World Health Organization-defined eosinophilic disorders: 2022 update on diagnosis, risk stratification, and management

William Shomali, Jason Gotlib, William Shomali, Jason Gotlib

Abstract

Disease overview: The eosinophilias encompass a broad range of nonhematologic (secondary or reactive) and hematologic (primary or clonal) disorders with potential for end-organ damage.

Diagnosis: Hypereosinophilia (HE) has generally been defined as a peripheral blood eosinophil count greater than 1.5 × 109 /L. After exclusion of secondary causes of eosinophilia, diagnostic evaluation of primary eosinophilias relies on morphologic review of the blood and marrow, standard cytogenetics, fluorescence in situ hybridization, next generation sequencing gene assays, and flow immunophenotyping to detect histopathologic or clonal evidence for an acute or chronic hematolymphoid neoplasm.

Risk stratification: Disease prognosis relies on identifying the subtype of eosinophilia. After evaluation of secondary causes of eosinophilia, the 2016 World Health Organization endorses a semi-molecular classification scheme of disease subtypes. This includes the major category "myeloid/lymphoid neoplasms with eosinophilia and rearrangement of PDGFRA, PDGFRB, or FGFR1 or with PCM1-JAK2", and the myeloproliferative neoplasm subtype, "chronic eosinophilic leukemia, not otherwise specified" (CEL, NOS). Lymphocyte-variant HE is an aberrant T-cell clone-driven reactive eosinophila, and idiopathic hypereosinophilic syndrome (HES) is a diagnosis of exclusion.

Risk-adapted therapy: The goal of therapy is to mitigate eosinophil-mediated organ damage. For patients with milder forms of eosinophilia (eg, < 1.5 × 109 /L) without symptoms or signs of organ involvement, a watch and wait approach with close follow-up may be undertaken. Identification of rearranged PDGFRA or PDGFRB is critical because of the exquisite responsiveness of these diseases to imatinib. Corticosteroids are first-line therapy for patients with lymphocyte-variant HE and HES. Hydroxyurea and interferon-α have demonstrated efficacy as initial treatment and in steroid-refractory cases of HES. Mepolizumab, an interleukin-5 (IL-5) antagonist monoclonal antibody, was recently approved by the US Food and Drug Administration for patients with idiopathic HES. The use of the IL-5 receptor antibody benralizumab, as well as other targeted therapies such as JAK2 and FGFR1 inhibitors, is under active investigation.

© 2021 Wiley Periodicals LLC.

References

REFERENCES

    1. Ruan GJ, Smith CJ, Day C, et al. A population-based study of chronic eosinophilic leukemia-not otherwise specified in the United States. Am J Hematol. 2020;95(10):E257-E260. .
    1. Fauci AS, Harley JB, Roberts WC, Ferrans VJ, Gralnick HR, Bjornson BH. The idiopathic hypereosinophilic syndrome. Clinical, pathophysiologic, and therapeutic considerations. Ann Intern Med. 1982;97:78-92.
    1. Ogbogu PU, Bochner BS, Butterfield JH, et al. Hypereosinophilic syndromes: a multicenter, retrospective analysis of clinical characteristics and response to therapy. J Allergy Clin Immunol. 2009;124:1319-1325.
    1. Gotlib J, Cools J. Five years since the discovery of the FIPL1-PDGFRA: what we have learned about the fusion and other molecularly defined eosinophilias. Leukemia. 2008;22:1999-2010.
    1. Jovanovic JV, Score J, Waghorn K, et al. Low dose imatinib mesylate leads to rapid induction of major molecular responses and achievement of complete molecular remission in FIP1L1-PDGFRA-positive chronic eosinophilic leukemia. Blood. 2007;109:4635-4640.
    1. Pardanani A, Brockman SR, Paternoster SF, et al. FIP1L1-PDGFRA fusion: prevalence and clinicopathologic correlates in 89 consecutive patients with moderate to severe eosinophilia. Blood. 2004;104:3038-3045.
    1. Pardanani A, Ketterling RP, Li CY, et al. FIP1L1-PDGFRA in eosinophilic disorders: prevalence in routine clinical practice, long-term experience with imatinib therapy, and a critical review of the literature. Leuk Res. 2006;30:965-970.
    1. Rohmer J, Couteau-Chardon A, Trichereau J, et al. Epidemiology, clinical picture and long-term outcomes of FIP1L1-PDGFRA-positive myeloid neoplasm with eosinophilia: data from 151 patients. Am J Hematol. 2020;95(11):1314-1323.
    1. Morsia E, Reichard K, Pardanani A, Tefferi A, Gangat N. WHO defined chronic eosinophilic leukemia, not otherwise specified (CEL, NOS): a contemporary series from the Mayo Clinic. Am J Hematol. 2020;95(7):E172-E174.
    1. Wynn SR, Sachs MI, Keating MU, et al. Idiopathic hypereosinophilic syndrome in a 5½-month-old infant. J Pediatr. 1987;111:94-97.
    1. Bakhshi S, Hamre M, Mohamed AM, et al. t(5;9)(q11;q34): a novel familial translocation involving Abelson oncogene and association with hypereosinophilia. J Pediatr Hematol Oncol. 2003;25:82-84.
    1. Rives S, Alcorta I, Toll T, Tuset E, Estella J, Cross NCP. Idiopathic hypereosinophilic syndrome in children: report of a 7-year-old boy with FIP1L1-PDGFRA rearrangement. J Pediatr Hematol Oncol. 2005;27:663-665.
    1. Cools J, DeAngelo DJ, Gotlib J, et al. A tyrosine kinase created by fusion of the PDGFRA and FIP1L1 genes as a therapeutic target of imatinib in idiopathic hypereosinophilic syndrome. N Engl J Med. 2003;348:1201-1214.
    1. Baccarani M, Cilloni D, Rondoni M, et al. The efficacy of imatinib mesylate in patients with FIP1L1-PDGFRalpha-positive hypereosinophilic syndrome. Results of a multicenter prospective study. Haematologica. 2007;92:1173-1179.
    1. Brigden M, Graydon C. Eosinophilia detected by automated blood cell counting in ambulatory north American outpatients. Incidence and clinical significance. Arch Pathol Lab Med. 1997;121:963-967.
    1. Rothenberg ME. Eosinophilia. N Engl J Med. 1998;338:1592-1600.
    1. Pardanani A, Patnaik MM, Tefferi A. Eosinophilia: secondary, clonal and idiopathic. Br J Haematol. 2006;133:468-492.
    1. Valent P, Klion D, Horny HP, et al. Contemporary consensus proposal on criteria and classification of eosinophilic disorders and related syndromes. J Allergy Clin Immunol. 2012;130:607-612.e9.
    1. Arber DA, Orazi A, Hasserjian R, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127:2391-2405.
    1. Bain BJ, Gilliland DG, Horny H-P, et al. Myeloid and lymphoid neoplasms with eosinophilia and abnormalities of PDGFRA, PDGFRB, or FGFR1. In: Swerdlow S, Harris NL, Stein H, Jaffe ES, Theile J, Vardiman JW, eds. World Health Organization Classification of Tumours. Pathology and Genetics of Tumours of Haematopoietic and Lymphoid Tissues. IARC Press; 2008:68-73.
    1. Bain BJ, Gilliland DG, Horny H-P, et al. Chronic eosinophilic leukaemia, not otherwise specified. In: Swerdlow S, Harris NL, Stein H, Jaffe ES, Theile J, Vardiman JW, eds. World Health Organization Classification of Tumours. Pathology and Genetics of Tumours of Haematopoietic and Lymphoid Tissues. IARC Press; 2008:51-53.
    1. Elling C, Erben P, Walz C, et al. Novel imatinib-sensitive PDGFRA-activating point mutations in hypereosinophilic syndrome induce growth factor independence and leukemia-like disease. Blood. 2011;117:2935-2943.
    1. Chusid MJ, Dale DC, West BC, et al. The hypereosinophilic syndrome. Analysis of fourteen cases with review of the literature. Medicine. 1975;54:1-27.
    1. Klion AD, Bochner BS, Gleich GJ, et al. Approaches to the treatment of hypereosinophilic syndromes: a workshop summary report. J Allergy Clin Immunol. 2006;117:1292-1302.
    1. Weller PF, Bubley GJ. The idiopathic hypereosinophilic syndrome. Blood. 1994;83:2759-2779.
    1. Spry CJ, Davies J, Tai PC, Olsen EG, Oakley CM, Goodwin JF. Clinical features of fifteen patients with the hypereosinophilic syndrome. Q J Med. 1983;52:1-22.
    1. Lefebvre C, Bletry O, Degoulet P, et al. Prognostic factors of hypereosinophilic syndrome. Study of 40 cases. Ann Med Interne. 1989;140:253-257.
    1. Flaum MA, Schooley RT, Fauci AS, Gralnick HR. A clinicopathologic correlation of the idiopathic hypereosinophilic syndrome. Blood. 1981;58:1012-1020.
    1. Acharya KR, Ackerman SJ. Eosinophil granule proteins: form and function. J Biol Chem. 2014;289:17406-17415.
    1. Gotlib J, Cools J, Malone JM, et al. The FIP1L1-PDGFRα fusion tyrosine kinase in hypereosinophilic syndrome and chronic eosinophilic leukemia: implications for diagnosis, classification, and management. Blood. 2004;103:2879-2891.
    1. Tanino M, Kitamura K, Ohta G, Yamamoto Y, Sugioka G. Hypereosinophilic syndrome with extensive myocardial involvement and mitral valve thrombus instead of mural thrombi. Acta Pathol Jpn. 1983;33:1233-1242.
    1. Radford DJ, Garlick RB, Pohlner PG. Multiple valvar replacement for hypereosinophilic syndrome. Cardiol Young. 2002;12:67-70.
    1. Ommen SR, Seward JB, Tajik AJ. Clinical and echocardiographic features of hypereosinophilic syndromes. Am J Cardiol. 2000;86:110-113.
    1. Ganeva M, Gancheva T, Lazarova R, et al. Carbamazepine-induced drug reaction with eosinophilia and systemic symptoms (DRESS) syndrome: report of four cases and brief review. Int J Dermatol. 2008;47:853-860.
    1. Campos LE, Pereira LF. Pulmonary eosinophilia. J Bras Pneumol. 2009;35:561-573.
    1. Mendez-Sanchez N, Chavez-Tapia NC, Vazquez-Elizondo G, et al. Eosinophilic gastroenteritis: a review. Dig Dis Sci. 2007;52:2904-2911.
    1. Reiter A, Gotlib J. Myeloid neoplasms with eosinophilia. Blood. 2017;129:704-714.
    1. Kawasaki A, Mizushima Y, Matsui S, Hoshino K, Yano S, Kitagawa M. A case of T-cell lymphoma accompanying marked eosinophilia, chronic eosinophilic pneumonia and eosinophilic pleural effusion. A case report. Tumori. 1991;77:527-530.
    1. Endo M, Usuki K, Kitazume K, Iwabe K, Okuyama Y, Urabe A. Hypereosinophilic syndrome in Hodgkin's disease with increased granulocyte-macrophage colony-stimulating factor. Ann Hematol. 1995;71:313-314.
    1. Catovksy D, Bernasconi C, Verdonck PJ, et al. The association of eosinophilia with lymphoblastic leukaemia or lymphoma: a study of seven patients. Br J Haematol. 1980;45:523-534.
    1. Wardlaw AJ, Barwell J, Hitchman C, et al. Familial hypereosinophilia associated with eosinophilic gastrointestinal symptoms in individuals with a missense mutation in CKLF-like MARVEL transmembrane domain containing 3. Clin Exp Allergy. 2021;00:1-4. .
    1. Helbig G, Soja A, Bartkowska-Chrobok A, Kyrcz-Krzemien S. Chronic eosinophilic leukemia-not otherwise specified has a poor prognosis with unresponsiveness to conventional treatment and high risk of acute transformation. Am J Hematol. 2012;87:643-645.
    1. Wardlaw AJ, Wharin S, Aung H, Shaffu S, Siddiqui S. The causes of a peripheral blood eosinophilia in a secondary care setting. Clin Exp Allergy. 2021;51(7):902-914.
    1. Andres E, Serraj K, Zhu J, Vermorken AJM. The pathophysiology of elevated vitamin B12 in clinical practice. QJM. 2013;106:505-515.
    1. Pardanani A, Ketterling RP, Brockman SR, et al. CHIC2 deletion, a surrogate for FIP1L1-PDGFRA fusion, occurs in systemic mastocytosis associated with eosinophilia and predicts response to imatinib mesylate therapy. Blood. 2003;102:3093-3096.
    1. Olsson-Arvidsson L, Norberg A, Sjögren H, Johansson B. Frequent false-negative FIP1L1-PDGFRA FISH analyses of bone marrow samples from clonal eosinophilia at diagnosis. Br J Haematol. 2020;188(5):e76-e79.
    1. Klion AD, Noel P, Akin C, et al. Elevated serum tryptase levels identify a subset of patients with a myeloproliferative variant of idiopathic hypereosinophilic syndrome associated with tissue fibrosis, poor prognosis, and imatinib responsiveness. Blood. 2003;101:4660-4666.
    1. Schwaab J, Jawhar M, Naumann N, et al. Diagnostic challenges in the work up of hypereosinophilia: pitfalls in bone marrow core biopsy interpretation. Ann Hematol. 2016;95:557-562.
    1. Metzgeroth G, Walz C, Score J, et al. Recurrent finding of the FIP1L1-PDGFRA fusion gene in eosinophilia-associated acute myeloid leukemia and lymphoblastic T-cell lymphoma. Leukemia. 2007;21:1183-1188.
    1. Jawhar M, Naumann N, Schwaab J, et al. Imatinib in myeloid/ lymphoid neoplasms with eosinophilia and rearrangement of PDGFRB in chronic or blast phase. Ann Hematol. 2017;96:1463-1470.
    1. Verstovsek S, Vannucchi AM, Rambaldi A, et al. Interim results from fight-203, a phase 2, open-label, multicenter study evaluating the efficacy and safety of pemigatinib (INCB054828) in patients with myeloid/lymphoid neoplasms with rearrangement of fibroblast growth factor receptor 1 (FGFR1). Blood. 2018;132:690.
    1. Jawhar M, Naumann N, Knut M, et al. Cytogenetically cryptic ZMYM2-FLT3 and DIAPH1-PDGFRB gene fusions in myeloid neoplasms with eosinophilia. Leukemia. 2017;31:2271-2273.
    1. Pozdnyakova O, Orazi A, Kelemen K, et al. Myeloid/lymphoid neoplasms associated with eosinophilia and rearrangements of PDGFRA, PDGFRB, or FGFR1 or with PCM1-JAK2. Am J Clin Pathol. 2021;155(2):160-178.
    1. Greipp PT, Dewald GW, Tefferi A. Prevalence, breakpoint distribution, and clinical correlates of t(5;12). Cancer Genet Cytogenet. 2004;153:170-172.
    1. Xiao S, Nalabolu SR, Aster JC, et al. FGFR1 is fused with a novel zinc-finger gene, ZNF198, in the t(8;13) leukaemia/lymphoma syndrome. Nat Genet. 1998;18:84-87.
    1. Reiter A, Sohal J, Kulkarni S, et al. Consistent fusion of ZNF198 to the fibroblast growth factor receptor-1 in the t(8;13)(p11;q12) myeloproliferative syndrome. Blood. 1999;92:1735-1742.
    1. Popovici C, Adelaide J, Ollendorff V, et al. Fibroblast growth factor receptor 1 is fused to FIM in stem-cell myeloproliferative disorder with t(8;13). Proc Natl Acad Sci U S A. 1998;95:5712-5717.
    1. Smedley D, Hamoudi R, Clark J, et al. The t(8;13)(p11;q11-12) rearrangement associated with an atypical myeloproliferative disorder fuses the fibroblast growth factor receptor 1 gene to a novel gene RAMP. Hum Mol Genet. 1998;7:637-642.
    1. Wang T, Wang Z, Zhang L, et al. Identification of a novel TFG-FGFR1 fusion gene in an acute myeloid leukaemia patient with t(3;8)(q12;p11). Br J Haematol. 2020;188(1):177-181.
    1. Carll T, Patel A, Derman B, et al. Diagnosis and treatment of mixed phenotype (T-myeloid/lymphoid) acute leukemia with novel ETV6-FGFR2 rearrangement. Blood Adv. 2020;4(19):4924-4928.
    1. Fernandez-Pol S, Neishaboori N, Chapman CM, et al. Two cases of mycosis fungoides with PCM1-JAK2 fusion. JCO Precis Oncol. 2021;5:646-652.
    1. Fitzpatrick MJ, Massoth LR, Marcus C, et al. JAK2 rearrangements are a recurrent alteration in CD30+ systemic T-cell lymphomas with anaplastic morphology. Am J Surg Pathol. 2021 Jul 1;45(7):895-904.
    1. Chung A, Hou Y, Ohgami R, et al. A novel TRIP11-FLT3 fusion in a patient with a myeloid/lymphoid neoplasm with eosinophilia. Cancer Genet. 2017;216-217:10-15.
    1. Yao J, Xu L, Aypar U, et al. Myeloid/lymphoid neoplasms with eosinophilia/basophilia and ETV6-ABL1 fusion: cell-of-origin and response to tyrosine kinase inhibition. Haematologica. 2021;106(2):614-618.
    1. Tang G, Tam W, Short NJ, et al. Myeloid/lymphoid neoplasms with FLT3 rearrangement. Mod Pathol. 2021;34(9):1673-1685.
    1. Strati P, Tang G, Duose DY, et al. Myeloid/lymphoid neoplasms with FGFR1 rearrangement. Leuk Lymphoma. 2018;59(7):1672-1676.
    1. Baer C, Muehlbacher V, Kern W, Haferlach C, Haferlach T. Molecular genetic characterization of myeloid/lymphoid neoplasms associated with eosinophilia and rearrangement of PDGFRA, PDGFRB, FGFR1 or PCM1-JAK2. Haematologica. 2018;103:e348-e350.
    1. Wang SA, Hasserjian RP, Tam W, et al. Bone marrow morphology is a strong discriminator between chronic eosinophilic leukemia, not otherwise specified from reactive idiopathic hypereosinophilic syndrome. Haematologica. 2017;102:1352-1360.
    1. Goasguen JE, Bennett JM, Bain BJ, et al. The role of eosinophil morphology in distinguishing between reactive eosinophilia and eosinophilia as a feature of a myeloid neoplasm. Br J Haematol. 2020;191(3):497-504.
    1. Brito-Babapulle F. The eosinophilias, including the idiopathic hypereosinophilic syndrome. Br J Haematol. 2003;121:203-223.
    1. Simon HU, Plotz SG, Dummer R, et al. Abnormal clones of T cells producing interleukin-5 in idiopathic hypereosinophilia. N Engl J Med. 1999;341:1112-1120.
    1. Roufosse F, Cogan E, Goldman M. Recent advances in pathogenesis and management of hypereosinophilic syndromes. Allergy. 2004;59:673-689.
    1. Schwaab J, Umbach R, Metzgeroth G, et al. KIT D816V and JAK2 V617F mutations are seen recurrently in hypereosinophilia of unknown significance. Am J Hematol. 2015;90:774-777.
    1. Wang SA, Tam W, Tsai AG, et al. Targeted next-generation sequencing identifies a subset of idiopathic hypereosinophilic syndrome with features similar to chronic eosinophilic leukemia, not otherwise specified. Mod Pathol. 2016;29:854-864.
    1. Cross NCP, Hoade Y, Tapper WJ, et al. Recurrent activating STAT5B N642H mutation in myeloid neoplasms with eosinophilia. Leukemia. 2019;33:415-425.
    1. Patel AB, Franzini A, Leroy E, et al. JAK2 ex13InDel drives oncogenic transformation and is associated with chronic eosinophilic leukemia and polycythemia vera. Blood. 2019;134(26):2388-2398.
    1. Shomali W, Damnernsawad A, Theparee T, et al. A novel activating JAK1 mutation in chronic eosinophilic leukemia. Blood Adv. 2021;5(18):3581-3586. doi:10.1182/bloodadvances.2021004237
    1. Cogan E, Schandene L, Crusiaux A, Cochaux P, Velu T, Goldman M. Brief report: clonal proliferation of type 2 helper T cells in a man with the hypereosinophilic syndrome. N Engl J Med. 1994;330:535-538.
    1. Simon HU, Yousefi S, Dommann-Scherrer CC, et al. Expansion of cytokine producing CD4-CD8-T cells associated with abnormal Fas expression and hypereosinophilia. J Exp Med. 1996;183:1071-1082.
    1. Brugnoni D, Airo P, Rossi G, et al. CD4+ T-cell population able to secrete large amounts of interleukin-5. Blood. 1996;87:1416-1422.
    1. Carpentier C, Verbanck S, Schandené L, et al. Eosinophilia associated with CD3−CD4+ T cells: characterization and outcome of a single-center cohort of 26 patients. Front Immunol. 2020;11:1765.
    1. Lefevre G, Copin MC, Staumont-Salle D, et al. The lymphoid variant of hypereosinophilic syndrome: study of 21 patients with CD3-CD4+ aberrant T-cell phenotype. Medicine. 2014;93:255-266.
    1. Roufosse F, Schandene L, Sibille C, et al. T-cell receptor-independent activation of clonal Th2 cells associated with chronic hypereosinophilia. Blood. 1999;94:994-1002.
    1. Bank I, Amariglio N, Reshef A, et al. The hypereosinophilic syndrome associated with CD4+CD3- helper type 2 (Th2) lymphocytes. Leuk Lymphoma. 2001;42:123-133.
    1. Klion AD, Meija R, Cowen EW, et al. Chronic active Epstein-Barr virus infection: a novel cause of lymphocytic variant hypereosinophilic syndrome. Blood. 2013;121:2364-2366.
    1. Walker S, Wang C, Walradt T, et al. Identification of a gain-of-function STAT3 mutation (p.Y640F) in lymphocytic variant hypereosinophilic syndrome. Blood. 2016;127:948-951.
    1. Fernandez-Pol S, Petersen B, Murphy JE, et al. Two cases with features of lymphocyte variant Hypereosinophilic syndrome with STAT3 SH2 domain mutations. Am J Surg Pathol. 2021;45(2):193-199.
    1. Roufosse F. Hypereosinophilic syndrome variants: diagnostic and therapeutic considerations. Haematologica. 2009;94:1188-1193.
    1. Helbig G, Wieczorkiewicz A, Dziaczkowska-Suszek J, Majewski M, Kyrcz KS. T-cell abnormalities are present at high frequencies at high frequencies in patients with hypereosinophilic syndrome. Haematologica. 2009;94:1236-1241.
    1. Legrand F, Renneville A, Macintyre E, et al. The spectrum of FIP1L1-PDGFRA-associated chronic eosinophilic leukemia: new insights based on a survey of 44 cases. Medicine. 2013;92:e1-e9.
    1. DeLavareille A, Roufosse F, Schmid-Grendelmeier P, et al. High serum thymus and activation-regulated chemokine levels in the lymphocytic variant of the hypereosinophilic syndrome. J Allergy Clin Immunol. 2002;110:476-479.
    1. Podjasek HC, Butterfield JH. Mortality in hypereosinophilic syndrome: 19 years of experience at Mayo Clinic with a review of the literature. Leuk Res. 2013;37:392-395.
    1. Pardanani A, Lashi T, Wassie E, et al. Predictors of survival in WHO-defined hypereosinophilic syndrome and idiopathic hypereosinophilia and the role of next generation sequencing. Leukemia. 2016;30:1924-1926.
    1. Brugnoni D, Airo P, Tosoni C, et al. CD3-CD4+ cells with a Th2-like pattern of cytokine production in the peripheral blood of a patient with cutaneous T cell lymphoma. Leukemia. 1997;11:1983-1985.
    1. Roufosse F, Schandene L, Sibille C, et al. Clonal Th2 lymphocytes in patients with the idiopathic hypereosinophilic syndrome. Br J Haematol. 2000;109:540-548.
    1. Kitano K, Ichikawa N, Shimodaira S, Ito T, Ishida F, Kiyosawa K. Eosinophilia associated with clonal T-cell proliferation. Leuk Lymphoma. 1997;27:335-342.
    1. Kluin-Nelemans HC, Reiter A, Illerhaus A, et al. Prognostic impact of eosinophils in mastocytosis: analysis of 2350 patients collected in the ECNM registry. Leukemia. 2020;34(4):1090-1101.
    1. Wimazal F, Germing U, Kundi M, et al. Evaluation of the prognostic significance of eosinophilia and basophilia in a larger cohort of patients with myelodysplastic syndromes. Cancer. 2010;116:2372-2381.
    1. Matsushima T, Handa H, Yokohama A, et al. Prevalence and clinical characteristics of myelodysplastic syndrome with bone marrow eosinophilia or basophilia. Blood. 2003;101:3386-3390.
    1. Ackerman SJ, Butterfield JH. Eosinophilia, eosinophil-associated diseases, chronic eosinophilic leukemia, and the hypereosinophilic syndromes. In: Hoffman R, Benz E Jr, Shattil SJ, et al., eds. Hematology. 4th ed. Churchill Livingstone; 2005.
    1. Schaller JL, Burkland GA. Case report: rapid and complete control of idiopathic hypereosinophilia with imatinib mesylate. MedGenMed. 2001;3:9.
    1. Gleich GJ, Leiferman KM, Pardanani A, Tefferi A, Butterfield JH. Treatment of hypereosinophilic syndrome with imatinib mesilate. Lancet. 2002;359:1577-1578.
    1. Ault P, Cortes J, Koller C, Kaled ES, Kantarjian H. Response of idiopathic hypereosinophilic syndrome to treatment with imatinib mesylate. Leuk Res. 2002;26:881-884.
    1. Griffin JH, Leung J, Bruner RJ, Caligiuri MA, Briesewitz R. Discovery of a fusion kinase in EOL-1 cells and idiopathic hypereosinophilic syndrome. Proc Natl Acad Sci U S A. 2003;100:7830-7835.
    1. Klion AD, Robyn J, Akin C, et al. Molecular remission and reversal of myelofibrosis in response to imatinib mesylate treatment in patients with the myeloproliferative variant of hypereosinophilic syndrome. Blood. 2004;103:473-478.
    1. Helbig G, Stella-Holowiecka B, Majewski M, et al. A single weekly dose of imatinib is sufficient to induce and maintain remission of chronic eosinophilic leukaemia in FIP1L1-PDGFRA-expressing patients. Br J Haematol. 2008;141:200-204.
    1. Pardanani A, D'Souza A, Knudson RA, Hanson CA, Ketterling RP, Tefferi A. Long-term follow-up of FIP1L1-PDGFRA-mutated patients with eosinophilia: survival and clinical outcome. Leukemia. 2012;26:2439-2441.
    1. Klion AD, Robyn J, Maric I, et al. Relapse following discontinuation of imatinib mesylate therapy for FIP1L1/PDGFRA-positive chronic eosinophilic leukemia: implications for optimal dosing. Blood. 2007;110:3552-3556.
    1. Metzgeroth G, Schwaab J, Naumann N, et al. Treatment-free remission in FIP1L1-PDGFRA-positive myeloid/lymphoid neoplasms with eosinophilia after imatinib discontinuation. Blood Adv. 2020;4(3):440-443.
    1. Helbig G, Kyrcz-Krzemien S. Cessation of imatinib mesylate may lead to sustained hematologic and molecular remission in FIP1L1-PDGFRA-mutated hypereosinophilic syndrome. Am J Hematol. 2014;89:115.
    1. Von Bubnoff N, Sandherr M, Schlimok G, et al. Myeloid blast crisis evolving during imatinib treatment of an FIP1L1-PDGFR alpha-positive chronic myeloproliferative disease with prominent eosinophilia. Leukemia. 2004;19:286-287.
    1. Ohnishi H, Kandabashi K, Maeda Y, Kawamura M, Watanabe T. Chronic eosinophilic leukaemia with FIP1L1-PDGFRA fusion and T6741 mutation that evolved from Langerhans cell histiocytosis with eosinophilia after chemotherapy. Br J Haematol. 2006;134:547-549.
    1. Lierman E, Michaux L, Beullens E, et al. FIP1L1-PDGFRalpha D842V, a novel pan resistant mutant, emerging after treatment of FIP1L1-PDGFRalpha T674I eosinophilic leukemia with single agent sorafenib. Leukemia. 2009;23:845-851.
    1. Bradeen HA, Eide CA, O'Hare T, et al. Comparison of imatinib mesylate, dasatinib (BMS-354825), and nilotinib (AMN107) in an N-ethyl-N-nitrosourea (ENU)-based mutagenesis screen: high efficacy of drug combinations. Blood. 2006;108:2332-2338.
    1. Cools J, Stover EH, Boulton CL, et al. PKC412 overcomes resistance to imatinib in a murine model of FIP1L1-PDGFR alpha-induced myeloproliferative disease. Cancer Cell. 2003;3:459-469.
    1. Lierman E, Folens C, Stover EH, et al. Sorafenib is a potent inhibitor of FIP1L1-PDGFRalpha and the imatinib-resistant FIP1L1-PDGFR alphaT674I mutant. Blood. 2006;108:1374-1376.
    1. Stover EH, Chen J, Lee BH, et al. The small molecule tyrosine kinase inhibitor AMN107 inhibits TEL-PDGFR beta and FIP1L1-PDGFR alpha in vitro and in vivo. Blood. 2005;106:3206-3213.
    1. Von Bubnoff N, Gorantla SP, Thone S, et al. The FIP1L1-PDGFRA T674I mutation can be inhibited by the tyrosine kinase inhibitor AMN107 (nilotinib). Blood. 2006;107:4970-4971.
    1. Metzgeroth G, Erben P, Martin H, et al. Limited clinical activity of nilotinib and sorafenib in FIP1L1-PDGFRA positive chronic eosinophilic leukemia with imatinib-resistant T674I mutation. Leukemia. 2012;26:162-164.
    1. Grunewald S, Klug LR, Mühlenberg T, et al. Resistance to Avapritinib in PDGFRA-driven GIST is caused by secondary mutations in the PDGFRA kinase domain. Cancer Discov. 2021;11(1):108-125.
    1. Simon D, Salemi S, Yousefi S, Simon HU. Primary resistance to imatinib in Fip1-like 1-platelet-derived growth factor receptor alpha-positive eosinophilic leukemia. J Allergy Clin Immunol. 2008;121:1054-1056.
    1. Gorantla SP, Zirlik K, Reiter A, et al. F604S exchange in FIP1L1-PDGFRA enhances FIP1L1-PDGFRA stability via SHP-2 and SRC: a novel mode of kinase inhibitor resistance. Leukemia. 2015;29:1763-1770.
    1. Cross DM, Cross NC, Burgstaller S, et al. Durable responses to imatinib in patients with PDGFRB fusion gene-positive and BCR-ABL-negative chronic myeloproliferative disorders. Blood. 2007;109:61-64.
    1. Cheah CY, Burbury K, Apperley JF, et al. Patients with myeloid malignancies bearing PDGFRB fusion genes achieve durable long term remissions with imatinib. Blood. 2014;123:3574-3577.
    1. Metzgeroth G, Schwaab J, Gosenca D, et al. Long-term follow-up of treatment with imatinib in eosinophilia-associated myeloid/ lymphoid neoplasms with PDGFR rearrangements in blast phase. Leukemia. 2013;27:2254-2256.
    1. Zhang Y, Gao Y, Zhang H, et al. PDGFRB mutation and tyrosine kinase inhibitor resistance in Ph-like acute lymphoblastic leukemia. Blood. 2018;131:2256-2261.
    1. Pardanani A, Reeder T, Porrata L, et al. Imatinib therapy for hypereosinophilic syndrome and other eosinophilic disorders. Blood. 2003;101:3391-3397.
    1. Pitini V, Arrigo C, Azzarello D, et al. Serum concentration of cardiac troponin T in patients with hypereosinophilic syndrome treated with imatinib is predictive of adverse outcomes. Blood. 2003;102:3456-3457.
    1. Chen J, DeAngelo DJ, Kutok JL, et al. PKC412 inhibits the zinc finger 198-fibroblast growth factor receptor 1 fusion tyrosine kinase and is active in treatment of stem cell myeloproliferative disorder. Proc Natl Acad Sci U S A. 2004;101:14479-14484.
    1. Chase A, Bryant C, Score J, Cross NC. Ponatinib as targeted therapy for FGFR1 fusions associated with the 8p11 myeloproliferative syndrome. Haematologica. 2013;98:103-106.
    1. Ren M, Qin H, Ren R, Cowell JK. Ponatinib suppresses the development of myeloid and lymphoid malignancies associated with FGFR1 abnormalities. Leukemia. 2013;27:32-40.
    1. Khodadoust MS, Luo B, Medeiros BC, et al. Clinical activity of ponatinib in a patient with FGFR1-rearranged mixed phenotype acute leukemia. Leukemia. 2016;30:947-950.
    1. Kreil S, Ades L, Bommer M, et al. Limited efficacy of ponatinib in myeloproliferative neoplasms associated with FGFR1 fusion genes. Blood. 2015;126:2812.
    1. Verstovsek S, Subbiah V, Masarova L, et al. Treatment of the myeloid/lymphoid neoplasm with FGFR1 rearrangement with FGFR1 inhibitor. Ann Oncol. 2018 Aug 1;29(8):1880-1882.
    1. Kasbekar M, Nardi V, Dal Cin P, et al. Targeted FGFR inhibition results in a durable remission in an FGFR1-driven myeloid neoplasm with eosinophilia. Blood Adv. 2020;4(13):3136-3140.
    1. Lierman E, Selleslag D, Smits S, Billiet J, Vandenberghe P. Ruxolitinib inhibits transforming JAK2 fusion proteins in vitro and induces complete cytogenetic remission in t(8;9)(p22;p24)/PCM1-JAK2-positive chronic eosinophilic leukemia. Blood. 2012;120:1529-1531.
    1. Rumi E, Milosevic JD, Casetti I, et al. Efficacy of ruxolitinib in chronic eosinophilic leukemia associated with a PCM1-JAK2 fusion gene. J Clin Oncol. 2013;31:e269-e271.
    1. Rumi E, Milosevic JD, Selleslag D, et al. Efficacy of ruxolitinib in myeloid neoplasms with PCM1-JAK2 fusion gene. Ann Hematol. 2015;94:1927-1928.
    1. Schwaab J, Naumann N, Luebke J, et al. Response to tyrosine kinase inhibitors in myeloid neoplasms associated with PCM1-JAK2, BCR-JAK2 and ETV6-ABL1 fusion genes. Am J Hematol. 2020;95(7):824-833.
    1. Chen JA, Hou Y, Roskin KM, et al. Lymphoid blast transformation in an MPN with BCR-JAK2 treated with ruxolitinib: putative mechanisms of resistance. Blood Adv. 2021;5(17):3492-3496.
    1. Walz C, Erben P, Ritter M, et al. Response of ETV6-FLT3-positive myeloid/lymphoid neoplasm with eosinophilia to inhibitors of FMS-like tyrosine kinase 3. Blood. 2011;118:2239-2242.
    1. Falchi L, Mehrotra M, Newberry KJ, et al. ETV6-FLT3 fusion gene positive, eosinophilia-associated myeloproliferative neoplasm successfully treated with sorafenib and allogeneic stem cell transplant. Leukemia. 2014;28:2090-2092.
    1. Zaliova M, Moorman AV, Cazzaniga G, et al. Characterization of leukemias with ETV6-ABL1 fusion. Haematologica. 2016 Sep;101(9):1082-1093.
    1. Helbig G, Wi'snieswka-Piaty K, Francuz T, et al. Diversity of clinical manifestations and response to corticosteroids for idiopathic hypereosinophilic syndrome: retrospective study in 33 patients. Leuk Lymphoma. 2013;54:807-811.
    1. Parrillo JE, Fauci AS, Wolff SM. Therapy of the hypereosinophilic syndrome. Ann Intern Med. 1978;89:167-172.
    1. Quiquandon I, Claisse JF, Capiod JC, Delobel J, Prin L. Alpha-interferon and hypereosinophilic syndrome with trisomy 8: karyotypic remission. Blood. 1995;85:2284-2285.
    1. Luciano L, Catalano L, Sarrantonio C, Guerriero A, Califano C, Rotoli B. αIFN-induced hematologic and cytogenetic remission in chronic eosinophilic leukemia with t(1;5). Haematologica. 1999;84:651-653.
    1. Yamada O, Kitahara K, Imamura K, Ozasa H, Okada M, Mizoguchi H. Clinical and cytogenetic remission induced by interferon-α in a patient with chronic eosinophilic leukemia associated with a unique t(3;9;5) translocation. Am J Hematol. 1998;58:137-141.
    1. Malbrain ML, Van den Bergh H, Zachee P. Further evidence for the clonal nature of the idiopathic hypereosinophilic syndrome: complete haematological and cytogenetic remission induced by interferon-alpha in a case with a unique chromosomal abnormality. Br J Haematol. 1996;92:176-183.
    1. Butterfield JH, Gleich GJ. Response of six patients with idiopathic hypereosinophilic syndrome to interferon alpha. J Allergy Clin Immunol. 1994;94:1318-1326.
    1. Ceretelli S, Capochiani E, Petrini M. Interferon-alpha in the idiopathic hypereosinophilic syndrome: consideration of five cases. Ann Hematol. 1998;77:161-164.
    1. Yoon TY, Ahn GB, Chang SH. Complete remission of hypereosinophilic syndrome after interferon-alpha therapy: report of a case and literature review. J Dermatol. 2000;27:110-115.
    1. Butterfield JH. Interferon treatment for hypereosinophilic syndromes and systemic mastocytosis. Acta Haematol. 2005;114:26-40.
    1. Jabbour E, Kantarjian H, Cortes J, et al. PEG-IFN-a-2b therapy in BCR-ABL-negative myeloproliferative disorders. Final result of a phase 2 study. Cancer. 2007;110:2012-2018.
    1. Kiladjian JJ, Cassinat B, Chevret S, et al. Pegylated interferon-alpha-2a induces complete hematologic and molecular responses with low toxicity in polycythemia vera. Blood. 2008;112:3065-3072.
    1. Quintas-Cardama A, Kantarjian H, Manshouri T, et al. Pegylated interferon-alpha-2a yields high rates of hematologic and molecular response in patients with advanced essential thrombocythemia and polycythemia vera. J Clin Oncol. 2009;27:5418-5424.
    1. Cofrancesco E, Cortellaro M, Pogliani E, Boschetti C, Salvatore M, Polli EE. Response to vincristine treatment in a case of idiopathic hypereosinophilic syndrome with multiple clinical manifestations. Acta Haematol. 1984;72:21-25.
    1. Sakamoto K, Erdreich-Epstein A, de Clerck Y, Erdreich-Epstein A, de Clerck Y, Coates T. Prolonged clinical response to vincristine treatment in two patients with hypereosinophilic syndrome. Am J Pediatr Hematol Oncol. 1992;14:348-351.
    1. Lee JH, Lee JW, Jang CS, et al. Successful cyclophosphamide therapy in recurrent eosinophilic colitis associated with hypereosinophilic syndrome. Yonsei Med J. 2002;43:267-270.
    1. Smit AJ, van Essen LH, de Vries EG. Successful long-term control of idiopathic hypereosinophilic syndrome with etoposide. Cancer. 1991;67:2826-2827.
    1. Bourrat E, Lebbe C, Calvo F. Etoposide for treating the hypereosinophilic syndrome. Ann Intern Med. 1994;121:899-900.
    1. Ueno NT, Zhao S, Robertson LE, Consoli U, Andreeff M. 2-chlorodeoxyadenosine therapy for idiopathic hypereosinophilic syndrome. Leukemia. 1997;11:1386-1390.
    1. Jabbour E, Verstovsek S, Giles F, et al. 2-chlorodeoxyadenosine and cytarabine combination therapy for idiopathic hypereosinophilic syndrome. Cancer. 2005;104:541-546.
    1. Zabel P, Schlaak M. Cyclosporin for hypereosinophilic syndrome. Ann Hematol. 1991;62:230-231.
    1. Nadarajah S, Krafchik B, Roifman C, Horgan-Bell C. Treatment of hypereosinophilic syndrome in a child using cyclosporine: implication for a primary T-cell abnormality. Pediatrics. 1997;99:630-633.
    1. Panch SR, Bozik ME, Brown T, et al. Dexpramipexole as an oral steroid-sparing agent in hypereosinophilic syndromes. Blood. 2018;132:501-509.
    1. Butterfield JH. Success of short-term, higher-dose imatinib mesylate to induce clinical response in FIP1L1-PDGFRalpha-negative hypereosinophilic syndrome. Leuk Res. 2009;33:1127-1129.
    1. Helbig G, Hus M, Halasz M, et al. Imatinib mesylate may induce long-term clinical response in FIP1L1-PDGFRα-negative hypereosinophilic syndrome. Med Onc. 2011;29:1073-1076.
    1. Choi C, Moller D, Tan J, et al. Pegylated interferon alpha 2a is an effective and well-tolerated treatment option for lymphocyte-variant hypereosinophilic syndrome. Br J Haematol. 2020;188(5):e68-e72.
    1. Roufosse FE, Kahn JE, Gleich GJ, et al. Long-term safety of mepolizumab for the treatment of hypereosinophilic syndromes. J Allergy Clin Immunol. 2013;131:461-467.
    1. FitzGerald JM, Bleecker ER, Nair P, et al. Benralizumab, an anti-interleukin-5 receptor α monoclonal antibody, as add-on treatment for patients with severe, uncontrolled, eosinophilic asthma (CALIMA): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet. 2016;388:2128-2141.
    1. Roufosse F, De Lavareille A, Schandené L, et al. Mepolizumab as a corticosteroid-sparing agent in lymphocytic variant hypereosinophilic syndrome. J Allergy Clin Immunol. 2010;126:828-835.e3.
    1. Plotz SG, Simon HU, Darsow U, et al. Use of an anti-interleukin-5 antibody in the hypereosinophilic syndrome with eosinophilic dermatitis. N Engl J Med. 2003;349:2334-2339.
    1. Garrett JK, Jameson SC, Thomson B, et al. Anti-interleukin-5 (mepolizumab) therapy for hypereosinophilic syndrome. J Allergy Clin Immunol. 2004;113:115-119.
    1. Klion AD, Law MA, Noel P, Kim YJ, Haverty TP, Nutman TB. Safety and efficacy of the monoclonal anti-interleukin-5 antibody SCH55700 in the treatment of patients with hypereosinophilic syndrome. Blood. 2004;103:2939-2941.
    1. Hart TK, Cook RM, Zia-Amirhosseini P, et al. Preclinical efficacy and safety of mepolizumab (SB-240563), a humanized monoclonal antibody to IL-5, in cynomolgus monkeys. J Allergy Clin Immunol. 2001;108:250-257.
    1. Rothenberg ME, Klion AD, Roufosse FE, et al. Treatment of patients with the hypereosinophilic syndrome with mepolizumab. N Engl J Med. 2008;358:1215-1228.
    1. Roufosse F, Kahn JE, Rothenberg ME, et al. Efficacy and safety of mepolizumab in hypereosinophilic syndrome: a phase III, randomized, placebo-controlled trial. J Allergy Clin Immunol. 2020;146(6):1397-1405.
    1. Walsh GM. Reslizumab, a humanized anti-IL-5 mAb for the treatment of eosinophil-mediated inflammatory conditions. Curr Opin Mol Ther. 2009;11:329-336.
    1. Kuruvilla M. Treatment of hypereosinophilic syndrome and eosinophilic dermatitis with reslizumab. Ann Allergy Asthma Immunol. 2018;120(6):670-671.
    1. Spergel JM, Rothenberg ME, Collins MH, et al. Reslizumab in children and adolescents with eosinophilic esophagitis: results of a double-blind, randomized, placebo-controlled trial. J Allergy Clin Immunol. 2012;129:456-463.e3.
    1. Bleecker ER, FitzGerald JM, Chanez P, et al. Efficacy and safety of benralizumab for patients with severe asthma uncontrolled with high-dosage corticosteroids and long-acting β2-agonists (SIROCCO): a randomised, multicenter, placebo-controlled phase 3 trial. Lancet. 2016;388:2115-2127.
    1. Nair P, Wenzel S, Rabe KF, et al. Oral glucocorticoid-sparing effect of benralizumab in severe asthma. N Engl J Med. 2017;376:2448-2458.
    1. Kuang FL, Legrand F, Makiya M, et al. Benralizumab for PDGFRA-negative hypereosinophilic syndrome. N Engl J Med. 2019;380:1336-1346.
    1. Kuang FL, Fay MP, Ware J, et al. Long-term clinical outcomes of high-dose mepolizumab treatment for hypereosinophilic syndrome. J Allergy Clin Immunol Pract. 2018;6:1518-1527.e5.
    1. Pitini V, Teti D, Arrigo C, Righi M, et al. Alemtuzumab therapy for refractory idiopathic hypereosinophilic syndrome with abnormal T-cells: a case report. Br J Haematol. 2004;127:477.
    1. Sefcick A, Sowter D, DasGupta E, Russell NH, Byrne JL. Alemtuzumab therapy for refractory idiopathic hypereosinophilic syndrome. Br J Haematol. 2004;124:558-559.
    1. Verstovsek S, Tefferi A, Kantarjian H, et al. Alemtuzumab therapy for hypereosinophilic syndrome and chronic eosinophilic leukemia. Clin Cancer Res. 2009;15:368-373.
    1. Strati P, Cortes J, Faderl S, Kantarjian H, Verstovsek S. Long-term follow-up of patients with hypereosinophilic syndrome treated with Alemtuzumab, an anti-CD52 antibody. Clin Lymphoma Myeloma Leuk. 2013;13:287-291.
    1. Vazquez L, Caballero D, Canizo CD, et al. Allogeneic peripheral blood cell transplantation for hypereosinophilic syndrome with myelofibrosis. Bone Marrow Transplant. 2000;25:217-218.130.
    1. Chockalingam A, Jalil A, Shadduck RK, Lister J. Allogeneic peripheral blood stem cell transplantation for hypereosinophilic syndrome with severe cardiac dysfunction. Bone Marrow Transplant. 1999;23:1093-1094.
    1. Basara N, Markova J, Schmetzer B, et al. Chronic eosinophilic leukemia: successful treatment with an unrelated bone marrow transplantation. Leuk Lymphoma. 1998;32:189-193.
    1. Sigmund DA, Flessa HC. Hypereosinophilic syndrome: successful allogeneic bone marrow transplantation. Bone Marrow Transplant. 1995;15:647-648.
    1. Esteva-Lorenzo FJ, Meehan KR, Spitzer TR, Mazumder A. Allogeneic bone marrow transplantation in a patient with hypereosinophilic syndrome. Am J Hematol. 1996;51:164-165.
    1. Sadoun A, Lacotte L, Delwail V, et al. Allogeneic bone marrow transplantation for hypereosinophilic syndrome with advanced myelofibrosis. Bone Marrow Transplant. 1997;19:741-743.
    1. Juvonen E, Volin L, Kopenen A, et al. Allogeneic blood stem cell transplantation following non-myeloablative conditioning for hypereosinophilic syndrome. Bone Marrow Transplant. 2002;29:457-458.
    1. Ueno NT, Anagnostopoulos A, Rondon G, et al. Successful non-myeloablative allogeneic transplantation for treatment of idiopathic hypereosinophilic syndrome. Br J Haematol. 2002;119:131-134.
    1. Halaburda K, Preizner W, Szatkowski D, et al. Allogeneic bone marrow transplantation for hypereosinophilic syndrome: long-term follow-up with eradication of FIP1L1-PDGFRA fusion transcript. Bone Marrow Transplant. 2006;38:319-320.
    1. Blacklock HA, Cleland JF, Tan P, Pillai VM. The hypereosinophilic syndrome and leukapheresis. Ann Intern Med. 1979;91:650-651.
    1. Davies J, Spry C. Plasma exchange or leukapheresis in the hypereosinophilic syndrome. Ann Intern Med. 1982;96:791.
    1. Chambers LA, Leonard SS, Whatmough AE, Weller PF, Bubley GJ, Kruskall MS. Management of hypereosinophilic syndrome with chronic plasma- and leukapheresis. Prog Clin Biol Res. 1990;337:83-85.
    1. Narayan S, Ezughah F, Standen GR, Pawade J, Kennedy CTC. Idiopathic hypereosinophilic syndrome associated with cutaneous infarction and deep venous thrombosis. Br J Dermatol. 1993;148:817-820.
    1. Moore PM, Harley JB, Fauci AS. Neurologic dysfunction in the idiopathic hypereosinophilic syndrome. Ann Intern Med. 1985;102:109-114.
    1. Johnston AM, Woodcock BE. Acute aortic thrombosis despite anticoagulant therapy in idiopathic hypereosinophilic syndrome. J R Soc Med. 1998;91:492-493.
    1. Harley JB, McIntosh XL, Kirklin JJ, et al. Atrioventricular valve replacement in the idiopathic hypereosinophilic syndrome. Am J Med. 1982;73:77-81.
    1. Hendren WG, Jones EL, Smith MD. Aortic and mitral valve replacement in idiopathic hypereosinophilic syndrome. Ann Thorac Surg. 1988;46:570-571.
    1. Cameron J, Radford DJ, Howell J, et al. Hypereosinophilic heart disease. Med J Aust. 1985;143:408-410.
    1. Kiris I, Okutan H, Peker T, Aslan SM, Sahin M, Bircan S. Mitral valve replacement in a patient with idiopathic hypereosinophilic syndrome and pulmonary artery hypertension. J Card Surg. 2009;24:80-82.
    1. Chandra M, Pettigrew RI, Eley JW, Oshinski JN, Guyton RA. Cine- MRI-aided endomyocardectomy in idiopathic hypereosinophilic syndrome. Ann Thorac Surg. 1996;62:1856-1858.
    1. Jones AV, Kreil S, Zoi K. Widespread occurrence of the JAK2 V617F mutation in chronic myeloproliferative disorders. Blood. 2005;106:2162-2168.
    1. Helbig G, Stella-Holowiecka B, Mjewski M, et al. Interferon alpha induces a good molecular response in a patient with chronic eosinophilic leukemia (CEL) carrying the JAK2V617F point mutation. Haematologica. 2007;92:e118-e119.
    1. Simon HU, Yousefi S, Dibbert B, Levi-Schaffer F, Blaser K. Anti-apoptotic signals of granulocyte-macrophage colony-stimulating factor are transduced via Jak2 tyrosine kinase in eosinophils. Eur J Immunol. 1997;27:3536-3539.
    1. Miike S, Nakao A, Hiraguri M, Kurasawa K, Saito Y, Iwamoto I. Involvement of JAK2, but not PI 3-kinase/AKT and MAP kinase pathways, in anti-apoptotic signals of GM-CSF of human eosinophils. J Leukoc Biol. 1999;65:700-706.
    1. Li B, Zhang G, Li C, et al. Identification of JAK2 as a mediator of FIP1L1-PDGFRA-induced eosinophil growth and function in CEL. PLoS One. 2012;7:e34912.
    1. Rasmussen HS, Chang AT, Tomasevic N, Bebbington C. A randomized, double-blind, placebo-controlled, ascending dose phase 1 study of AK002, a novel siglec-8 selective monoclonal antibody, in healthy subjects. J Allergy Clin Immunol. 2018;141:403.
    1. Dellon ES, Peterson KA, Murray JA, et al. Anti-Siglec-8 antibody for Eosinophilic gastritis and Duodenitis. N Engl J Med. 2020;383:1624-1634.

Source: PubMed

3
Abonneren