. 2002;77(5):956–60. doi: 10.1016/S0015-0282(02)02960-6.
    1. Xu J, et al. Endometrial Preparation for frozen-thawed embryo transfer with or without pretreatment with GnRH agonist: a randomized controlled trial at two Centers. Front Endocrinol (Lausanne) 2021;12:722253. doi: 10.3389/fendo.2021.722253.
    1. Glujovsky D et al. Endometrial preparation for women undergoing embryo transfer with frozen embryos or embryos derived from donor oocytes. Cochrane Database Syst Rev, 2020. 10(10): p. Cd006359.
    1. Khan KN, et al. Changes in tissue inflammation, angiogenesis and apoptosis in endometriosis, adenomyosis and uterine myoma after GnRH agonist therapy. Hum Reprod. 2010;25(3):642–53. doi: 10.1093/humrep/dep437.
    1. Niu Z, et al. Long-term pituitary downregulation before frozen embryo transfer could improve pregnancy outcomes in women with adenomyosis. Gynecol Endocrinol. 2013;29(12):1026–30. doi: 10.3109/09513590.2013.824960.
    1. Park CW, et al. Pregnancy rate in women with adenomyosis undergoing fresh or frozen embryo transfer cycles following gonadotropin-releasing hormone agonist treatment. Clin Exp Reprod Med. 2016;43(3):169–73. doi: 10.5653/cerm.2016.43.3.169.
    1. Li M, et al. Effects of artificial cycles with and without gonadotropin-releasing hormone agonist pretreatment on frozen embryo transfer outcomes in patients with adenomyosis. Sci Rep. 2021;11(1):19326. doi: 10.1038/s41598-021-98918-5.
    1. Cao X, et al. The effectiveness of different down-regulating protocols on in vitro fertilization-embryo transfer in endometriosis: a meta-analysis. Reprod Biol Endocrinol. 2020;18(1):16. doi: 10.1186/s12958-020-00571-6.
    1. Wang Y, et al. Effect of artificial cycle with or without GnRH-a pretreatment on pregnancy and neonatal outcomes in women with PCOS after frozen embryo transfer: a propensity score matching study. Reprod Biol Endocrinol. 2022;20(1):56. doi: 10.1186/s12958-022-00929-y.
    1. Liu X, et al. Pretreatment with a GnRH agonist and hormone replacement treatment protocol could not improve live birth rate for PCOS women undergoing frozen-thawed embryo transfer cycles. BMC Pregnancy Childbirth. 2021;21(1):835. doi: 10.1186/s12884-021-04293-4.
    1. Luo L, et al. Pregnancy outcome and cost-effectiveness comparisons of artificial cycle-prepared frozen embryo transfer with or without GnRH agonist pretreatment for polycystic ovary syndrome: a randomised controlled trial. BJOG. 2021;128(4):667–74. doi: 10.1111/1471-0528.16461.
    1. Salemi S, et al. Endometrial preparation for vitrified-warmed embryo transfer with or without GnRH-agonist pre-treatment in patients with polycystic ovary syndrome: a randomized controlled trial. Reprod Biomed Online. 2021;43(3):446–52. doi: 10.1016/j.rbmo.2021.06.006.
    1. Christ JP, et al. Pre-conception characteristics predict obstetrical and neonatal outcomes in women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2019;104(3):809–18. doi: 10.1210/jc.2018-01787.
    1. Ben Rafael Z. Repeated implantation failure (RIF): an iatrogenic meaningless definition that generates unnecessary and costly use of add-on procedures. Hum Reprod. 2020;35(7):1479–83. doi: 10.1093/humrep/deaa134.
    1. Rozen G, et al. An algorithm to personalise the diagnosis of recurrent implantation failure based on theoretical cumulative implantation rate. Hum Reprod. 2021;36(6):1463–8. doi: 10.1093/humrep/deab091.
    1. Magdi Y, et al. Revisiting the management of recurrent implantation failure through freeze-all policy. Fertil Steril. 2017;108(1):72–7. doi: 10.1016/j.fertnstert.2017.04.020.
    1. Yang X, et al. Pituitary suppression before frozen embryo transfer is beneficial for patients suffering from idiopathic repeated implantation failure. J Huazhong Univ Sci Technolog Med Sci. 2016;36(1):127–31. doi: 10.1007/s11596-016-1554-2.
    1. Pan D, et al. Gonadotropin-releasing hormone agonist downregulation combined with hormone replacement therapy improves the reproductive outcome in frozen-thawed embryo transfer cycles for patients of advanced reproductive age with idiopathic recurrent implantation failure. Reprod Biol Endocrinol. 2022;20(1):26. doi: 10.1186/s12958-022-00897-3.
    1. Steiner N, et al. Effect of GnRH agonist and letrozole treatment in women with recurrent implantation failure. Fertil Steril. 2019;112(1):98–104. doi: 10.1016/j.fertnstert.2019.03.021.
    1. Dozortsev DI, Diamond MP. Luteinizing hormone-independent rise of progesterone as the physiological trigger of the ovulatory gonadotropins surge in the human. Fertil Steril. 2020;114(2):191–9. doi: 10.1016/j.fertnstert.2020.06.016.
    1. Erden M, et al. Vitrified-warmed blastocyst transfer timing related to LH surge in true natural cycle and its impact on ongoing pregnancy rates. Reprod Biomed Online. 2022;45(3):440–7. doi: 10.1016/j.rbmo.2022.04.018.
    1. Frydman R, et al. Interrelationship of plasma and urinary luteinizing hormone preovulatory surge. J Steroid Biochem. 1984;20(2):617–9. doi: 10.1016/0022-4731(84)90132-8.
    1. Martinez F, Trounson A, Besanko M. Detection of the LH surge for AID, AIH and embryo transfer using a twice daily urinary dip-stick assay. Clin Reprod Fertil. 1986;4(1):45–53.
    1. Gavrić Lovrec V, Kozar N, Reljič M. Outcome of vitrified-warmed blastocyst transfer performed on days 5–7 after urine LH detection. Reprod Biomed Online. 2022;44(4):630–5. doi: 10.1016/j.rbmo.2021.12.008.
    1. Bartels CB, et al. The window is wide: flexible timing for vitrified-warmed embryo transfer in natural cycles. Reprod Biomed Online. 2019;39(2):241–8. doi: 10.1016/j.rbmo.2019.04.003.
    1. Marinho AO, et al. Real time pelvic ultrasonography during the periovulatory period of patients attending an artificial insemination clinic. Fertil Steril. 1982;37(5):633–8. doi: 10.1016/S0015-0282(16)46274-6.
    1. Coetsier T, Dhont M. Complete and partial luteinized unruptured follicle syndrome after ovarian stimulation with clomiphene citrate/human menopausal gonadotrophin/human chorionic gonadotrophin. Hum Reprod. 1996;11(3):583–7. doi: 10.1093/HUMREP/11.3.583.
    1. Wang L, et al. Effect of luteinized unruptured follicle cycles on clinical outcomes of frozen thawed embryo transfer in chinese women. J Assist Reprod Genet. 2008;25(6):229–33. doi: 10.1007/s10815-008-9225-2.
    1. Li S, et al. Impact of Luteinized Unruptured follicles on clinical outcomes of natural cycles for Frozen/Thawed blastocyst transfer. Front Endocrinol (Lausanne) 2021;12:738005. doi: 10.3389/fendo.2021.738005.
    1. Litwicka K, et al. HCG administration after endogenous LH rise negatively influences pregnancy rate in modified natural cycle for frozen-thawed euploid blastocyst transfer: a pilot study. J Assist Reprod Genet. 2018;35(3):449–55. doi: 10.1007/s10815-017-1089-x.
    1. Kahraman S, Sahin Y. Is there a critical LH level for hCG trigger after the detection of LH surge in modified natural frozen-thawed single blastocyst transfer cycles? J Assist Reprod Genet. 2020;37(12):3025–31. doi: 10.1007/s10815-020-01974-5.
    1. Ye H, et al. Frozen-thawed embryo transfer in modified natural cycles: a retrospective analysis of pregnancy outcomes in ovulatory women with vs. without spontaneous luteinizing hormone surge. BMC Pregnancy Childbirth. 2022;22(1):814. doi: 10.1186/s12884-022-05161-5.
    1. Shapiro D et al. Examining the evidence: progesterone supplementation during fresh and frozen embryo transfer. Reprod Biomed Online, 2014. 29 Suppl 1: p. S1-14; quiz S15-6.
    1. Rosenberg SM, Luciano AA, Riddick DH. The luteal phase defect: the relative frequency of, and encouraging response to, treatment with vaginal progesterone. Fertil Steril. 1980;34(1):17–20. doi: 10.1016/S0015-0282(16)44831-4.
    1. Lee VC, et al. Luteal phase support does not improve the clinical pregnancy rate of natural cycle frozen-thawed embryo transfer: a retrospective analysis. Eur J Obstet Gynecol Reprod Biol. 2013;169(1):50–3. doi: 10.1016/j.ejogrb.2013.02.005.
    1. Lee VCY, et al. A randomized double-blinded controlled trial of hCG as luteal phase support in natural cycle frozen embryo transfer. Hum Reprod. 2017;32(5):1130–7. doi: 10.1093/humrep/dex049.
    1. Wånggren K, et al. Progesterone supplementation in natural cycles improves live birth rates after embryo transfer of frozen-thawed embryos-a randomized controlled trial. Hum Reprod. 2022;37(10):2366–74. doi: 10.1093/humrep/deac181.
    1. Bjuresten K, et al. Luteal phase progesterone increases live birth rate after frozen embryo transfer. Fertil Steril. 2011;95(2):534–7. doi: 10.1016/j.fertnstert.2010.05.019.
    1. Schwartz E, et al. Luteal phase progesterone supplementation following induced natural cycle frozen embryo transfer: a retrospective cohort study. J Gynecol Obstet Hum Reprod. 2019;48(2):95–8. doi: 10.1016/j.jogoh.2018.10.011.
    1. Kim CH, et al. The effect of luteal phase progesterone supplementation on natural frozen-thawed embryo transfer cycles. Obstet Gynecol Sci. 2014;57(4):291–6. doi: 10.5468/ogs.2014.57.4.291.
    1. Kyrou D, et al. Vaginal progesterone supplementation has no effect on ongoing pregnancy rate in hCG-induced natural frozen-thawed embryo transfer cycles. Eur J Obstet Gynecol Reprod Biol. 2010;150(2):175–9. doi: 10.1016/j.ejogrb.2010.02.038.
    1. Eftekhar M, Rahsepar M, Rahmani E. Effect of progesterone supplementation on natural frozen-thawed embryo transfer cycles: a randomized controlled trial. Int J Fertil Steril. 2013;7(1):13–20.
    1. Horowitz E, et al. A randomized controlled trial of vaginal progesterone for luteal phase support in modified natural cycle - frozen embryo transfer. Gynecol Endocrinol. 2021;37(9):792–7. doi: 10.1080/09513590.2020.1854717.
    1. Mizrachi Y, et al. Should women receive luteal support following natural cycle frozen embryo transfer? A systematic review and meta-analysis. Hum Reprod Update. 2021;27(4):643–50. doi: 10.1093/humupd/dmab011.
    1. Seol A, et al. Effect of luteal phase support with vaginal progesterone on pregnancy outcomes in natural frozen embryo transfer cycles: a meta-analysis. Clin Exp Reprod Med. 2020;47(2):147–52. doi: 10.5653/cerm.2019.03132.
    1. Mizrachi Y, et al. Timing of progesterone luteal support in natural cryopreserved embryo transfer cycles: back to basics. Reprod Biomed Online. 2022;45(1):63–8. doi: 10.1016/j.rbmo.2022.03.021.
    1. von Versen-Höynck F, Griesinger G. Should any use of artificial cycle regimen for frozen-thawed embryo transfer in women capable of ovulation be abandoned: yes, but what’s next for FET cycle practice and research? Hum Reprod. 2022;37(8):1697–703. doi: 10.1093/humrep/deac125.
    1. Asserhøj LL, et al. Adverse obstetric and perinatal outcomes in 1,136 singleton pregnancies conceived after programmed frozen embryo transfer (FET) compared with natural cycle FET. Fertil Steril. 2021;115(4):947–56. doi: 10.1016/j.fertnstert.2020.10.039.
    1. Ginström Ernstad E et al. Neonatal and maternal outcome after frozen embryo transfer: increased risks in programmed cycles. Am J Obstet Gynecol, 2019. 221(2): p. 126.e1-126.e18.
    1. Roelens C, et al. Artificially prepared vitrified-warmed embryo transfer cycles are associated with an increased risk of pre-eclampsia. Reprod Biomed Online. 2022;44(5):915–22. doi: 10.1016/j.rbmo.2021.12.004.
    1. von Versen-Höynck F, et al. Increased preeclampsia risk and reduced aortic compliance with in Vitro fertilization cycles in the absence of a Corpus Luteum. Hypertension. 2019;73(3):640–9. doi: 10.1161/HYPERTENSIONAHA.118.12043.
    1. Wang Z, et al. Increased risk of Pre-eclampsia after frozen-thawed embryo transfer in programming cycles. Front Med (Lausanne) 2020;7:104. doi: 10.3389/fmed.2020.00104.
    1. Hancke K, et al. Patients undergoing frozen-thawed embryo transfer have similar live birth rates in spontaneous and artificial cycles. J Assist Reprod Genet. 2012;29(5):403–7. doi: 10.1007/s10815-012-9724-z.
    1. Patel S, et al. Estradiol elicits proapoptotic and antiproliferative Effects in Human trophoblast cells. Biol Reprod. 2015;93(3):74. doi: 10.1095/biolreprod.115.129114.
    1. Saupstad M, et al. Preparation of the endometrium and timing of blastocyst transfer in modified natural cycle frozen-thawed embryo transfers (mNC-FET): a study protocol for a randomised controlled multicentre trial. BMJ Open. 2019;9(12):e031811. doi: 10.1136/bmjopen-2019-031811.
    1. Zhou R, et al. Association between serum estradiol levels prior to progesterone administration in artificial frozen-thawed blastocyst transfer cycles and live birth rate: a retrospective study. BJOG. 2021;128(13):2092–100. doi: 10.1111/1471-0528.16777.
    1. Mackens S, et al. Impact of serum estradiol levels prior to Progesterone Administration in artificially prepared frozen embryo transfer cycles. Front Endocrinol (Lausanne) 2020;11:255. doi: 10.3389/fendo.2020.00255.
    1. Griesinger G, et al. Mid-cycle serum levels of endogenous LH are not associated with the likelihood of pregnancy in artificial frozen-thawed embryo transfer cycles without pituitary suppression. Hum Reprod. 2007;22(10):2589–93. doi: 10.1093/humrep/dem207.
    1. Zhou R, et al. Association between endogenous LH level prior to progesterone administration and live birth rate in artificial frozen-thawed blastocyst transfer cycles of ovulatory women. Hum Reprod. 2021;36(10):2687–96. doi: 10.1093/humrep/deab172.
    1. Harper MJK. 10 the implantation window. Baillière’s Clin Obstet Gynecol. 1992;6(2):351–71.
    1. Mumusoglu S, et al. Preparation of the Endometrium for frozen embryo transfer: a systematic review. Front Endocrinol (Lausanne) 2021;12:688237. doi: 10.3389/fendo.2021.688237.
    1. Labarta E, et al. Low serum progesterone on the day of embryo transfer is associated with a diminished ongoing pregnancy rate in oocyte donation cycles after artificial endometrial preparation: a prospective study. Hum Reprod. 2017;32(12):2437–42. doi: 10.1093/humrep/dex316.
    1. Labarta E, et al. Impact of low serum progesterone levels on the day of embryo transfer on pregnancy outcome: a prospective cohort study in artificial cycles with vaginal progesterone. Hum Reprod. 2020;36(3):683–92. doi: 10.1093/humrep/deaa322.
    1. Boynukalin FK, et al. Measuring the serum progesterone level on the day of transfer can be an additional tool to maximize ongoing pregnancies in single euploid frozen blastocyst transfers. Reproductive Biology and Endocrinology. 2019;17(1):102. doi: 10.1186/s12958-019-0549-9.
    1. Cédrin-Durnerin I, et al. Serum progesterone concentration and live birth rate in frozen-thawed embryo transfers with hormonally prepared endometrium. Reprod Biomed Online. 2019;38(3):472–80. doi: 10.1016/j.rbmo.2018.11.026.
    1. Gaggiotti-Marre S, et al. Low serum progesterone the day prior to frozen embryo transfer of euploid embryos is associated with significant reduction in live birth rates. Gynecol Endocrinol. 2019;35(5):439–42. doi: 10.1080/09513590.2018.1534952.
    1. González-Foruria I, et al. Factors associated with serum progesterone concentrations the day before cryopreserved embryo transfer in artificial cycles. Reprod Biomed Online. 2020;40(6):797–804. doi: 10.1016/j.rbmo.2020.03.001.
    1. Patton PE, et al. Precision of progesterone measurements with the use of automated immunoassay analyzers and the impact on clinical decisions for in vitro fertilization. Fertil Steril. 2014;101(6):1629–36. doi: 10.1016/j.fertnstert.2014.02.037.
    1. Alsbjerg B, et al. Progesterone levels on pregnancy test day after hormone replacement therapy-cryopreserved embryo transfer cycles and related reproductive outcomes. Reprod Biomed Online. 2018;37(5):641–7. doi: 10.1016/j.rbmo.2018.08.022.
    1. Alyasin A, et al. Serum progesterone levels greater than 32.5 ng/ml on the day of embryo transfer are associated with lower live birth rate after artificial endometrial preparation: a prospective study. Reprod Biol Endocrinol. 2021;19(1):24. doi: 10.1186/s12958-021-00703-6.
    1. Melo P, et al. Serum luteal phase progesterone in women undergoing frozen embryo transfer in assisted conception: a systematic review and meta-analysis. Fertil Steril. 2021;116(6):1534–56. doi: 10.1016/j.fertnstert.2021.07.002.
    1. Gaggiotti-Marre S, et al. Low progesterone levels on the day before natural cycle frozen embryo transfer are negatively associated with live birth rates. Hum Reprod. 2020;35(7):1623–9. doi: 10.1093/humrep/deaa092.
    1. Hull MG, et al. The value of a single serum progesterone measurement in the midluteal phase as a criterion of a potentially fertile cycle (“ovulation”) derived form treated and untreated conception cycles. Fertil Steril. 1982;37(3):355–60. doi: 10.1016/S0015-0282(16)46095-4.
    1. Boynukalin FK, et al. Measuring the serum progesterone level on the day of transfer can be an additional tool to maximize ongoing pregnancies in single euploid frozen blastocyst transfers. Reprod Biol Endocrinol. 2019;17(1):102. doi: 10.1186/s12958-019-0549-9.
    1. Brady PC, et al. Serum progesterone concentration on day of embryo transfer in donor oocyte cycles. J Assist Reprod Genet. 2014;31(5):569–75. doi: 10.1007/s10815-014-0199-y.
    1. Yovich JL, et al. Mid-luteal serum progesterone concentrations govern implantation rates for cryopreserved embryo transfers conducted under hormone replacement. Reprod Biomed Online. 2015;31(2):180–91. doi: 10.1016/j.rbmo.2015.05.005.
    1. Kofinas JD, et al. Serum progesterone levels greater than 20 ng/dl on day of embryo transfer are associated with lower live birth and higher pregnancy loss rates. J Assist Reprod Genet. 2015;32(9):1395–9. doi: 10.1007/s10815-015-0546-7.
    1. Labarta E, et al. Serum Progesterone Profile across the Mid and Late Luteal Phase in Artificial cycles is Associated with pregnancy outcome. Front Endocrinol (Lausanne) 2021;12:665717. doi: 10.3389/fendo.2021.665717.
    1. Romanski PA, et al. Length of estradiol exposure > 100 pg/ml in the follicular phase affects pregnancy outcomes in natural frozen embryo transfer cycles. Hum Reprod. 2021;36(7):1932–40. doi: 10.1093/humrep/deab111.
    1. Lee VC, et al. Effect of preovulatory progesterone elevation and duration of progesterone elevation on the pregnancy rate of frozen-thawed embryo transfer in natural cycles. Fertil Steril. 2014;101(5):1288–93. doi: 10.1016/j.fertnstert.2014.01.040.
    1. Huang C, et al. Adverse impact of elevated serum progesterone and luteinizing hormone levels on the hCG trigger day on clinical pregnancy outcomes of modified natural frozen-thawed embryo transfer cycles. Front Endocrinol (Lausanne) 2022;13:1000047. doi: 10.3389/fendo.2022.1000047.
    1. Kovacs P, et al. The effect of endometrial thickness on IVF/ICSI outcome. Hum Reprod. 2003;18(11):2337–41. doi: 10.1093/humrep/deg461.
    1. Kumbak B, et al. Outcome of assisted reproduction treatment in patients with endometrial thickness less than 7 mm. Reprod Biomed Online. 2009;18(1):79–84. doi: 10.1016/S1472-6483(10)60428-2.
    1. Yuan X, et al. Endometrial thickness as a predictor of pregnancy outcomes in 10787 fresh IVF-ICSI cycles. Reprod Biomed Online. 2016;33(2):197–205. doi: 10.1016/j.rbmo.2016.05.002.
    1. Zhao J, et al. Endometrial pattern, thickness and growth in predicting pregnancy outcome following 3319 IVF cycle. Reprod Biomed Online. 2014;29(3):291–8. doi: 10.1016/j.rbmo.2014.05.011.
    1. Zhang M, et al. Endometrial thickness is an independent risk factor of hypertensive disorders of pregnancy: a retrospective study of 13,458 patients in frozen-thawed embryo transfers. Reprod Biol Endocrinol. 2022;20(1):93. doi: 10.1186/s12958-022-00965-8.
    1. Zilberberg E, et al. Endometrial compaction before frozen euploid embryo transfer improves ongoing pregnancy rates. Fertil Steril. 2020;113(5):990–5. doi: 10.1016/j.fertnstert.2019.12.030.
    1. Haas J, et al. Endometrial compaction (decreased thickness) in response to progesterone results in optimal pregnancy outcome in frozen-thawed embryo transfers. Fertil Steril. 2019;112(3):503–509e1. doi: 10.1016/j.fertnstert.2019.05.001.
    1. Youngster M, et al. Endometrial compaction is associated with increased clinical and ongoing pregnancy rates in unstimulated natural cycle frozen embryo transfers: a prospective cohort study. J Assist Reprod Genet. 2022;39(8):1909–16. doi: 10.1007/s10815-022-02544-7.
    1. Olgan S, et al. Endometrial compaction does not predict the reproductive outcome after vitrified-warmed embryo transfer: a prospective cohort study. Reprod Biomed Online. 2022;45(1):81–7. doi: 10.1016/j.rbmo.2022.02.025.
    1. Riestenberg C, et al. Endometrial compaction does not predict live birth rate in single euploid frozen embryo transfer cycles. J Assist Reprod Genet. 2021;38(2):407–12. doi: 10.1007/s10815-020-02043-7.
    1. Bu Z, et al. The impact of endometrial thickness change after progesterone administration on pregnancy outcome in patients transferred with single frozen-thawed blastocyst. Reprod Biol Endocrinol. 2019;17(1):99. doi: 10.1186/s12958-019-0545-0.
    1. Shah JS, et al. Endometrial compaction does not predict live birth in single euploid frozen embryo transfers: a prospective study. Hum Reprod. 2022;37(5):980–7. doi: 10.1093/humrep/deac060.
    1. Ye J, et al. Effect of endometrial thickness change in response to Progesterone Administration on pregnancy outcomes in frozen-thawed embryo transfer: analysis of 4465 cycles. Front Endocrinol (Lausanne) 2020;11:546232. doi: 10.3389/fendo.2020.546232.

Source: PubMed

3
Abonneren