Natural history and mechanisms of COPD

Peter Lange, Engi Ahmed, Zakaria Mohamed Lahmar, Fernando J Martinez, Arnaud Bourdin, Peter Lange, Engi Ahmed, Zakaria Mohamed Lahmar, Fernando J Martinez, Arnaud Bourdin

Abstract

The natural history of COPD is complex, and the disease is best understood as a syndrome resulting from numerous interacting factors throughout the life cycle with smoking being the strongest inciting feature. Unfortunately, diagnosis is often delayed with several longitudinal cohort studies shedding light on the long 'preclinical' period of COPD. It is now accepted that individuals presenting with different COPD phenotypes may experience varying natural history of their disease. This includes its inception, early stages and progression to established disease. Several scenarios regarding lung function course are possible, but it may conceptually be helpful to distinguish between individuals with normal maximally attained lung function in their early adulthood who thereafter experience faster than normal FEV1 decline, and those who may achieve a lower than normal maximally attained lung function. This may be the main mechanism behind COPD in the latter group, as the decline in FEV1 during their adult life may be normal or only slightly faster than normal. Regardless of the FEV1 trajectory, continuous smoking is strongly associated with disease progression, development of structural lung disease and poor prognosis. In developing countries, factors such as exposure to biomass and sequelae after tuberculosis may lead to a more airway-centred COPD phenotype than seen in smokers. Mechanistically, COPD is characterized by a combination of structural and inflammatory changes. It is unlikely that all patients share the same individual or combined mechanisms given the heterogeneity of resultant phenotypes. Lung explants, bronchial biopsies and other tissue studies have revealed important features. At the small airway level, progression of COPD is clinically imperceptible, and the pathological course of the disease is poorly described. Asthmatic features can further add confusion. However, the small airway epithelium is likely to represent a key focus of the disease, combining impaired subepithelial crosstalk and structural/inflammatory changes. Insufficient resolution of inflammatory processes may facilitate these changes. Pathologically, epithelial metaplasia, inversion of the goblet to ciliated cell ratio, enlargement of the submucosal glands and neutrophil and CD8-T-cell infiltration can be detected. Evidence of type 2 inflammation is gaining interest in the light of new therapeutic agents. Alarmin biology is a promising area that may permit control of inflammation and partial reversal of structural changes in COPD. Here, we review the latest work describing the development and progression of COPD with a focus on lung function trajectories, exacerbations and survival. We also review mechanisms focusing on epithelial changes associated with COPD and lack of resolution characterizing the underlying inflammatory processes.

Keywords: airway remodelling; chronic obstructive pulmonary disease; epidemiology; epithelium; lung function; natural history.

© 2021 Asian Pacific Society of Respirology.

References

REFERENCES

    1. Vogelmeier CF, Criner GJ, Martinez FJ, Anzueto A, Barnes PJ, Bourbeau J, Celli BR, Chen R, Decramer M, Fabbri LM et al. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Lung Disease 2017 report. GOLD Executive Summary. Am. J. Respir. Crit. Care Med. 2017; 195: 557-82.
    1. Han MK, Agusti A, Calverley PM, Celli BR, Criner G, Curtis JL, Fabbri LM, Goldin JG, Jones PW, Macnee W et al. Chronic obstructive pulmonary disease phenotypes: the future of COPD. Am. J. Respir. Crit. Care Med. 2010; 182: 598-604.
    1. Dornhorst AC. Respiratory insufficiency. Lancet 1955; 268: 1185-7.
    1. McDonald VM, Fingleton J, Agusti A, Hiles SA, Clark VL, Holland AE, Marks GB, Bardin PP, Beasley R, Pavord ID et al.; participants of the Treatable Traits Down Under International Workshop; Treatable Traits Down Under International Workshop participants. Treatable traits: a new paradigm for 21st century management of chronic airway diseases: Treatable Traits Down Under International Workshop report. Eur. Respir. J. 2019; 53: 1802058.
    1. Han MK, Tayob N, Murray S, Woodruff PG, Curtis JL, Kim V, Criner G, Galban CJ, Ross BD, Hoffman EA et al.; COPDGene and SPIROMICS Investigators. Association between emphysema and chronic obstructive pulmonary disease outcomes in the COPDGene and SPIROMICS cohorts: a post hoc analysis of two clinical trials. Am. J. Respir. Crit. Care Med. 2018; 198: 265-7.
    1. Labaki WW, Martinez CH, Martinez FJ, Galban CJ, Ross BD, Washko GR, Barr RG, Regan EA, Coxson HO, Hoffman EA et al. The role of chest computed tomography in the evaluation and management of the patient with COPD. Am. J. Respir. Crit. Care Med. 2017; 196: 1372-9.
    1. Negewo NA, Gibson PG, McDonald VM. COPD and its comorbidities: impact, measurement and mechanisms. Respirology 2015; 20: 1160-71.
    1. Martinez FJ, Han MK, Allinson JP, Barr RG, Boucher RC, Calverley PMA, Celli BR, Christenson SA, Crystal RG, Fageras M et al. At the root: defining and halting progression of early chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2018; 197: 1540-51.
    1. Jones RC, Price D, Ryan D, Sims EJ, von Ziegenweidt J, Mascarenhas L, Burden A, Halpin DM, Winter R, Hill S et al.; Respiratory Effectiveness Group. Opportunities to diagnose chronic obstructive pulmonary disease in routine care in the UK: a retrospective study of a clinical cohort. Lancet Respir. Med. 2014; 2: 267-76.
    1. Gershon AS, Warner L, Cascagnette P, Victor JC, To T. Lifetime risk of developing chronic obstructive pulmonary disease: a longitudinal population study. Lancet 2011; 378: 991-6.
    1. Jakobsen M, Anker N, Dollerup J, Poulsen PB, Lange P. Study on drug costs associated with COPD prescription medicine in Denmark. Clin. Respir. J. 2013; 7: 328-37.
    1. Halpin DMG, de Jong HJI, Carter V, Skinner D, Price D. Distribution, temporal stability and appropriateness of therapy of patients with COPD in the UK in relation to GOLD 2019. EClinicalMedicine 2019; 14: 32-41.
    1. Han MK, Steenrod AW, Bacci ED, Leidy NK, Mannino DM, Thomashow BM, Barr RG, Make BJ, Bowler RP, Rennard SI et al. Identifying patients with undiagnosed COPD in primary care settings: insight from screening tools and epidemiologic studies. Chronic Obstr. Pulm. Dis. 2015; 2: 103-21.
    1. Miravitlles M, Soriano J, Garcia-Rio F, Munoz L, Duran-Tauleria E, Sanchez G, Sobradillo V, Ancochea J. Prevalence of COPD in Spain: impact of undiagnosed COPD on quality of life and daily life activities. Thorax 2009; 64: 863-8.
    1. Martinez CH, Mannino DM, Jaimes FA, Curtis JL, Han MK, Hansel NN, Diaz AA. Undiagnosed obstructive lung disease in the United States. Associated factors and long-term mortality. Ann. Am. Thorac. Soc. 2015; 12: 1788-95.
    1. Labonte LE, Tan WC, Li PZ, Mancino P, Aaron SD, Benedetti A, Chapman KR, Cowie R, FitzGerald JM, Hernandez P et al.; Canadian Respiratory Research Network; CanCOLD Collaborative Research Group. Undiagnosed chronic obstructive pulmonary disease contributes to the burden of health care use. Data from the CanCOLD Study. Am. J. Respir. Crit. Care Med. 2016; 194: 285-98.
    1. McDonough JE, Yuan R, Suzuki M, Seyednejad N, Elliott WM, Sanchez PG, Wright AC, Gefter WB, Litzky L, Coxson HO et al. Small-airway obstruction and emphysema in chronic obstructive pulmonary disease. N. Engl. J. Med. 2011; 365: 1567-75.
    1. Vestbo J, Lange P. Natural history of COPD: focusing on change in FEV1. Respirology 2016; 21: 34-43.
    1. Krishnan JK, Martinez FJ. Lung function trajectories and chronic obstructive pulmonary disease: current understanding and knowledge gaps. Curr. Opin. Pulm. Med. 2018; 24: 124-9.
    1. Agusti A, Faner R. Lung function trajectories in health and disease. Lancet Respir. Med. 2019; 7: 358-64.
    1. Postma DS, Bush A, van den Berge M. Risk factors and early origins of chronic obstructive pulmonary disease. Lancet 2015; 385: 899-909.
    1. Fletcher C, Peto R. The natural history of chronic airflow obstruction. Br. Med. J. 1977; 1: 1645-8.
    1. Pathak U, Gupta NC, Suri JC. Risk of COPD due to indoor air pollution from biomass cooking fuel: a systematic review and meta-analysis. Int. J. Environ. Health Res. 2020; 30: 75-88.
    1. Salvi SS, Brashier BB, Londhe J, Pyasi K, Vincent V, Kajale SS, Tambe S, Mandani K, Nair A, Mak SM et al. Phenotypic comparison between smoking and non-smoking chronic obstructive pulmonary disease. Respir. Res. 2020; 21: 50.
    1. Thurston GD, Balmes JR, Garcia E, Gilliland FD, Rice MB, Schikowski T, Van Winkle LS, Annesi-Maesano I, Burchard EG, Carlsten C et al. Outdoor air pollution and new-onset airway disease. An official American Thoracic Society workshop report. Ann. Am. Thorac. Soc. 2020; 17: 387-98.
    1. Colak Y, Afzal S, Nordestgaard BG, Lange P. Majority of never-smokers with airflow limitation do not have asthma: the Copenhagen General Population Study. Thorax 2016; 71: 614-23.
    1. Allinson JP, Hardy R, Donaldson GC, Shaheen SO, Kuh D, Wedzicha JA. The presence of chronic mucus hypersecretion across adult life in relation to COPD development. Am. J. Respir. Crit. Care Med. 2016; 193: 662-72.
    1. Allinson JP, Hardy R, Donaldson GC, Shaheen SO, Kuh D, Wedzicha JA. Combined impact of smoking and early life exposures on adult lung function trajectories. Am. J. Respir. Crit. Care Med. 2017; 196: 1021-30.
    1. Bui DS, Lodge CJ, Burgess JA, Lowe AJ, Perret J, Bui MQ, Bowatte G, Gurrin L, Johns DP, Thompson BR et al. Childhood predictors of lung function trajectories and future COPD risk: a prospective cohort study from the first to the sixth decade of life. Lancet Respir. Med. 2018; 6: 535-44.
    1. Berry CE, Billheimer D, Jenkins IC, Lu ZJ, Stern DA, Gerald LB, Carr TF, Guerra S, Morgan WJ, Wright AL et al. A distinct low lung function trajectory from childhood to the fourth decade of life. Am. J. Respir. Crit. Care Med. 2016; 194: 607-12.
    1. Burrows B, Earle RH. Course and prognosis of chronic obstructive lung disease. A prospective study of 200 patients. N. Engl. J. Med. 1969; 280: 397-404.
    1. Lebowitz MD, Knudson RJ, Burrows B. Tucson epidemiologic study of obstructive lung diseases. I: methodology and prevalence of disease. Am. J. Epidemiol. 1975; 102: 137-52.
    1. Orie NG. The Dutch hypothesis. Chest 2000; 117(5 Suppl. 1): 299S.
    1. Vermeire PA, Pride NB. A "splitting" look at chronic nonspecific lung disease (CNSLD): common features but diverse pathogenesis. Eur. Respir. J. 1991; 4: 490-6.
    1. Postma DS, Rabe KF. The asthma-COPD overlap syndrome. N. Engl. J. Med. 2015; 373: 1241-9.
    1. Mannino DM. Fifty years of progress in the epidemiology of chronic obstructive pulmonary disease: a review of National Heart, Lung, and Blood Institute-sponsored studies. Chronic Obstr. Pulm. Dis. 2019; 6: 350-8.
    1. Anthonisen NR, Connett JE, Kiley JP, Altose MD, Bailey WC, Buist AS, Conway WA Jr, Enright PL, Kanner RE, O'Hara P et al. Effects of smoking intervention and the use of an inhaled anticholinergic bronchodilator on the rate of decline of FEV1. The Lung Health Study. JAMA 1994; 272: 1497-505.
    1. Burrows B, Knudson RJ, Lebowitz MD. The relationship of childhood respiratory illness to adult obstructive airway disease. Am. Rev. Respir. Dis. 1977; 115: 751-60.
    1. Tagiyeva N, Devereux G, Fielding S, Turner S, Douglas G. Outcomes of childhood asthma and wheezy bronchitis. A 50-year cohort study. Am. J. Respir. Crit. Care Med. 2016; 193: 23-30.
    1. Robbins DR, Enright PL, Sherrill DL. Lung function development in young adults: is there a plateau phase? Eur. Respir. J. 1995; 8: 768-72.
    1. Melen E, Guerra S. Recent advances in understanding lung function development. F1000Res. 2017; 6: 726.
    1. Vestbo J, Edwards LD, Scanlon PD, Yates JC, Agusti A, Bakke P, Calverley PM, Celli B, Coxson HO, Crim C et al.; ECLIPSE Investigators. Changes in forced expiratory volume in 1 second over time in COPD. N. Engl. J. Med. 2011; 365: 1184-92.
    1. Lange P, Celli B, Agusti A, Boje Jensen G, Divo M, Faner R, Guerra S, Marott JL, Martinez FD, Martinez-Camblor P et al. Lung-function trajectories leading to chronic obstructive pulmonary disease. N. Engl. J. Med. 2015; 373: 111-22.
    1. Martinez FD. Early-life origins of chronic obstructive pulmonary disease. N. Engl. J. Med. 2016; 375: 871-8.
    1. Agusti A, Noell G, Brugada J, Faner R. Lung function in early adulthood and health in later life: a transgenerational cohort analysis. Lancet Respir. Med. 2017; 5: 935-45.
    1. Vasquez MM, Zhou M, Hu C, Martinez FD, Guerra S. Low lung function in young adult life is associated with early mortality. Am. J. Respir. Crit. Care Med. 2017; 195: 1399-401.
    1. Barnes PJ, Burney PG, Silverman EK, Celli BR, Vestbo J, Wedzicha JA, Wouters EF. Chronic obstructive pulmonary disease. Nat. Rev. Dis. Primers. 2015; 1: 15076.
    1. Strnad P, McElvaney NG, Lomas DA. Alpha1-antitrypsin deficiency. N. Engl. J. Med. 2020; 382: 1443-55.
    1. Silverman EK, Sandhaus RA. Clinical practice. Alpha1-antitrypsin deficiency. N. Engl. J. Med. 2009; 360: 2749-57.
    1. Wilk JB, Chen TH, Gottlieb DJ, Walter RE, Nagle MW, Brandler BJ, Myers RH, Borecki IB, Silverman EK, Weiss ST et al. A genome-wide association study of pulmonary function measures in the Framingham Heart Study. PLoS Genet. 2009; 5: e1000429.
    1. Hancock DB, Eijgelsheim M, Wilk JB, Gharib SA, Loehr LR, Marciante KD, Franceschini N, van Durme YM, Chen TH, Barr RG et al. Meta-analyses of genome-wide association studies identify multiple loci associated with pulmonary function. Nat. Genet. 2010; 42: 45-52.
    1. Silverman EK. Genetics of COPD. Annu. Rev. Physiol. 2020; 82: 413-31.
    1. Yonchuk JG, Silverman EK, Bowler RP, Agusti A, Lomas DA, Miller BE, Tal-Singer R, Mayer RJ. Circulating soluble receptor for advanced glycation end products (sRAGE) as a biomarker of emphysema and the RAGE axis in the lung. Am. J. Respir. Crit. Care Med. 2015; 192: 785-92.
    1. Oelsner EC, Ortega VE, Smith BM, Nguyen JN, Manichaikul AW, Hoffman EA, Guo X, Taylor KD, Woodruff PG, Couper DJ et al. A genetic risk score associated with chronic obstructive pulmonary disease susceptibility and lung structure on computed tomography. Am. J. Respir. Crit. Care Med. 2019; 200: 721-31.
    1. Ragland MF, Benway CJ, Lutz SM, Bowler RP, Hecker J, Hokanson JE, Crapo JD, Castaldi PJ, DeMeo DL, Hersh CP et al. Genetic advances in chronic obstructive pulmonary disease. Insights from COPDGene. Am. J. Respir. Crit. Care Med. 2019; 200: 677-90.
    1. Wain LV, Shrine N, Artigas MS, Erzurumluoglu AM, Noyvert B, Bossini-Castillo L, Obeidat M, Henry AP, Portelli MA, Hall RJ et al. Genome-wide association analyses for lung function and chronic obstructive pulmonary disease identify new loci and potential druggable targets. Nat. Genet. 2017; 49: 416-25.
    1. Sakornsakolpat P, Prokopenko D, Lamontagne M, Reeve NF, Guyatt AL, Jackson VE, Shrine N, Qiao D, Bartz TM, Kim DK et al.; SpiroMeta Consortium; International COPD Genetics Consortium. Genetic landscape of chronic obstructive pulmonary disease identifies heterogeneous cell-type and phenotype associations. Nat. Genet. 2019; 51: 494-505.
    1. Busch R, Cho MH, Silverman EK. Progress in disease progression genetics: dissecting the genetic origins of lung function decline in COPD. Thorax 2017; 72: 389-90.
    1. Saad NJ, Patel J, Burney P, Minelli C. Birth weight and lung function in adulthood: a systematic review and meta-analysis. Ann. Am. Thorac. Soc. 2017; 14: 994-1004.
    1. Hurst JR, Beckmann J, Ni Y, Bolton CE, McEniery CM, Cockcroft JR, Marlow N. Respiratory and cardiovascular outcomes in survivors of extremely preterm birth at 19 years. Am. J. Respir. Crit. Care Med. 2020; 202: 422-32.
    1. McGeachie MJ, Yates KP, Zhou X, Guo F, Sternberg AL, Van Natta ML, Wise RA, Szefler SJ, Sharma S, Kho AT et al.; Camp Research Group. Patterns of growth and decline in lung function in persistent childhood asthma. N. Engl. J. Med. 2016; 374: 1842-52.
    1. Belgrave DCM, Granell R, Turner SW, Curtin JA, Buchan IE, Le Souef PN, Simpson A, Henderson AJ, Custovic A. Lung function trajectories from pre-school age to adulthood and their associations with early life factors: a retrospective analysis of three population-based birth cohort studies. Lancet Respir. Med. 2018; 6: 526-34.
    1. Tai A, Tran H, Roberts M, Clarke N, Wilson J, Robertson CF. The association between childhood asthma and adult chronic obstructive pulmonary disease. Thorax 2014; 69: 805-10.
    1. Bui DS, Perret JL, Walters EH, Abramson MJ, Burgess JA, Bui MQ, Bowatte G, Lowe AJ, Russell MA, Alif SM et al. Lifetime risk factors for pre- and post-bronchodilator lung function decline. A population-based study. Ann. Am. Thorac. Soc. 2020; 17: 302-12.
    1. von Mutius E. Childhood origins of COPD. Lancet Respir. Med. 2018; 6: 482-3.
    1. Svanes C, Sunyer J, Plana E, Dharmage S, Heinrich J, Jarvis D, de Marco R, Norback D, Raherison C, Villani S et al. Early life origins of chronic obstructive pulmonary disease. Thorax 2010; 65: 14-20.
    1. Marossy AE, Strachan DP, Rudnicka AR, Anderson HR. Childhood chest illness and the rate of decline of adult lung function between ages 35 and 45 years. Am. J. Respir. Crit. Care Med. 2007; 175: 355-9.
    1. Thun M, Peto R, Boreham J, Lopez AD. Stages of the cigarette epidemic on entering its second century. Tob. Control 2012; 21: 96-101.
    1. Kelly YJ, Brabin BJ, Milligan P, Heaf DP, Reid J, Pearson MG. Maternal asthma, premature birth, and the risk of respiratory morbidity in schoolchildren in Merseyside. Thorax 1995; 50: 525-30.
    1. Hanrahan JP, Tager IB, Segal MR, Tosteson TD, Castile RG, Van Vunakis H, Weiss ST, Speizer FE. The effect of maternal smoking during pregnancy on early infant lung function. Am. Rev. Respir. Dis. 1992; 145: 1129-35.
    1. Magnus MC, Henderson J, Tilling K, Howe LD, Fraser A. Independent and combined associations of maternal and own smoking with adult lung function and COPD. Int. J. Epidemiol. 2018; 47: 1855-64.
    1. Thacher JD, Schultz ES, Hallberg J, Hellberg U, Kull I, Thunqvist P, Pershagen G, Gustafsson PM, Melen E, Bergstrom A. Tobacco smoke exposure in early life and adolescence in relation to lung function. Eur. Respir. J. 2018; 51: 1702111.
    1. Johannessen A, Bakke PS, Hardie JA, Eagan TM. Association of exposure to environmental tobacco smoke in childhood with chronic obstructive pulmonary disease and respiratory symptoms in adults. Respirology 2012; 17: 499-505.
    1. Corbo GM, Forastiere F, Agabiti N, Dell'Orco V, Pistelli R, Massi G, Perucci CA, Valente S. Passive smoking and lung function in alpha(1)-antitrypsin heterozygote schoolchildren. Thorax 2003; 58: 237-41.
    1. Gold DR, Wang X, Wypij D, Speizer FE, Ware JH, Dockery DW. Effects of cigarette smoking on lung function in adolescent boys and girls. N. Engl. J. Med. 1996; 335: 931-7.
    1. Guerra S, Stern DA, Zhou M, Sherrill DL, Wright AL, Morgan WJ, Martinez FD. Combined effects of parental and active smoking on early lung function deficits: a prospective study from birth to age 26 years. Thorax 2013; 68: 1021-8.
    1. Kohansal R, Martinez-Camblor P, Agusti A, Buist AS, Mannino DM, Soriano JB. The natural history of chronic airflow obstruction revisited: an analysis of the Framingham offspring cohort. Am. J. Respir. Crit. Care Med. 2009; 180: 3-10.
    1. Colak Y, Afzal S, Nordestgaard BG, Vestbo J, Lange P. Prevalence, characteristics, and prognosis of early COPD: the Copenhagen General Population Study. Am. J. Respir. Crit. Care Med. 2020; 201: 671-80.
    1. Dockery DW, Speizer FE, Ferris BG Jr, Ware JH, Louis TA, Spiro A 3rd. Cumulative and reversible effects of lifetime smoking on simple tests of lung function in adults. Am. Rev. Respir. Dis. 1988; 137: 286-92.
    1. Lokke A, Lange P, Scharling H, Fabricius P, Vestbo J. Developing COPD: a 25 year follow up study of the general population. Thorax 2006; 61: 935-9.
    1. Lee PN, Fry JS. Systematic review of the evidence relating FEV1 decline to giving up smoking. BMC Med. 2010; 8: 84.
    1. Oelsner EC, Balte PP, Bhatt SP, Cassano PA, Couper D, Folsom AR, Freedman ND, Jacobs DR Jr, Kalhan R, Mathew AR et al. Lung function decline in former smokers and low-intensity current smokers: a secondary data analysis of the NHLBI Pooled Cohorts Study. Lancet Respir. Med. 2020; 8: 34-44.
    1. Salvi SS, Barnes PJ. Chronic obstructive pulmonary disease in non-smokers. Lancet 2009; 374: 733-43.
    1. Siddharthan T, Gupte A, Barnes PJ. COPD endotypes in low- and middle-income country settings: precision medicine for all. Am. J. Respir. Crit. Care Med. 2020; 202: 171-2.
    1. Ramirez-Venegas A, Sansores RH, Quintana-Carrillo RH, Velazquez-Uncal M, Hernandez-Zenteno RJ, Sanchez-Romero C, Velazquez-Montero A, Flores-Trujillo F. FEV1 decline in patients with chronic obstructive pulmonary disease associated with biomass exposure. Am. J. Respir. Crit. Care Med. 2014; 190: 996-1002.
    1. Hagstad S, Backman H, Bjerg A, Ekerljung L, Ye X, Hedman L, Lindberg A, Toren K, Lotvall J, Ronmark E et al. Prevalence and risk factors of COPD among never-smokers in two areas of Sweden - occupational exposure to gas, dust or fumes is an important risk factor. Respir. Med. 2015; 109: 1439-45.
    1. Thomsen M, Nordestgaard BG, Vestbo J, Lange P. Characteristics and outcomes of chronic obstructive pulmonary disease in never smokers in Denmark: a prospective population study. Lancet Respir. Med. 2013; 1: 543-50.
    1. Mostafavi B, Diaz S, Piitulainen E, Stoel BC, Wollmer P, Tanash HA. Lung function and CT lung densitometry in 37- to 39-year-old individuals with alpha-1-antitrypsin deficiency. Int. J. Chron. Obstruct. Pulmon. Dis. 2018; 13: 3689-98.
    1. Piitulainen E, Montero LC, Nystedt-Duzakin M, Stoel BC, Sveger T, Wollmer P, Tanash HA, Diaz S. Lung function and CT densitometry in subjects with alpha-1-antitrypsin deficiency and healthy controls at 35 years of age. COPD 2015; 12: 162-7.
    1. Piitulainen E, Mostafavi B, Tanash HA. Health status and lung function in the Swedish alpha 1-antitrypsin deficient cohort, identified by neonatal screening, at the age of 37-40 years. Int. J. Chron. Obstruct. Pulmon. Dis. 2017; 12: 495-500.
    1. Stoller JK, Sandhaus RA, Turino G, Dickson R, Rodgers K, Strange C. Delay in diagnosis of alpha1-antitrypsin deficiency: a continuing problem. Chest 2005; 128: 1989-94.
    1. Stockley RA, Edgar RG, Pillai A, Turner AM. Individualized lung function trends in alpha-1-antitrypsin deficiency: a need for patience in order to provide patient centered management? Int. J. Chron. Obstruct. Pulmon. Dis. 2016; 11: 1745-56.
    1. Esquinas C, Serreri S, Barrecheguren M, Rodriguez E, Nunez A, Casas-Maldonado F, Blanco I, Pirina P, Lara B, Miravitlles M. Long-term evolution of lung function in individuals with alpha-1 antitrypsin deficiency from the Spanish registry (REDAAT). Int. J. Chron. Obstruct. Pulmon. Dis. 2018; 13: 1001-7.
    1. Seersholm N, Kok-Jensen A, Dirksen A. Survival of patients with severe alpha 1-antitrypsin deficiency with special reference to non-index cases. Thorax 1994; 49: 695-8.
    1. Gevenois PA, de Maertelaer V, De Vuyst P, Zanen J, Yernault JC. Comparison of computed density and macroscopic morphometry in pulmonary emphysema. Am. J. Respir. Crit. Care Med. 1995; 152: 653-7.
    1. Han MK, Bartholmai B, Liu LX, Murray S, Curtis JL, Sciurba FC, Kazerooni EA, Thompson B, Frederick M, Li D et al. Clinical significance of radiologic characterizations in COPD. COPD 2009; 6: 459-67.
    1. Martinez CH, Chen YH, Westgate PM, Liu LX, Murray S, Curtis JL, Make BJ, Kazerooni EA, Lynch DA, Marchetti N et al.; COPDGene Investigators. Relationship between quantitative CT metrics and health status and BODE in chronic obstructive pulmonary disease. Thorax 2012; 67: 399-406.
    1. Han MK, Kazerooni EA, Lynch DA, Liu LX, Murray S, Curtis JL, Criner GJ, Kim V, Bowler RP, Hanania NA et al.; COPDGene Investigators. Chronic obstructive pulmonary disease exacerbations in the COPDGene study: associated radiologic phenotypes. Radiology 2011; 261: 274-82.
    1. Haruna A, Muro S, Nakano Y, Ohara T, Hoshino Y, Ogawa E, Hirai T, Niimi A, Nishimura K, Chin K et al. CT scan findings of emphysema predict mortality in COPD. Chest 2010; 138: 635-40.
    1. Galban CJ, Han MK, Boes JL, Chughtai KA, Meyer CR, Johnson TD, Galban S, Rehemtulla A, Kazerooni EA, Martinez FJ et al. Computed tomography-based biomarker provides unique signature for diagnosis of COPD phenotypes and disease progression. Nat. Med. 2012; 18: 1711-5.
    1. Vasilescu DM, Martinez FJ, Marchetti N, Galban CJ, Hatt C, Meldrum CA, Dass C, Tanabe N, Reddy RM, Lagstein A et al. Noninvasive imaging biomarker identifies small airway damage in severe chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2019; 200: 575-81.
    1. Bhatt SP, Soler X, Wang X, Murray S, Anzueto AR, Beaty TH, Boriek AM, Casaburi R, Criner GJ, Diaz AA et al.; COPDGene Investigators. Association between functional small airway disease and FEV1 decline in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2016; 194: 178-84.
    1. Kirby M, Tanabe N, Tan WC, Zhou G, Obeidat M, Hague CJ, Leipsic J, Bourbeau J, Sin DD, Hogg JC et al.; CanCOLD Collaborative Research Group; Canadian Respiratory Research Network; CanCOLD Collaborative Research Group, the Canadian Respiratory Research Network. Total airway count on computed tomography and the risk of chronic obstructive pulmonary disease progression. Findings from a population-based study. Am. J. Respir. Crit. Care Med. 2018; 197: 56-65.
    1. Bhatt SP, Bodduluri S, Hoffman EA, Newell JD Jr, Sieren JC, Dransfield MT, Reinhardt JM; COPDGene Investigators. Computed tomography measure of lung at risk and lung function decline in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2017; 196: 569-76.
    1. Dowson LJ, Guest PJ, Stockley RA. Longitudinal changes in physiological, radiological, and health status measurements in alpha(1)-antitrypsin deficiency and factors associated with decline. Am. J. Respir. Crit. Care Med. 2001; 164(10 Pt 1): 1805-9.
    1. Chapman KR, Burdon JG, Piitulainen E, Sandhaus RA, Seersholm N, Stocks JM, Stoel BC, Huang L, Yao Z, Edelman JM et al. Intravenous augmentation treatment and lung density in severe alpha1 antitrypsin deficiency (RAPID): a randomised, double-blind, placebo-controlled trial. Lancet 2015; 386: 360-8.
    1. Labaki WW, Gu T, Murray S, Hatt CR, Galban CJ, Ross BD, Martinez CH, Curtis JL, Hoffman EA, Pompe E et al. Voxel-wise longitudinal parametric response mapping analysis of chest computed tomography in smokers. Acad. Radiol. 2019; 26: 217-23.
    1. Pompe E, Strand M, van Rikxoort EM, Hoffman EA, Barr RG, Charbonnier JP, Humphries S, Han MK, Hokanson JE, Make BJ et al.; COPDGene Investigators. Five-year progression of emphysema and air trapping at CT in smokers with and those without chronic obstructive pulmonary disease: results from the COPDGene Study. Radiology 2020; 295: 218-26.
    1. Young AL, Bragman FJS, Rangelov B, Han MK, Galban CJ, Lynch DA, Hawkes DJ, Alexander DC, Hurst JR; COPDGene Investigators. Disease progression modeling in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2020; 201: 294-302.
    1. Wedzicha JA, Seemungal TA. COPD exacerbations: defining their cause and prevention. Lancet 2007; 370: 786-96.
    1. MacDonald M, Beasley RW, Irving L, Bardin PG. A hypothesis to phenotype COPD exacerbations by aetiology. Respirology 2011; 16: 264-8.
    1. Vestbo J, Prescott E, Lange P. Association of chronic mucus hypersecretion with FEV1 decline and chronic obstructive pulmonary disease morbidity. Copenhagen City Heart Study Group. Am. J. Respir. Crit. Care Med. 1996; 153: 1530-5.
    1. Colak Y, Nordestgaard BG, Vestbo J, Lange P, Afzal S. Prognostic significance of chronic respiratory symptoms in individuals with normal spirometry. Eur. Respir. J. 2019; 54: 1900734.
    1. Dransfield MT, Kunisaki KM, Strand MJ, Anzueto A, Bhatt SP, Bowler RP, Criner GJ, Curtis JL, Hanania NA, Nath H et al.; COPDGene Investigators. Acute exacerbations and lung function loss in smokers with and without chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2017; 195: 324-30.
    1. Woodruff PG, van den Berge M, Boucher RC, Brightling C, Burchard EG, Christenson SA, Han MK, Holtzman MJ, Kraft M, Lynch DA et al. American Thoracic Society/National Heart, Lung, and Blood Institute asthma-chronic obstructive pulmonary disease overlap workshop report. Am. J. Respir. Crit. Care Med. 2017; 196: 375-81.
    1. de Marco R, Marcon A, Rossi A, Anto JM, Cerveri I, Gislason T, Heinrich J, Janson C, Jarvis D, Kuenzli N et al. Asthma, COPD and overlap syndrome: a longitudinal study in young European adults. Eur. Respir. J. 2015; 46: 671-9.
    1. Nielsen M, Barnes CB, Ulrik CS. Clinical characteristics of the asthma-COPD overlap syndrome - a systematic review. Int. J. Chron. Obstruct. Pulmon. Dis. 2015; 10: 1443-54.
    1. Lange P, Colak Y, Ingebrigtsen TS, Vestbo J, Marott JL. Long-term prognosis of asthma, chronic obstructive pulmonary disease, and asthma-chronic obstructive pulmonary disease overlap in the Copenhagen City Heart Study: a prospective population-based analysis. Lancet Respir. Med. 2016; 4: 454-62.
    1. Burrows B, Bloom JW, Traver GA, Cline MG. The course and prognosis of different forms of chronic airways obstruction in a sample from the general population. N. Engl. J. Med. 1987; 317: 1309-14.
    1. Celli BR, Cote CG, Marin JM, Casanova C, Montes de Oca M, Mendez RA, Pinto Plata V, Cabral HJ. The body-mass index, airflow obstruction, dyspnea, and exercise capacity index in chronic obstructive pulmonary disease. N. Engl. J. Med. 2004; 350: 1005-12.
    1. Lange P, Marott JL, Vestbo J, Ingebrigtsen TS, Nordestgaard BG. Socioeconomic status and prognosis of COPD in Denmark. COPD 2014; 11: 431-7.
    1. Mannino DM, Davis KJ. Lung function decline and outcomes in an elderly population. Thorax 2006; 61: 472-7.
    1. Marott JL, Ingebrigtsen TS, Colak Y, Vestbo J, Lange P. Lung function trajectories leading to chronic obstructive pulmonary disease as predictors of exacerbations and mortality. Am. J. Respir. Crit. Care Med. 2020; 202: 210-8.
    1. Casanova C, de Torres JP, Aguirre-Jaime A, Pinto-Plata V, Marin JM, Cordoba E, Baz R, Cote C, Celli BR. The progression of chronic obstructive pulmonary disease is heterogeneous: the experience of the BODE cohort. Am. J. Respir. Crit. Care Med. 2011; 184: 1015-21.
    1. Bellou V, Belbasis L, Konstantinidis AK, Tzoulaki I, Evangelou E. Prognostic models for outcome prediction in patients with chronic obstructive pulmonary disease: systematic review and critical appraisal. BMJ 2019; 367: l5358.
    1. Saetta M, Turato G, Baraldo S, Zanin A, Braccioni F, Mapp CE, Maestrelli P, Cavallesco G, Papi A, Fabbri LM. Goblet cell hyperplasia and epithelial inflammation in peripheral airways of smokers with both symptoms of chronic bronchitis and chronic airflow limitation. Am. J. Respir. Crit. Care Med. 2000; 161(3 Pt 1): 1016-21.
    1. Rao W, Wang S, Duleba M, Niroula S, Goller K, Xie J, Mahalingam R, Neupane R, Liew AA, Vincent M et al. Regenerative metaplastic clones in COPD lung drive inflammation and fibrosis. Cell 2020; 181: 848-64.e18.
    1. Zuo W-L, Yang J, Gomi K, Chao I, Crystal RG, Shaykhiev R. EGF-amphiregulin interplay in airway stem/progenitor cells links the pathogenesis of smoking-induced lesions in the human airway epithelium. Stem Cells 2017; 35: 824-37.
    1. Chen G, Korfhagen TR, Xu Y, Kitzmiller J, Wert SE, Maeda Y, Gregorieff A, Clevers H, Whitsett JA. SPDEF is required for mouse pulmonary goblet cell differentiation and regulates a network of genes associated with mucus production. J. Clin. Invest. 2009; 119: 2914-24.
    1. Song J, Heijink IH, Kistemaker L, Reinders-Luinge M, Kooistra W, Noordhoek JA, Gosens R, Brandsma CA, Timens W, Hiemstra PS et al. Aberrant DNA methylation and expression of SPDEF and FOXA2 in airway epithelium of patients with COPD. Clin. Epigenetics 2017; 9: 42.
    1. Choi W, Choe S, Lin J, Borchers MT, Kosmider B, Vassallo R, Limper AH, Lau GW. Exendin-4 restores airway mucus homeostasis through the GLP1R-PKA-PPARγ-FOXA2-phosphatase signaling. Mucosal Immunol. 2020; 13: 637-51.
    1. Kuperman DA, Huang X, Koth LL, Chang GH, Dolganov GM, Zhu Z, Elias JA, Sheppard D, Erle DJ. Direct effects of interleukin-13 on epithelial cells cause airway hyperreactivity and mucus overproduction in asthma. Nat. Med. 2002; 8: 885-9.
    1. Danahay H, Pessotti AD, Coote J, Montgomery BE, Xia D, Wilson A, Yang H, Wang Z, Bevan L, Thomas C et al. Notch2 is required for inflammatory cytokine-driven goblet cell metaplasia in the lung. Cell Rep. 2015; 10: 239-52.
    1. Shaykhiev R, Crystal RG. Early events in the pathogenesis of chronic obstructive pulmonary disease. Smoking-induced reprogramming of airway epithelial basal progenitor cells. Ann. Am. Thorac. Soc. 2014; 11(Suppl. 5): S252-8.
    1. Vucic EA, Chari R, Thu KL, Wilson IM, Cotton AM, Kennett JY, Zhang M, Lonergan KM, Steiling K, Brown CJ et al. DNA methylation is globally disrupted and associated with expression changes in chronic obstructive pulmonary disease small airways. Am. J. Respir. Cell Mol. Biol. 2014; 50: 912-22.
    1. Staudt MR, Buro-Auriemma LJ, Walters MS, Salit J, Vincent T, Shaykhiev R, Mezey JG, Tilley AE, Kaner RJ, Ho MW et al. Airway basal stem/progenitor cells have diminished capacity to regenerate airway epithelium in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2014; 190: 955-8.
    1. Brekman A, Walters MS, Tilley AE, Crystal RG. FOXJ1 prevents cilia growth inhibition by cigarette smoke in human airway epithelium in vitro. Am. J. Respir. Cell Mol. Biol. 2014; 51: 688-700.
    1. Shaykhiev R, Zuo WL, Chao I, Fukui T, Witover B, Brekman A, Crystal RG. EGF shifts human airway basal cell fate toward a smoking-associated airway epithelial phenotype. Proc. Natl. Acad. Sci. U. S. A. 2013; 110: 12102-7.
    1. Yang J, Zuo WL, Fukui T, Chao I, Gomi K, Lee B, Staudt MR, Kaner RJ, Strulovici-Barel Y, Salit J et al. Smoking-dependent distal-to-proximal repatterning of the adult human small airway epithelium. Am. J. Respir. Crit. Care Med. 2017; 196: 340-52.
    1. Shafiquzzaman M, Biswas S, Li P, Mishina Y, Li B, Liu H. The noncanonical BMP signaling pathway plays an important role in club cell regeneration. Stem Cells 2020; 38: 437-50.
    1. Pilette C, Godding V, Kiss R, Delos M, Verbeken E, Decaestecker C, De Paepe K, Vaerman JP, Decramer M, Sibille Y. Reduced epithelial expression of secretory component in small airways correlates with airflow obstruction in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2001; 163: 185-94.
    1. Laucho-Contreras ME, Polverino F, Gupta K, Taylor KL, Kelly E, Pinto-Plata V, Divo M, Ashfaq N, Petersen H, Stripp B et al. Protective role for club cell secretory protein-16 (CC16) in the development of COPD. Eur. Respir. J. 2015; 45: 1544-56.
    1. Zuo WL, Shenoy SA, Li S, O'Beirne SL, Strulovici-Barel Y, Leopold PL, Wang G, Staudt MR, Walters MS, Mason C et al. Ontogeny and biology of human small airway epithelial club cells. Am. J. Respir. Crit. Care Med. 2018; 198: 1375-88.
    1. Bernard AM, Roels HA, Buchet JP, Lauwerys RR. Serum Clara cell protein: an indicator of bronchial cell dysfunction caused by tobacco smoking. Environ. Res. 1994; 66: 96-104.
    1. Park HY, Churg A, Wright JL, Li Y, Tam S, Man SFP, Tashkin D, Wise RA, Connett JE, Sin DD. Club cell protein 16 and disease progression in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2013; 188: 1413-9.
    1. Knabe L, Varilh J, Bergougnoux A, Gamez A-S, Bonini J, Pommier A, Petit A, Molinari N, Vachier I, Taulan-Cadars M et al. CCSP G38A polymorphism environment interactions regulate CCSP levels differentially in COPD. Am. J. Physiol. Lung Cell. Mol. Physiol. 2016; 311: L696-703.
    1. Long X-B, Hu S, Wang N, Zhen H-T, Cui Y-H, Liu Z. Clara cell 10-kDa protein gene transfection inhibits NF-κB activity in airway epithelial cells. PLoS One 2012; 7: e35960.
    1. Knabe L, Petit A, Vernisse C, Charriot J, Pugnière M, Henriquet C, Sasorith S, Molinari N, Chanez P, Berthet JP et al. CCSP counterbalances airway epithelial-driven neutrophilic chemotaxis. Eur. Respir. J. 2019; 54: 1802408.
    1. Pang M, Liu HY, Li T, Wang D, Hu XY, Zhang XR, Yu BF, Guo R, Wang HL. Recombinant club cell protein 16 (CC16) ameliorates cigarette smoke-induced lung inflammation in a murine disease model of COPD. Mol. Med. Rep. 2018; 18: 2198-206.
    1. Gamez AS, Gras D, Petit A, Knabe L, Molinari N, Vachier I, Chanez P, Bourdin A. Supplementing defect in club cell secretory protein attenuates airway inflammation in COPD. Chest 2015; 147: 1467-76.
    1. Tokita E, Tanabe T, Asano K, Suzaki H, Rubin BK. Club cell 10-kDa protein attenuates airway mucus hypersecretion and inflammation. Eur. Respir. J. 2014; 44: 1002-10.
    1. Schamberger AC, Staab-Weijnitz CA, Mise-Racek N, Eickelberg O. Cigarette smoke alters primary human bronchial epithelial cell differentiation at the air-liquid interface. Sci. Rep. 2015; 5: 8163.
    1. Harvey B-G, Heguy A, Leopold PL, Carolan BJ, Ferris B, Crystal RG. Modification of gene expression of the small airway epithelium in response to cigarette smoking. J. Mol. Med. 2007; 85: 39-53.
    1. Yaghi A, Zaman A, Cox G, Dolovich MB. Ciliary beating is depressed in nasal cilia from chronic obstructive pulmonary disease subjects. Respir. Med. 2012; 106: 1139-47.
    1. Hessel J, Heldrich J, Fuller J, Staudt MR, Radisch S, Hollmann C, Harvey BG, Kaner RJ, Salit J, Yee-Levin J et al. Intraflagellar transport gene expression associated with short cilia in smoking and COPD. PLoS One. 2014; 9: e85453.
    1. Wang W-J, Yang S-F, Gao Z-R, Luo Z-R, Liu Y-L, Gao X-L. MIP-T3 expression associated with defects of ciliogenesis in airway of COPD patients. Can. Respir. J. 2020; 2020: 1350872.
    1. Verra F, Escudier E, Lebargy F, Bernaudin JF, De Crémoux H, Bignon J. Ciliary abnormalities in bronchial epithelium of smokers, ex-smokers, and nonsmokers. Am. J. Respir. Crit. Care Med. 1995; 151(3 Pt 1): 630-4.
    1. Ruiz García S, Deprez M, Lebrigand K, Cavard A, Paquet A, Arguel MJ, Magnone V, Truchi M, Caballero I, Leroy S et al. Novel dynamics of human mucociliary differentiation revealed by single-cell RNA sequencing of nasal epithelial cultures. Development 2019; 146: dev177428.
    1. Iizuka T, Ishii Y, Itoh K, Kiwamoto T, Kimura T, Matsuno Y, Morishima Y, Hegab AE, Homma S, Nomura A et al. Nrf2-deficient mice are highly susceptible to cigarette smoke-induced emphysema. Genes Cells 2005; 10: 1113-25.
    1. Mallampalli RK, Li X, Jang J-H, Kaminski T, Hoji A, Coon T, Chandra D, Welty S, Teng Y, Sembrat J et al. Cigarette smoke exposure enhances transforming acidic coiled-coil-containing protein 2 turnover and thereby promotes emphysema. JCI Insight 2020; 5: e125895.
    1. Alder JK, Barkauskas CE, Limjunyawong N, Stanley SE, Kembou F, Tuder RM, Hogan BL, Mitzner W, Armanios M. Telomere dysfunction causes alveolar stem cell failure. Proc. Natl. Acad. Sci. U. S. A. 2015; 112: 5099-104.
    1. Tsuji T, Aoshiba K, Nagai A. Alveolar cell senescence in patients with pulmonary emphysema. Am. J. Respir. Crit. Care Med. 2006; 174: 886-93.
    1. Uemasu K, Tanabe N, Tanimura K, Hasegawa K, Mizutani T, Hamakawa Y, Sato S, Ogawa E, Thomas MJ, Ikegami M et al. Serine protease imbalance in the small airways and development of centrilobular emphysema in chronic obstructive pulmonary disease. Am. J. Respir. Cell Mol. Biol. 2020; 63: 67-78.
    1. Yuan X, Chang C-Y, You R, Shan M, Gu BH, Madison MC, Diehl G, Perusich S, Song LZ, Cornwell L et al. Cigarette smoke-induced reduction of C1q promotes emphysema. JCI Insight 2019; 4: e124317.
    1. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126: 663-76.
    1. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007; 131: 861-72.
    1. De Vos J, Bouckenheimer J, Sansac C, Lemaître J-M, Assou S. Human induced pluripotent stem cells: a disruptive innovation. Curr. Res. Transl. Med. 2016; 64: 91-6.
    1. Ahmed E, Sansac C, Assou S, Gras D, Petit A, Vachier I, Chanez P, De Vos J, Bourdin A. Lung development, regeneration and plasticity: from disease physiopathology to drug design using induced pluripotent stem cells. Pharmacol. Ther. 2018; 183: 58-77.
    1. Jacob A, Vedaie M, Roberts DA, Thomas DC, Villacorta-Martin C, Alysandratos KD, Hawkins F, Kotton DN. Derivation of self-renewing lung alveolar epithelial type II cells from human pluripotent stem cells. Nat. Protoc. 2019; 14: 3303-32.
    1. Huang SX, Green MD, de Carvalho AT, Mumau M, Chen YW, D'Souza SL, Snoeck HW. The in vitro generation of lung and airway progenitor cells from human pluripotent stem cells. Nat. Protoc. 2015; 10: 413-25.
    1. Gomperts BN. Induction of multiciliated cells from induced pluripotent stem cells. Proc. Natl. Acad. Sci. U. S. A. 2014; 111: 6120-1.
    1. Happle C, Lachmann N, Ackermann M, Mirenska A, Göhring G, Thomay K, Mucci A, Hetzel M, Glomb T, Suzuki T et al. Pulmonary transplantation of human induced pluripotent stem cell-derived macrophages ameliorates pulmonary alveolar proteinosis. Am. J. Respir. Crit. Care Med. 2018; 198: 350-60.
    1. Blondel S, Egesipe AL, Picardi P, Jaskowiak AL, Notarnicola M, Ragot J, Tournois J, Le Corf A, Brinon B, Poydenot P et al. Drug screening on Hutchinson Gilford progeria pluripotent stem cells reveals aminopyrimidines as new modulators of farnesylation. Cell Death Dis. 2016; 7: e2105.
    1. Turato G, Semenzato U, Bazzan E, Biondini D, Tinè M, Torrecilla N, Forner M, Marin JM, Cosio MG, Saetta M. Blood eosinophilia neither reflects tissue eosinophils nor worsens clinical outcomes in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2018; 197: 1216-9.
    1. Singh D, Kolsum U, Brightling CE, Locantore N, Agusti A, Tal-Singer R; ECLIPSE Investigators. Eosinophilic inflammation in COPD: prevalence and clinical characteristics. Eur. Respir. J. 2014; 44: 1697-700.
    1. Criner GJ, Celli BR, Brightling CE, Agusti A, Papi A, Singh D, Sin DD, Vogelmeier CF, Sciurba FC, Bafadhel M et al.; GALATHEA Study Investigators; TERRANOVA Study Investigators. Benralizumab for the prevention of COPD exacerbations. N. Engl. J. Med. 2019; 381: 1023-34.
    1. Zhu Z, Homer RJ, Wang Z, Chen Q, Geba GP, Wang J, Zhang Y, Elias JA. Pulmonary expression of interleukin-13 causes inflammation, mucus hypersecretion, subepithelial fibrosis, physiologic abnormalities, and eotaxin production. J. Clin. Invest. 1999; 103: 779-88.
    1. Zheng T, Zhu Z, Wang Z, Homer RJ, Ma B, Riese RJ Jr, Chapman HA Jr, Shapiro SD, Elias JA. Inducible targeting of IL-13 to the adult lung causes matrix metalloproteinase- and cathepsin-dependent emphysema. J. Clin. Invest. 2000; 106: 1081-93.
    1. Barnes PJ. Targeting cytokines to treat asthma and chronic obstructive pulmonary disease. Nat. Rev. Immunol. 2018; 18: 454-66.
    1. Calvén J, Yudina Y, Hallgren O, Westergren-Thorsson G, Davies DE, Brandelius A, Uller L. Viral stimuli trigger exaggerated thymic stromal lymphopoietin expression by chronic obstructive pulmonary disease epithelium: role of endosomal TLR3 and cytosolic RIG-I-like helicases. J. Innate Immun. 2012; 4: 86-99.
    1. Anzalone G, Albano GD, Montalbano AM, Riccobono L, Bonanno A, Gagliardo R, Bucchieri F, Marchese R, Moscato M, Profita M. IL-17A-associated IKK-α signaling induced TSLP production in epithelial cells of COPD patients. Exp. Mol. Med. 2018; 50: 1-12.
    1. Elder MJ, Webster SJ, Williams DL, Gaston JSH, Goodall JC. TSLP production by dendritic cells is modulated by IL-1β and components of the endoplasmic reticulum stress response. Eur. J. Immunol. 2016; 46: 455-63.
    1. Donovan C, Hansbro PM. IL-33 in chronic respiratory disease: from preclinical to clinical studies. ACS Pharmacol. Transl. Sci. 2020; 3: 56-62.
    1. Stolarski B, Kurowska-Stolarska M, Kewin P, Xu D, Liew FY. IL-33 exacerbates eosinophil-mediated airway inflammation. J. Immunol. 2010; 185: 3472-80.
    1. Aizawa H, Koarai A, Shishikura Y, Yanagisawa S, Yamaya M, Sugiura H, Numakura T, Yamada M, Ichikawa T, Fujino N et al. Oxidative stress enhances the expression of IL-33 in human airway epithelial cells. Respir. Res. 2018; 19: 52.
    1. Qiu C, Li Y, Li M, Li M, Liu X, McSharry C, Xu D. Anti-interleukin-33 inhibits cigarette smoke-induced lung inflammation in mice. (Published erratum appears in Immunology 2013; 138: 83). Immunology 2013; 138: 76-82.
    1. Kearley J, Silver JS, Sanden C, Liu Z, Berlin AA, White N, Mori M, Pham TH, Ward CK, Criner GJ et al. Cigarette smoke silences innate lymphoid cell function and facilitates an exacerbated type I interleukin-33-dependent response to infection. Immunity 2015; 42: 566-79.
    1. Hiruki C. Properties of single- and double-stranded ribonucleic acid from barley plants infected with bromegrass mosaic virus. J. Virol. 1969; 3: 498-505.
    1. Byers DE, Alexander-Brett J, Patel AC, Agapov E, Dang-Vu G, Jin X, Wu K, You Y, Alevy Y, Girard JP et al. Long-term IL-33-producing epithelial progenitor cells in chronic obstructive lung disease. (Published erratum appears in J. Clin. Invest. 2013; 123: 5410). J. Clin. Invest. 2013; 123: 3967-82.
    1. Xia J, Zhao J, Shang J, Li M, Zeng Z, Zhao J, Wang J, Xu Y, Xie J. Increased IL-33 expression in chronic obstructive pulmonary disease. Am. J. Physiol. Lung Cell. Mol. Physiol. 2015; 308: L619-27.
    1. Kim SW, Rhee CK, Kim KU, Lee SH, Hwang HG, Kim YI, Kim DK, Lee SD, Oh YM, Yoon HK. Factors associated with plasma IL-33 levels in patients with chronic obstructive pulmonary disease. Int. J. Chron. Obstruct. Pulmon. Dis. 2017; 12: 395-402.
    1. Tanabe T, Shimokawaji T, Kanoh S, Rubin BK. IL-33 stimulates CXCL8/IL-8 secretion in goblet cells but not normally differentiated airway cells. Clin. Exp. Allergy 2014; 44: 540-52.
    1. Gao W, Li L, Wang Y, Zhang S, Adcock IM, Barnes PJ, Huang M, Yao X. Bronchial epithelial cells: the key effector cells in the pathogenesis of chronic obstructive pulmonary disease? Respirology 2015; 20: 722-9.
    1. Majori M, Corradi M, Caminati A, Cacciani G, Bertacco S, Pesci A. Predominant TH1 cytokine pattern in peripheral blood from subjects with chronic obstructive pulmonary disease. J. Allergy Clin. Immunol. 1999; 103(3 Pt 1): 458-62.
    1. Pappu R, Rutz S, Ouyang W. Regulation of epithelial immunity by IL-17 family cytokines. Trends Immunol. 2012; 33: 343-9.
    1. Le Rouzic O, Pichavant M, Frealle E, Guillon A, Si-Tahar M, Gosset P. Th17 cytokines: novel potential therapeutic targets for COPD pathogenesis and exacerbations. Eur. Respir. J. 2017; 50: 1602434.
    1. Smith GD, Barden RE. Some physico-chemical properties of aqueous solutions of N alpha-acyl-l-histidine. Chem. Phys. Lipids 1975; 14: 1-14.
    1. Chen Y, Thai P, Zhao Y-H, Ho Y-S, DeSouza MM, Wu R. Stimulation of airway mucin gene expression by interleukin (IL)-17 through IL-6 paracrine/autocrine loop. J. Biol. Chem. 2003; 278: 17036-43.
    1. Di Stefano A, Caramori G, Gnemmi I, Contoli M, Vicari C, Capelli A, Magno F, D'Anna SE, Zanini A, Brun P et al. T helper type 17-related cytokine expression is increased in the bronchial mucosa of stable chronic obstructive pulmonary disease patients. Clin. Exp. Immunol. 2009; 157: 316-24.
    1. Eustace A, Smyth LJC, Mitchell L, Williamson K, Plumb J, Singh D. Identification of cells expressing IL-17A and IL-17F in the lungs of patients with COPD. Chest 2011; 139: 1089-100.
    1. Hazenberg MD, Spits H. Human innate lymphoid cells. Blood 2014; 124: 700-9.
    1. De Grove KC, Provoost S, Verhamme FM, Bracke KR, Joos GF, Maes T, Brusselle GG. Characterization and quantification of innate lymphoid cell subsets in human lung. PLoS One. 2016; 11: e0145961.
    1. Vroman H, Bergen IM, van Hulst JAC, van Nimwegen M, van Uden D, Schuijs MJ, Pillai SY, van Loo G, Hammad H, Lambrecht BN et al. TNF-α-induced protein 3 levels in lung dendritic cells instruct TH2 or TH17 cell differentiation in eosinophilic or neutrophilic asthma. J. Allergy Clin. Immunol. 2018; 141: 1620-33.e12.
    1. Hsu AC-Y, Dua K, Starkey MR, Haw T-J, Nair PM, Nichol K, Zammit N, Grey ST, Baines KJ, Foster PS et al. MicroRNA-125a and -b inhibit A20 and MAVS to promote inflammation and impair antiviral response in COPD. JCI Insight 2017; 2: e90443.
    1. Baral P, Umans BD, Li L, Wallrapp A, Bist M, Kirschbaum T, Wei Y, Zhou Y, Kuchroo VK, Burkett PR et al. Nociceptor sensory neurons suppress neutrophil and γδ T cell responses in bacterial lung infections and lethal pneumonia. (Published erratum appears in Nat. Med. 2018; 24: 1625-6). Nat. Med. 2018; 24: 417-26.
    1. Kistemaker LEM, van Os RP, Dethmers-Ausema A, Bos IST, Hylkema MN, van den Berge M, Hiemstra PS, Wess J, Meurs H, Kerstjens HAM et al. Muscarinic M3 receptors on structural cells regulate cigarette smoke-induced neutrophilic airway inflammation in mice. Am. J. Physiol. Lung Cell. Mol. Physiol. 2015; 308: L96-103.
    1. Gahring LC, Myers EJ, Dunn DM, Weiss RB, Rogers SW. Nicotinic alpha 7 receptor expression and modulation of the lung epithelial response to lipopolysaccharide. PLoS One 2017; 12: e0175367.
    1. Nguyen LP, Al-Sawalha NA, Parra S, Pokkunuri I, Omoluabi O, Okulate AA, Windham Li E, Hazen M, Gonzalez-Granado JM, Daly CJ et al. β2-Adrenoceptor signaling in airway epithelial cells promotes eosinophilic inflammation, mucous metaplasia, and airway contractility. Proc. Natl. Acad. Sci. U. S. A. 2017; 114: E9163-71.
    1. Wallrapp A, Riesenfeld SJ, Burkett PR, Abdulnour RE, Nyman J, Dionne D, Hofree M, Cuoco MS, Rodman C, Farouq D et al. The neuropeptide NMU amplifies ILC2-driven allergic lung inflammation. (Published erratum appears in Nature 2017; 551: 658. .). Nature 2017; 549: 351-6.
    1. Nussbaum JC, Van Dyken SJ, von Moltke J, Cheng LE, Mohapatra A, Molofsky AB, Thornton EE, Krummel MF, Chawla A, Liang HE et al. Type 2 innate lymphoid cells control eosinophil homeostasis. Nature 2013; 502: 245-8.
    1. Talbot S, Abdulnour RE, Burkett PR, Lee S, Cronin SJ, Pascal MA, Laedermann C, Foster SL, Tran JV, Lai N et al. Silencing nociceptor neurons reduces allergic airway inflammation. Neuron 2015; 87: 341-54.
    1. Huang Y, Guo L, Qiu J, Chen X, Hu-Li J, Siebenlist U, Williamson PR, Urban JF Jr, Paul WE. IL-25-responsive, lineage-negative KLRG1(hi) cells are multipotential 'inflammatory' type 2 innate lymphoid cells. Nat. Immunol. 2015; 16: 161-9.
    1. Motomura Y, Kobayashi T, Moro K. The neuropeptide CGRP induces bipolar syndrome in group 2 innate lymphoid cells. Immunity 2019; 51: 598-600.
    1. Sui P, Wiesner DL, Xu J, Zhang Y, Lee J, Van Dyken S, Lashua A, Yu C, Klein BS, Locksley RM et al. Pulmonary neuroendocrine cells amplify allergic asthma responses. Science 2018; 360: eaan8546.
    1. Gu X, Karp PH, Brody SL, Pierce RA, Welsh MJ, Holtzman MJ, Ben-Shahar Y. Chemosensory functions for pulmonary neuroendocrine cells. Am. J. Respir. Cell Mol. Biol. 2014; 50: 637-46.
    1. Moriyama S, Brestoff JR, Flamar A-L, Moeller JB, Klose CSN, Rankin LC, Yudanin NA, Monticelli LA, Garbès Putzel G, Rodewald HR et al. β2-Adrenergic receptor-mediated negative regulation of group 2 innate lymphoid cell responses. Science 2018; 359: 1056-61.
    1. Galle-Treger L, Suzuki Y, Patel N, Sankaranarayanan I, Aron JL, Maazi H, Chen L, Akbari O. Nicotinic acetylcholine receptor agonist attenuates ILC2-dependent airway hyperreactivity. Nat. Commun. 2016; 7: 13202.
    1. Mørkve Knudsen T, Rezwan FI, Jiang Y, Karmaus W, Svanes C, Holloway JW. Transgenerational and intergenerational epigenetic inheritance in allergic diseases. J. Allergy Clin. Immunol. 2018; 142: 765-72.
    1. Stavem K, Bjørtuft Ø, Borgan Ø, Geiran O, Boe J. Lung transplantation in patients with chronic obstructive pulmonary disease in a national cohort is without obvious survival benefit. J. Heart Lung Transplant. 2006; 25: 75-84.
    1. Thabut G, Ravaud P, Christie JD, Castier Y, Fournier M, Mal H, Lesèche G, Porcher R. Determinants of the survival benefit of lung transplantation in patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2008; 177: 1156-63.
    1. Hegab AE, Kubo H, Yamaya M, Asada M, He M, Fujino N, Mizuno S, Nakamura T. Intranasal HGF administration ameliorates the physiologic and morphologic changes in lung emphysema. Mol. Ther. 2008; 16: 1417-26.
    1. Morino S, Nakamura T, Toba T, Takahashi M, Kushibiki T, Tabata Y, Yasuhiko S. Fibroblast growth factor-2 induces recovery of pulmonary blood flow in canine emphysema models. Chest 2005; 128: 920-6.
    1. Mandai M, Watanabe A, Kurimoto Y, Hirami Y, Morinaga C, Daimon T, Fujihara M, Akimaru H, Sakai N, Shibata Y et al. Autologous induced stem-cell-derived retinal cells for macular degeneration. N. Engl. J. Med. 2017; 376: 1038-46.

Source: PubMed

3
Abonneren