A guide to human in vivo microcirculatory flow image analysis

Michael J Massey, Nathan I Shapiro, Michael J Massey, Nathan I Shapiro

Abstract

Various noninvasive microscopic camera technologies have been used to visualize the sublingual microcirculation in patients. We describe a comprehensive approach to bedside in vivo sublingual microcirculation video image capture and analysis techniques in the human clinical setting. We present a user perspective and guide suitable for clinical researchers and developers interested in the capture and analysis of sublingual microcirculatory flow videos. We review basic differences in the cameras, optics, light sources, operation, and digital image capture. We describe common techniques for image acquisition and discuss aspects of video data management, including data transfer, metadata, and database design and utilization to facilitate the image analysis pipeline. We outline image analysis techniques and reporting including video preprocessing and image quality evaluation. Finally, we propose a framework for future directions in the field of microcirculatory flow videomicroscopy acquisition and analysis. Although automated scoring systems have not been sufficiently robust for widespread clinical or research use to date, we discuss promising innovations that are driving new development.

Figures

Fig. 1
Fig. 1
SDF video analysis workflow chart. Raw video is captured by multiple study sites into cloud storage folders. A central processing facility syncs with the cloud storage and moves files to an onsite server for further processing. Videos are preprocessed to remove noise, resize, enhance contrast, and correct background illumination inhomogeneity. Videos are stabilized and clipped to specified duration and dimensions for analysis. Clips that cannot be stabilized over a minimum duration are discarded. Files may be organized by study folders. Clipped and stabilized videos are reviewed for image quality and assigned an image quality score. A quality sorting algorithm can be applied to select files for randomization and further analysis. Db database
Fig. 2
Fig. 2
An IQS form. File name includes metadata showing, for example, study site, patient ID, study name, date, timestamp, calibration, and preprocessing. Clicking the “Play” button opens the video file in a video player. The “Randomized” checkbox is not editable and indicates that the video has been assigned a random ID and selected for analysis. A quality score (0 = good, 1 = acceptable, or 10 = unacceptable) is assigned for each image quality category. Fields are provided to record specific time codes and comments

References

    1. Groner W, Winkelman JW, Harris AG, Ince C, Bouma GJ, Messmer K, et al. Orthogonal polarization spectral imaging: a new method for study of the microcirculation. Nat Med. 1999;5:1209–12. doi: 10.1038/13529.
    1. Arnold RC, Parrillo JE, Phillip Dellinger R, Chansky ME, Shapiro NI, Lundy DJ, et al. Point-of-care assessment of microvascular blood flow in critically ill patients. Intensive Care Med. 2009;35:1761–6. doi: 10.1007/s00134-009-1517-1.
    1. Bezemer R, Bartels SA, Bakker J, Ince C. Clinical review: Clinical imaging of the sublingual microcirculation in the critically ill—where do we stand. Crit Care. 2012;16:224–33. doi: 10.1186/cc11236.
    1. Bezemer R, Dobbe JG, Bartels SA, Boerma EC, Elbers PW, Heger M, et al. Rapid automatic assessment of microvascular density in sidestream dark field images. Med Biol Eng Comput. 2011;49:1269–78. doi: 10.1007/s11517-011-0824-1.
    1. Boerma EC, Mathura KR, van der Voort PH, Spronk PE, Ince C. Quantifying bedside-derived imaging of microcirculatory abnormalities in septic patients: a prospective validation study. Crit Care. 2005;9:R601–6. doi: 10.1186/cc3809.
    1. Bracht H, Krejci V, Hiltebrand L, Brandt S, Sigurdsson G, Ali SZ, et al. Orthogonal polarization spectroscopy to detect mesenteric hypoperfusion. Intensive Care Med. 2008;34:1883–90. doi: 10.1007/s00134-008-1130-8.
    1. De Backer D, Hollenberg S, Boerma C, Goedhart P, Buchele G, Ospina-Tascon G, et al. How to evaluate the microcirculation: report of a round table conference. Crit Care. 2007;11:R101. doi: 10.1186/cc6118.
    1. De Backer D, Ospina-Tascon G, Salgado D, Favory R, Creteur J, Vincent JL. Monitoring the microcirculation in the critically ill patient: current methods and future approaches. Intensive Care Med. 2010;36:1813–25. doi: 10.1007/s00134-010-2005-3.
    1. De Backer D, Verdant C, Chierego M, Koch M, Gullo A, Vincent JL. Effects of drotrecogin alfa activated on microcirculatory alterations in patients with severe sepsis. Crit Care Med. 2006;34:1918–24. doi: 10.1097/01.CCM.0000220498.48773.3C.
    1. den Uil CA, Caliskan K, Lagrand WK, van der Ent M, Jewbali LS, van Kuijk JP, et al. Dose-dependent benefit of nitroglycerin on microcirculation of patients with severe heart failure. Intensive Care Med. 2009;35:1893–9. doi: 10.1007/s00134-009-1591-4.
    1. den Uil CA, Lagrand WK, Spronk PE, van der Ent M, Jewbali LS, Brugts JJ, et al. Low-dose nitroglycerin improves microcirculation in hospitalized patients with acute heart failure. Eur J Heart Fail. 2009;11:386–90. doi: 10.1093/eurjhf/hfp021.
    1. Dobbe JG, Streekstra GJ, Atasever B, van Zijderveld R, Ince C. Measurement of functional microcirculatory geometry and velocity distributions using automated image analysis. Med Biol Eng Comput. 2008;46:659–70. doi: 10.1007/s11517-008-0349-4.
    1. Donati A, Damiani E, Domizi R, Romano R, Adrario E, Pelaia P, et al. Alteration of the sublingual microvascular glycocalyx in critically ill patients. Microvasc Res. 2013;90:86–9. doi: 10.1016/j.mvr.2013.08.007.
    1. Donati A, Domizi R, Damiani E, Adrario E, Pelaia P, Ince C. From macrohemodynamic to the microcirculation. Crit Care Res Pract. 2013;2013:892710.
    1. Kanoore Edul VS, Enrico C, Laviolle B, Vazquez AR, Ince C, Dubin A. Quantitative assessment of the microcirculation in healthy volunteers and in patients with septic shock. Crit Care Med. 2012;40:1443–8. doi: 10.1097/CCM.0b013e31823dae59.
    1. Elbers PW, Ince C. Mechanisms of critical illness—classifying microcirculatory flow abnormalities in distributive shock. Crit Care. 2006;10:221. doi: 10.1186/cc4969.
    1. Ellis CG, Jagger J, Sharpe M. The microcirculation as a functional system. Crit Care. 2005;9(Suppl 4):S3–8. doi: 10.1186/cc3751.
    1. Eriksson S, Nilsson J, Sturesson C. Non-invasive imaging of microcirculation: a technology review. Med Devices (Auckl) 2014;7:445–52.
    1. Ince C. The elusive microcirculation. Intensive Care Med. 2008;34:1755–6. doi: 10.1007/s00134-008-1131-7.
    1. Ince C. The microcirculation is the motor of sepsis. Crit Care. 2005;9(Suppl 4):S13–9. doi: 10.1186/cc3753.
    1. Massey MJ, Larochelle E, Najarro G, Karmacharla A, Arnold R, Trzeciak S, et al. The microcirculation image quality score: development and preliminary evaluation of a proposed approach to grading quality of image acquisition for bedside videomicroscopy. J Crit Care. 2013;28:913–7. doi: 10.1016/j.jcrc.2013.06.015.
    1. Milstein DMJ, Lindeboom JAH, Ince C. Sidestream dark-field imaging and image analysis of oral microcirculation under clinical conditions. Anaesth Pain Intensive Care Emerg. Proceedings of the 20th Postgraduate Course in Critical Care Medicine Trieste, Italy—November 18–21, 2005. 2006;Chapter 6:79–88.
    1. Omar YG, Massey M, Andersen LW, Giberson TA, Berg K, Cocchi MN, et al. Sublingual microcirculation is impaired in post-cardiac arrest patients. Resuscitation. 2013;84:1717–22. doi: 10.1016/j.resuscitation.2013.07.012.
    1. Robertson R, Lockhart E, Shapiro NI, Bankarenko N, McMahon T, Massey MJ, et al. Impact of transfusion of autologous 7 versus 42 day old AS-3 red blood cells on tissue oxygenation and the microcirculation in healthy volunteers. Transfusion. 2012;52:2459–64. doi: 10.1111/j.1537-2995.2012.03615.x.
    1. Sakr Y, Chierego M, Piagnerelli M, Verdant C, Dubois MJ, Koch M, et al. Microvascular response to red blood cell transfusion in patients with severe sepsis. Crit Care Med. 2007;35:1639–44. doi: 10.1097/01.CCM.0000269936.73788.32.
    1. Sallisalmi M. Microcirculation and hemorheology in critically ill patients. PhD thesis, Dept. of Surgery Division of Anesthesia and Intensive Care Medicine. University of Helsinki, Helsinki, Finland. 2013. ISBN 978-952-10-8687-8 (PDF).
    1. Sallisalmi M, Oksala N, Pettila V, Tenhunen J. Evaluation of sublingual microcirculatory blood flow in the critically ill. Acta Anaesthesiol Scand. 2012;56:298–306. doi: 10.1111/j.1399-6576.2011.02569.x.
    1. Sheikh MY, Javed U, Singh J, Choudhury J, Deen O, Dhah K, et al. Bedside sublingual video imaging of microcirculation in assessing bacterial infection in cirrhosis. Dig Dis Sci. 2009;54:2706–11. doi: 10.1007/s10620-008-0664-5.
    1. Struijker-Boudier HA, Rosei AE, Bruneval P, Camici PG, Christ F, Henrion D, et al. Evaluation of the microcirculation in hypertension and cardiovascular disease. Eur Heart J. 2007;28:2834–40. doi: 10.1093/eurheartj/ehm448.
    1. Taccone FS, Su F, Pierrakos C, He X, James S, Dewitte O, et al. Cerebral microcirculation is impaired during sepsis: an experimental study. Crit Care. 2010;14:R140. doi: 10.1186/cc9205.
    1. Trzeciak S, Dellinger RP, Parrillo JE, Guglielmi M, Bajaj J, Abate NL, et al. Early microcirculatory perfusion derangements in patients with severe sepsis and septic shock: relationship to hemodynamics, oxygen transport, and survival. Ann Emerg Med. 2007;49:88–98. doi: 10.1016/j.annemergmed.2006.08.021.
    1. Trzeciak S, McCoy JV, Phillip Dellinger R, Arnold RC, Rizzuto M, Abate NL, et al. Early increases in microcirculatory perfusion during protocol-directed resuscitation are associated with reduced multi-organ failure at 24 h in patients with sepsis. Intensive Care Med. 2008;34:2210–7. doi: 10.1007/s00134-008-1193-6.
    1. Trzeciak S, Rivers EP. Clinical manifestations of disordered microcirculatory perfusion in severe sepsis. Crit Care. 2005;9(Suppl 4):S20–6. doi: 10.1186/cc3744.
    1. van Beers EJ, Goedhart PT, Unger M, Biemond BJ, Ince C. Normal sublingual microcirculation during painful crisis in sickle cell disease. Microvasc Res. 2008;76:57–60. doi: 10.1016/j.mvr.2008.02.001.
    1. van Elteren HA, Ince C, Tibboel D, Reiss IK, de Jonge RC. Cutaneous microcirculation in preterm neonates: comparison between sidestream dark field (SDF) and incident dark field (IDF) imaging. J Clin Monit Comput. 2015;29:543–8. doi: 10.1007/s10877-015-9708-5.
    1. Verdant CL, De Backer D, Bruhn A, Clausi CM, Su F, Wang Z, et al. Evaluation of sublingual and gut mucosal microcirculation in sepsis: a quantitative analysis. Crit Care Med. 2009;37:2875–81. doi: 10.1097/CCM.0b013e3181b029c1.
    1. Vincent JL, De Backer D. Microvascular dysfunction as a cause of organ dysfunction in severe sepsis. Crit Care. 2005;9(Suppl 4):S9–12. doi: 10.1186/cc3748.
    1. Vellinga NA, Boerma EC, Koopmans M, Donati A, Dubin A, Shapiro NI, et al. International study on microcirculatory shock occurrence in acutely ill patients. Crit Care Med. 2015;43:48–56. doi: 10.1097/CCM.0000000000000553.
    1. Dababneh L, Cikach F, Alkukhun L, Dweik RA, Tonelli AR. Sublingual microcirculation in pulmonary arterial hypertension. Ann Am Thorac Soc. 2014;11:504–12. doi: 10.1513/AnnalsATS.201308-277OC.
    1. Aykut G, Veenstra G, Scorcella C, Ince C, Boerma C. Cytocam-IDF (incident dark field illumination) imaging for bedside monitoring of the microcirculation. Intensive Care Med Exp. 2015;3:40. doi: 10.1186/s40635-015-0040-7.
    1. Bezemer R, Khalilzada M, Ince C. Yearbook of intensive care and emergency medicine. Berlin: Springer; 2008. Recent advancements in microcirculatory image acquisition and analysis; pp. 677–90.
    1. De Backer D, Creteur J, Preiser JC, Dubois MJ, Vincent JL. Microvascular blood flow is altered in patients with sepsis. Am J Respir Crit Care Med. 2002;166:98–104. doi: 10.1164/rccm.200109-016OC.
    1. Sakr Y, Dubois MJ, De Backer D, Creteur J, Vincent JL. Persistent microcirculatory alterations are associated with organ failure and death in patients with septic shock. Crit Care Med. 2004;32:1825–31. doi: 10.1097/01.CCM.0000138558.16257.3F.
    1. Spronk PE, Ince C, Gardien MJ, Mathura KR, Oudemans-van Straaten HM, Zandstra DF. Nitroglycerin in septic shock after intravascular volume resuscitation. Lancet. 2002;360:1395–6. doi: 10.1016/S0140-6736(02)11393-6.
    1. Sherman H, Klausner S, Cook WA. Incident dark-field illumination a new method for microcirculation study. Angiology. 1971;22:295–303. doi: 10.1177/000331977102200507.
    1. Goedhart PT, Khalilzada M, Bezemer R, Merza J, Ince C. Sidestream dark field (SDF) imaging: a novel stroboscopic LED ring-based imaging modality for clinical assessment of the microcirculation. Opt Express. 2007;15:15101–14. doi: 10.1364/OE.15.015101.
    1. Balestra GM, Bezemer R, Boerma EC, Yong ZY, Sjauw KD, Engstrom AE, et al. Improvement of sidestream dark field imaging with an image acquisition stabilizer. BMC Med Imaging. 2010;10:15. doi: 10.1186/1471-2342-10-15.
    1. Lindert J, Werner J, Redlin M, Kuppe H, Habazettl H, Pries AR. OPS imaging of human microcirculation. A short technical report. J Vasc Res. 2002;39:368–72. doi: 10.1159/000065549.
    1. Demir SU, Mirshahi N, Tiba MH, Draucker G, Ward KR, Hobson R, et al. Image processing and machine learning for diagnostic analysis of microcirculation. ICME International Conference Complex Medical Engineering, 9–11 April 2009. 2009:1–5. .
    1. Demir SU, Hakimzadeh R, Hargraves RH, Ward KR, Myer EV, Najarian K. An automated method for analysis of microcirculation videos for accurate assessment of tissue perfusion. BMC Med Imaging. 2012;12:37–50. doi: 10.1186/1471-2342-12-37.
    1. Demir SU, Mirshahi N. Ward K, Hakimzadeh R. Hobson R, Najarian K. Vessel extraction of microcirculatory video recordings using multi-thresholding based verification algorithm. 2010 International Conference on Biosciences (BIOSCIENCESWORLD); 7–13 March 2010:11–15. doi:10.1109/BioSciencesWorld.2010.9
    1. You S, Ataer-Cansizoglu E, Erdogmus D, Massey M, Shapiro N. Microvascular blood flow estimation in sublingual microcirculation videos based on a principal curve tracing algorithm. 2012 IEEE Int Workshop Machine Learning for Signal Proc (MLSP); 23–26 Sept. 2012:1–6. doi:10.1109/MLSP.2012.6349763
    1. You S, Massey M, Shapiro N, Erdogmus D. A novel line detection method in space-time images for microvascular blood flow analysis in sublingual microcirculatory videos. 2013 IEEE 10th Int Symposium on Biomed Imaging; 7–11 April 2013:828–31. doi:10.1109/ISBI.2013.6556603.
    1. Pozo MO, Kanoore Edul VS, Ince C, Dubin A. Comparison of different methods for the calculation of the microvascular flow index. Crit Care Res Pract. 2012;2012:102483.

Source: PubMed

3
Abonneren