The role of markers of inflammation in traumatic brain injury

Thomas Woodcock, Maria Cristina Morganti-Kossmann, Thomas Woodcock, Maria Cristina Morganti-Kossmann

Abstract

Within minutes of a traumatic impact, a robust inflammatory response is elicited in the injured brain. The complexity of this post-traumatic squeal involves a cellular component, comprising the activation of resident glial cells, microglia, and astrocytes, and the infiltration of blood leukocytes. The second component regards the secretion immune mediators, which can be divided into the following sub-groups: the archetypal pro-inflammatory cytokines (Interleukin-1, Tumor Necrosis Factor, Interleukin-6), the anti-inflammatory cytokines (IL-4, Interleukin-10, and TGF-beta), and the chemotactic cytokines or chemokines, which specifically drive the accumulation of parenchymal and peripheral immune cells in the injured brain region. Such mechanisms have been demonstrated in animal models, mostly in rodents, as well as in human brain. Whilst the humoral immune response is particularly pronounced in the acute phase following Traumatic brain injury (TBI), the activation of glial cells seems to be a rather prolonged effect lasting for several months. The complex interaction of cytokines and cell types installs a network of events, which subsequently intersect with adjacent pathological cascades including oxidative stress, excitotoxicity, or reparative events including angiogenesis, scarring, and neurogenesis. It is well accepted that neuroinflammation is responsible of beneficial and detrimental effects, contributing to secondary brain damage but also facilitating neurorepair. Although such mediators are clear markers of immune activation, to what extent cytokines can be defined as diagnostic factors reflecting brain injury or as predictors of long term outcome needs to be further substantiated. In clinical studies some groups reported a proportional cytokine production in either the cerebrospinal fluid or intraparenchymal tissue with initial brain damage, mortality, or poor outcome scores. However, the validity of cytokines as biomarkers is not broadly accepted. This review article will discuss the evidence from both clinical and laboratory studies exploring the validity of immune markers as a correlate to classification and outcome following TBI.

Keywords: biomarkers; chemokines; cytokines; inflammation; traumatic brain injury.

References

    1. Adamczak S., Dale G., De Rivero Vaccari J. P., Bullock M. R., Dietrich W. D., Keane R. W. (2012). Inflammasome proteins in cerebrospinal fluid of brain-injured patients as biomarkers of functional outcome: clinical article. J. Neurosurg. 117, 1119–112510.3171/2012.9.JNS12815
    1. Aderka D., Le J. M., Vilcek J. (1989). IL-6 inhibits lipopolysaccharide-induced tumor necrosis factor production in cultured human monocytes, U937 cells, and in mice. J. Immunol. 143, 3517–3523
    1. Agay D., Andriollo-Sanchez M., Claeyssen R., Touvard L., Denis J., Roussel A. M., et al. (2008). Interleukin-6, TNF-alpha and interleukin-1 beta levels in blood and tissue in severely burned rats. Eur. Cytokine Netw. 19, 1–7
    1. Ahn M. J., Sherwood E. R., Prough D. S., Lin C. Y., Dewitt D. S. (2004). The effects of traumatic brain injury on cerebral blood flow and brain tissue nitric oxide levels and cytokine expression. J. Neurotrauma 21, 1431–144210.1089/neu.2004.21.1431
    1. Aloisi F., Care A., Borsellino G., Gallo P., Rosa S., Bassani A., et al. (1992). Production of hemolymphopoietic cytokines (IL-6, IL-8, colony-stimulating factors) by normal human astrocytes in response to IL-1 beta and tumor necrosis factor-alpha. J. Immunol. 149, 2358–2366
    1. Aly H., Khashaba M. T., El-Ayouty M., El-Sayed O., Hasanein B. M. (2006). IL-1beta, IL-6 and TNF-alpha and outcomes of neonatal hypoxic ischemic encephalopathy. Brain Dev. 28, 178–18210.1016/j.braindev.2005.06.006
    1. Anderson R. E., Hansson L. O., Nilsson O., Dijlai-Merzoug R., Settergren G. (2001). High serum S-100B levels for trauma patients without head injuries. Neurosurgery 48, 1255–1258; discussion 1258–1260.10.1097/00006123-200106000-00012
    1. Apostolakis S., Vogiatzi K., Amanatidou V., Spandidos D. A. (2009). Interleukin 8 and cardiovascular disease. Cardiovasc. Res. 84, 353–36010.1093/cvr/cvp241
    1. Arand M., Melzner H., Kinzl L., Bruckner U. B., Gebhard F. (2001). Early inflammatory mediator response following isolated traumatic brain injury and other major trauma in humans. Langenbecks Arch. Surg. 386, 241–24810.1007/s004230100204
    1. Baker A. J., Rhind S. G., Morrison L. J., Black S., Crnko N. T., Shek P. N., et al. (2009). Resuscitation with hypertonic saline-dextran reduces serum biomarker levels and correlates with outcome in severe traumatic brain injury patients. J. Neurotrauma 26, 1227–124010.1089/neu.2008.0868
    1. Banks W. A., Kastin A. J., Gutierrez E. G. (1994). Penetration of interleukin-6 across the murine blood-brain barrier. Neurosci. Lett. 179, 53–5610.1016/0304-3940(94)90933-4
    1. Barksby H. E., Lea S. R., Preshaw P. M., Taylor J. J. (2007). The expanding family of interleukin-1 cytokines and their role in destructive inflammatory disorders. Clin. Exp. Immunol. 149, 217–22510.1111/j.1365-2249.2007.03441.x
    1. Basu A., Krady J. K., O’Malley M., Styren S. D., Dekosky S. T., Levison S. W. (2002). The type 1 interleukin-1 receptor is essential for the efficient activation of microglia and the induction of multiple proinflammatory mediators in response to brain injury. J. Neurosci. 22, 6071–6082
    1. Bell M. J., Kochanek P. M., Doughty L. A., Carcillo J. A., Adelson P. D., Clark R. S., et al. (1997). Interleukin-6 and interleukin-10 in cerebrospinal fluid after severe traumatic brain injury in children. J. Neurotrauma 14, 451–45710.1089/neu.1997.14.451
    1. Benveniste E. N. (1998). Cytokine actions in the central nervous system. Cytokine Growth Factor Rev. 9, 259–27510.1016/S1359-6101(98)00015-X
    1. Benveniste E. N., Sparacio S. M., Norris J. G., Grenett H. E., Fuller G. M. (1990). Induction and regulation of interleukin-6 gene expression in rat astrocytes. J. Neuroimmunol. 30, 201–21210.1016/0165-5728(90)90104-U
    1. Berger R. P., Beers S. R., Richichi R., Wiesman D., Adelson P. D. (2007). Serum biomarker concentrations and outcome after pediatric traumatic brain injury. J. Neurotrauma 24, 1793–180110.1089/neu.2007.0316
    1. Berger R. P., Ta’asan S., Rand A., Lokshin A., Kochanek P. (2009). Multiplex assessment of serum biomarker concentrations in well-appearing children with inflicted traumatic brain injury. Pediatr. Res. 65, 97–10210.1203/PDR.0b013e31818c7e27
    1. Bevilacqua M. P., Pober J. S., Wheeler M. E., Cotran R. S., Gimbrone M. A., Jr. (1985). Interleukin 1 acts on cultured human vascular endothelium to increase the adhesion of polymorphonuclear leukocytes, monocytes, and related leukocyte cell lines. J. Clin. Invest. 76, 2003–201110.1172/JCI112200
    1. Bickel M. (1993). The role of interleukin-8 in inflammation and mechanisms of regulation. J. Periodontol. 64, 456–460
    1. Boutin H., Kimber I., Rothwell N. J., Pinteaux E. (2003). The expanding interleukin-1 family and its receptors: do alternative IL-1 receptor/signaling pathways exist in the brain? Mol. Neurobiol. 27, 239–24810.1385/MN:27:3:239
    1. Brisby H., Olmarker K., Rosengren L., Cederlund C. G., Rydevik B. (1999). Markers of nerve tissue injury in the cerebrospinal fluid in patients with lumbar disc herniation and sciatica. Spine 24, 742–74610.1097/00007632-199904150-00003
    1. Brough D., Tyrrell P. J., Allan S. M. (2011). Regulation of interleukin-1 in acute brain injury. Trends Pharmacol. Sci. 32, 617–62210.1016/j.tips.2011.06.002
    1. Buttini M., Mir A., Appel K., Wiederhold K. H., Limonta S., Gebicke-Haerter P. J., et al. (1997). Lipopolysaccharide induces expression of tumour necrosis factor alpha in rat brain: inhibition by methylprednisolone and by rolipram. Br. J. Pharmacol. 122, 1483–148910.1038/sj.bjp.0701502
    1. Bye N., Habgood M. D., Callaway J. K., Malakooti N., Potter A., Kossmann T., et al. (2007). Transient neuroprotection by minocycline following traumatic brain injury is associated with attenuated microglial activation but no changes in cell apoptosis or neutrophil infiltration. Exp. Neurol. 204, 220–23310.1016/j.expneurol.2006.10.013
    1. Cao F., Yang X. F., Liu W. G., Hu W. W., Li G., Zheng X. J., et al. (2008). Elevation of neuron-specific enolase and S-100beta protein level in experimental acute spinal cord injury. J. Clin. Neurosci. 15, 541–54410.1016/j.jocn.2007.05.014
    1. Chen Y., Hallenbeck J. M., Ruetzler C., Bol D., Thomas K., Berman N. E., et al. (2003). Overexpression of monocyte chemoattractant protein 1 in the brain exacerbates ischemic brain injury and is associated with recruitment of inflammatory cells. J. Cereb. Blood Flow Metab. 23, 748–755
    1. Chiaretti A., Antonelli A., Mastrangelo A., Pezzotti P., Tortorolo L., Tosi F., et al. (2008). Interleukin-6 and nerve growth factor upregulation correlates with improved outcome in children with severe traumatic brain injury. J. Neurotrauma 25, 225–23410.1089/neu.2007.0405
    1. Chiaretti A., Genovese O., Aloe L., Antonelli A., Piastra M., Polidori G., et al. (2005). Interleukin 1beta and interleukin 6 relationship with paediatric head trauma severity and outcome. Childs Nerv. Syst. 21, 185–193; discussion 194.10.1007/s00381-004-1032-1
    1. Chung I. Y., Benveniste E. N. (1990). Tumor necrosis factor-alpha production by astrocytes. Induction by lipopolysaccharide, IFN-gamma, and IL-1 beta. J. Immunol. 144, 2999–3007
    1. Ciallella J. R., Ikonomovic M. D., Paljug W. R., Wilbur Y. I., Dixon C. E., Kochanek P. M., et al. (2002). Changes in expression of amyloid precursor protein and interleukin-1beta after experimental traumatic brain injury in rats. J. Neurotrauma 19, 1555–156710.1089/089771502762300229
    1. Coburn K. (1992). Traumatic brain injury: the silent epidemic. AACN Clin. Issues Crit. Care Nurs. 3, 9–18
    1. Corrigan J. D., Whiteneck G., Mellick D. (2004). Perceived needs following traumatic brain injury. J. Head Trauma Rehabil. 19, 205–21610.1097/00001199-200411000-00003
    1. Coxon A., Tang T., Mayadas T. N. (1999). Cytokine-activated endothelial cells delay neutrophil apoptosis in vitro and in vivo. A role for granulocyte/macrophage colony-stimulating factor. J. Exp. Med. 190, 923–93410.1084/jem.190.7.923
    1. Csuka E., Hans V. H., Ammann E., Trentz O., Kossmann T., Morganti-Kossmann M. C. (2000). Cell activation and inflammatory response following traumatic axonal injury in the rat. Neuroreport 11, 2587–259010.1097/00001756-200008030-00047
    1. Csuka E., Morganti-Kossmann M. C., Lenzlinger P. M., Joller H., Trentz O., Kossmann T. (1999). IL-10 levels in cerebrospinal fluid and serum of patients with severe traumatic brain injury: relationship to IL-6, TNF-alpha, TGF-beta1 and blood-brain barrier function. J. Neuroimmunol. 101, 211–22110.1016/S0165-5728(99)00148-4
    1. Czeiter E., Mondello S., Kovacs N., Sandor J., Gabrielli A., Schmid K., et al. (2012). Brain injury biomarkers may improve the predictive power of the IMPACT outcome calculator. J. Neurotrauma 29, 1770–177810.1089/neu.2011.2127
    1. Dalgard C. L., Cole J. T., Kean W. S., Lucky J. J., Sukumar G., McMullen D. C., et al. (2012). The cytokine temporal profile in rat cortex after controlled cortical impact. Front. Mol. Neurosci. 5:6.10.3389/fnmol.2012.00006
    1. D’Andrea A., Aste-Amezaga M., Valiante N. M., Ma X., Kubin M., Trinchieri G. (1993). Interleukin 10 (IL-10) inhibits human lymphocyte interferon gamma-production by suppressing natural killer cell stimulatory factor/IL-12 synthesis in accessory cells. J. Exp. Med. 178, 1041–104810.1084/jem.178.3.1041
    1. Dash P. K., Zhao J., Hergenroeder G., Moore A. N. (2010). Biomarkers for the diagnosis, prognosis, and evaluation of treatment efficacy for traumatic brain injury. Neurotherapeutics 7, 100–11410.1016/j.nurt.2009.10.019
    1. de Waal Malefyt R., Abrams J., Bennett B., Figdor C. G., De Vries J. E. (1991). Interleukin 10(IL-10) inhibits cytokine synthesis by human monocytes: an autoregulatory role of IL-10 produced by monocytes. J. Exp. Med. 174, 1209–122010.1084/jem.174.4.915
    1. de Waal Malefyt R., Figdor C. G., Huijbens R., Mohan-Peterson S., Bennett B., Culpepper J., et al. (1993). Effects of IL-13 on phenotype, cytokine production, and cytotoxic function of human monocytes. Comparison with IL-4 and modulation by IFN-gamma or IL-10. J. Immunol. 151, 6370–6381
    1. Dinarello C. A. (1994). The interleukin-1 family: 10 years of discovery. FASEB J. 8, 1314–1325
    1. Dinarello C. A. (1998). Interleukin-1, interleukin-1 receptors and interleukin-1 receptor antagonist. Int. Rev. Immunol. 16, 457–49910.3109/08830189809043005
    1. Dinarello C. A. (2009). Immunological and inflammatory functions of the interleukin-1 family. Annu. Rev. Immunol. 27, 519–55010.1146/annurev.immunol.021908.132612
    1. Drewes G., Ebneth A., Mandelkow E. M. (1998). MAPs, MARKs and microtubule dynamics. Trends Biochem. Sci. 23, 307–31110.1016/S0968-0004(98)01245-6
    1. Dziurdzik P., Krawczyk L., Jalowiecki P., Kondera-Anasz Z., Menon L. (2004). Serum interleukin-10 in ICU patients with severe acute central nervous system injuries. Inflamm. Res. 53, 338–34310.1007/s00011-004-1265-1
    1. Fan L., Young P. R., Barone F. C., Feuerstein G. Z., Smith D. H., McIntosh T. K. (1995). Experimental brain injury induces expression of interleukin-1 beta mRNA in the rat brain. Brain Res. Mol. Brain Res. 30, 125–13010.1016/0169-328X(94)00287-O
    1. Fan L., Young P. R., Barone F. C., Feuerstein G. Z., Smith D. H., McIntosh T. K. (1996). Experimental brain injury induces differential expression of tumor necrosis factor-alpha mRNA in the CNS. Brain Res. Mol. Brain Res. 36, 287–29110.1016/0169-328X(95)00274-V
    1. Febbraio M. A., Pedersen B. K. (2005). Contraction-induced myokine production and release: is skeletal muscle an endocrine organ? Exerc. Sport Sci. Rev. 33, 114–11910.1097/00003677-200507000-00003
    1. Finkelstein E., Corso P. S., Miller T. R. (2006). The Incidence And Economic Burden of Injuries in the United States. New York, NY: Oxford University Press
    1. Fiorentino D. F., Zlotnik A., Mosmann T. R., Howard M., O’Garra A. (1991). IL-10 inhibits cytokine production by activated macrophages. J. Immunol. 147, 3815–3822
    1. Foda M. A., Marmarou A. (1994). A new model of diffuse brain injury in rats. Part II: morphological characterization. J. Neurosurg. 80, 301–31310.3171/jns.1994.80.2.0301
    1. Franzen R., Bouhy D., Schoenen J. (2004). Nervous system injury: focus on the inflammatory cytokine “granulocyte-macrophage colony stimulating factor.” Neurosci. Lett. 361, 76–7810.1016/j.neulet.2003.12.018
    1. Froon A. H., Greve J. W., Van Der Linden C. J., Buurman W. A. (1996). Increased concentrations of cytokines and adhesion molecules in patients after repair of abdominal aortic aneurysm. Eur. J. Surg. 162, 287–296
    1. Frugier T., Morganti-Kossmann M. C., O’Reilly D., McLean C. A. (2010). In situ detection of inflammatory mediators in post mortem human brain tissue after traumatic injury. J. Neurotrauma 27, 497–50710.1089/neu.2009.1120
    1. Fu E. S., Saporta S. (2005). Methylprednisolone inhibits production of interleukin-1beta and interleukin-6 in the spinal cord following compression injury in rats. J. Neurosurg. Anesthesiol. 17, 82–8510.1097/01.ana.0000163199.10365.38
    1. Gadient R. A., Otten U. (1994). Identification of interleukin-6 (IL-6)-expressing neurons in the cerebellum and hippocampus of normal adult rats. Neurosci. Lett. 182, 243–24610.1016/0304-3940(94)90807-9
    1. Gennarelli T. A., Champion H. R., Copes W. S., Sacco W. J. (1994). Comparison of mortality, morbidity, and severity of 59,713 head injured patients with 114,447 patients with extracranial injuries. J. Trauma 37, 962–96810.1097/00005373-199412000-00016
    1. Goldstein M. (1990). Traumatic brain injury: a silent epidemic. Ann. Neurol. 27, 327.10.1002/ana.410270315
    1. Goodman J. C., Robertson C. S., Grossman R. G., Narayan R. K. (1990). Elevation of tumor necrosis factor in head injury. J. Neuroimmunol. 30, 213–21710.1016/0165-5728(90)90105-V
    1. Gopcevic A., Mazul-Sunko B., Marout J., Sekulic A., Antoljak N., Siranovic M., et al. (2007). Plasma interleukin-8 as a potential predictor of mortality in adult patients with severe traumatic brain injury. Tohoku J. Exp. Med. 211, 387–39310.1620/tjem.211.387
    1. Gruber M. F., Williams C. C., Gerrard T. L. (1994). Macrophage-colony-stimulating factor expression by anti-CD45 stimulated human monocytes is transcriptionally up-regulated by IL-1 beta and inhibited by IL-4 and IL-10. J. Immunol. 152, 1354–1361
    1. Guez M., Hildingsson C., Rosengren L., Karlsson K., Toolanen G. (2003). Nervous tissue damage markers in cerebrospinal fluid after cervical spine injuries and whiplash trauma. J. Neurotrauma 20, 853–85810.1089/089771503322385782
    1. Hadjigeorgiou G. M., Paterakis K., Dardiotis E., Dardioti M., Aggelakis K., Tasiou A., et al. (2005). IL-1RN and IL-1B gene polymorphisms and cerebral hemorrhagic events after traumatic brain injury. Neurology 65, 1077–108210.1212/01.wnl.0000178890.93795.0e
    1. Hang C. H., Shi J. X., Tian J., Li J. S., Wu W., Yin H. X. (2004). Effect of systemic LPS injection on cortical NF-kappaB activity and inflammatory response following traumatic brain injury in rats. Brain Res. 1026, 23–3210.1016/j.brainres.2004.07.090
    1. Hans V. H., Kossmann T., Lenzlinger P. M., Probstmeier R., Imhof H. G., Trentz O., et al. (1999). Experimental axonal injury triggers interleukin-6 mRNA, protein synthesis and release into cerebrospinal fluid. J. Cereb. Blood Flow Metab. 19, 184–194
    1. Hayakata T., Shiozaki T., Tasaki O., Ikegawa H., Inoue Y., Toshiyuki F., et al. (2004). Changes in CSF S-100B and cytokine concentrations in early-phase severe traumatic brain injury. Shock 22, 102–10710.1097/01.shk.0000131193.80038.f1
    1. Helmy A., Carpenter K. L., Hutchinson P. J. (2007). Microdialysis in the human brain and its potential role in the development and clinical assessment of drugs. Curr. Med. Chem. 14, 1525–153710.2174/092986707780831113
    1. Helmy A., Carpenter K. L., Menon D. K., Pickard J. D., Hutchinson P. J. (2011). The cytokine response to human traumatic brain injury: temporal profiles and evidence for cerebral parenchymal production. J. Cereb. Blood Flow Metab. 31, 658–67010.1038/jcbfm.2010.142
    1. Hensler T., Sauerland S., Riess P., Hess S., Helling H. J., Andermahr J., et al. (2000). The effect of additional brain injury on systemic interleukin (IL)-10 and IL-13 levels in trauma patients. Inflamm. Res. 49, 524–52810.1007/s000110050626
    1. Hergenroeder G. W., Moore A. N., McCoy J. P., Jr., Samsel L., Ward N. H., III, Clifton G. L., et al. (2010). Serum IL-6: a candidate biomarker for intracranial pressure elevation following isolated traumatic brain injury. J. Neuroinflammation 7, 19.10.1186/1742-2094-7-19
    1. Herrmann M., Curio N., Jost S., Grubich C., Ebert A. D., Fork M. L., et al. (2001). Release of biochemical markers of damage to neuronal and glial brain tissue is associated with short and long term neuropsychological outcome after traumatic brain injury. J. Neurol. Neurosurg. Psychiatr. 70, 95–10010.1136/jnnp.70.1.95
    1. Hillman J., Aneman O., Persson M., Andersson C., Dabrosin C., Mellergard P. (2007). Variations in the response of interleukins in neurosurgical intensive care patients monitored using intracerebral microdialysis. J. Neurosurg. 106, 820–82510.3171/jns.2007.106.5.820
    1. Hirao Y., Kanda T., Aso Y., Mitsuhashi M., Kobayashi I. (2000). Interleukin-8 – an early marker for bacterial infection. Lab. Med. 31, 39–4410.1309/GJ98-JAH8-VQ57-D6N0
    1. Holmin S., Mathiesen T. (2000). Intracerebral administration of interleukin-1beta and induction of inflammation, apoptosis, and vasogenic edema. J. Neurosurg. 92, 108–12010.3171/jns.2000.92.1.0108
    1. Holmin S., Schalling M., Hojeberg B., Nordqvist A. C., Skeftruna A. K., Mathiesen T. (1997). Delayed cytokine expression in rat brain following experimental contusion. J. Neurosurg. 86, 493–50410.3171/jns.1997.86.3.0493
    1. Huang D. R., Wang J., Kivisakk P., Rollins B. J., Ransohoff R. M. (2001). Absence of monocyte chemoattractant protein 1 in mice leads to decreased local macrophage recruitment and antigen-specific T helper cell type 1 immune response in experimental autoimmune encephalomyelitis. J. Exp. Med. 193, 713–72610.1084/jem.193.6.713
    1. Hughes P. M., Allegrini P. R., Rudin M., Perry V. H., Mir A. K., Wiessner C. (2002). Monocyte chemoattractant protein-1 deficiency is protective in a murine stroke model. J. Cereb. Blood Flow Metab. 22, 308–317
    1. Hukkelhoven C. W., Steyerberg E. W., Habbema J. D., Farace E., Marmarou A., Murray G. D., et al. (2005). Predicting outcome after traumatic brain injury: development and validation of a prognostic score based on admission characteristics. J. Neurotrauma 22, 1025–103910.1089/neu.2005.22.1025
    1. Hukkelhoven C. W., Steyerberg E. W., Rampen A. J., Farace E., Habbema J. D., Marshall L. F., et al. (2003). Patient age and outcome following severe traumatic brain injury: an analysis of 5600 patients. J. Neurosurg. 99, 666–67310.3171/jns.2003.99.4.0666
    1. Hutchinson P. J., O’Connell M. T., Rothwell N. J., Hopkins S. J., Nortje J., Carpenter K. L., et al. (2007). Inflammation in human brain injury: intracerebral concentrations of IL-1alpha, IL-1beta, and their endogenous inhibitor IL-1ra. J. Neurotrauma 24, 1545–155710.1089/neu.2007.0295
    1. Islam O., Gong X., Rose-John S., Heese K. (2009). Interleukin-6 and neural stem cells: more than gliogenesis. Mol. Biol. Cell 20, 188–19910.1091/mbc.E08-05-0463
    1. Kalabalikis P., Papazoglou K., Gouriotis D., Papadopoulos N., Kardara M., Papageorgiou F., et al. (1999). Correlation between serum IL-6 and CRP levels and severity of head injury in children. Intensive Care Med. 25, 288–29210.1007/s001340050837
    1. Kamm K., Vanderkolk W., Lawrence C., Jonker M., Davis A. T. (2006). The effect of traumatic brain injury upon the concentration and expression of interleukin-1beta and interleukin-10 in the rat. J. Trauma 60, 152–15710.1097/01.ta.0000196345.81169.a1
    1. Kasahara T., Mukaida N., Yamashita K., Yagisawa H., Akahoshi T., Matsushima K. (1991). IL-1 and TNF-alpha induction of IL-8 and monocyte chemotactic and activating factor (MCAF) mRNA expression in a human astrocytoma cell line. Immunology 74, 60–67
    1. Kim K. S., Wass C. A., Cross A. S., Opal S. M. (1992). Modulation of blood-brain barrier permeability by tumor necrosis factor and antibody to tumor necrosis factor in the rat. Lymphokine Cytokine Res. 11, 293–298
    1. Kinoshita K., Chatzipanteli K., Vitarbo E., Truettner J. S., Alonso O. F., Dietrich W. D. (2002). Interleukin-1beta messenger ribonucleic acid and protein levels after fluid-percussion brain injury in rats: importance of injury severity and brain temperature. Neurosurgery 51, 195–203; discussion 203.10.1097/00006123-200207000-00027
    1. Kirchhoff C., Buhmann S., Bogner V., Stegmaier J., Leidel B. A., Braunstein V., et al. (2008). Cerebrospinal IL-10 concentration is elevated in non-survivors as compared to survivors after severe traumatic brain injury. Eur. J. Med. Res. 13, 464–468
    1. Kitagawa K., Matsumoto M., Niinobe M., Mikoshiba K., Hata R., Ueda H., et al. (1989). Microtubule-associated protein 2 as a sensitive marker for cerebral ischemic damage – immunohistochemical investigation of dendritic damage. Neuroscience 31, 401–41110.1016/0306-4522(89)90383-7
    1. Knies U. E., Behrensdorf H. A., Mitchell C. A., Deutsch U., Risau W., Drexler H. C., et al. (1998). Regulation of endothelial monocyte-activating polypeptide II release by apoptosis. Proc. Natl. Acad. Sci. U.S.A. 95, 12322–1232710.1073/pnas.95.21.12322
    1. Knoblach S. M., Faden A. I. (1998). Interleukin-10 improves outcome and alters proinflammatory cytokine expression after experimental traumatic brain injury. Exp. Neurol. 153, 143–15110.1006/exnr.1998.6877
    1. Knoblach S. M., Fan L., Faden A. I. (1999). Early neuronal expression of tumor necrosis factor-alpha after experimental brain injury contributes to neurological impairment. J. Neuroimmunol. 95, 115–12510.1016/S0165-5728(98)00273-2
    1. Kossmann T., Hans V., Imhof H. G., Trentz O., Morganti-Kossmann M. C. (1996). Interleukin-6 released in human cerebrospinal fluid following traumatic brain injury may trigger nerve growth factor production in astrocytes. Brain Res. 713, 143–15210.1016/0006-8993(95)01501-9
    1. Kossmann T., Hans V. H., Imhof H. G., Stocker R., Grob P., Trentz O., et al. (1995). Intrathecal and serum interleukin-6 and the acute-phase response in patients with severe traumatic brain injuries. Shock 4, 311–31710.1097/00024382-199511000-00001
    1. Kossmann T., Stahel P. F., Lenzlinger P. M., Redl H., Dubs R. W., Trentz O., et al. (1997). Interleukin-8 released into the cerebrospinal fluid after brain injury is associated with blood-brain barrier dysfunction and nerve growth factor production. J. Cereb. Blood Flow Metab. 17, 280–289
    1. Kovesdi E., Luckl J., Bukovics P., Farkas O., Pal J., Czeiter E., et al. (2010). Update on protein biomarkers in traumatic brain injury with emphasis on clinical use in adults and pediatrics. Acta Neurochir. (Wien) 152, 1–1710.1007/s00701-009-0463-6
    1. Krueger J. M. (2008). The role of cytokines in sleep regulation. Curr. Pharm. Des. 14, 3408–341610.2174/138161208786549281
    1. Kunihara T., Shiiya N., Yasuda K. (2001). Changes in S-100Beta protein levels in cerebrospinal fluid after thoracoabdominal aortic operations. J. Thorac. Cardiovasc. Surg. 122, 1019–102010.1067/mtc.2001.115151
    1. Kushi H., Saito T., Makino K., Hayashi N. (2003a). IL-8 is a key mediator of neuroinflammation after traumatic brain injury. Crit. Care Med. 31, A82–A82
    1. Kushi H., Saito T., Makino K., Hayashi N. (2003b). L-8 is a key mediator of neuroinflammation in severe traumatic brain injuries. Acta Neurochir. Suppl. 86, 347–35010.1007/978-3-7091-0651-8_74
    1. Kwon B. K., Stammers A. M., Belanger L. M., Bernardo A., Chan D., Bishop C. M., et al. (2010). Cerebrospinal fluid inflammatory cytokines and biomarkers of injury severity in acute human spinal cord injury. J. Neurotrauma 27, 669–68210.1089/neu.2009.1048
    1. Lammertse D., Dungan D., Dreisbach J., Falci S., Flanders A., Marino R., et al. (2007). Neuroimaging in traumatic spinal cord injury: an evidence-based review for clinical practice and research. J. Spinal Cord Med. 30, 205–214
    1. Langlois J. A., Rutland-Brown W., Wald M. M. (2006). The epidemiology and impact of traumatic brain injury: a brief overview. J. Head Trauma Rehabil. 21, 375–37810.1097/00001199-200609000-00001
    1. Lau L. T., Yu A. C. (2001). Astrocytes produce and release interleukin-1, interleukin-6, tumor necrosis factor alpha and interferon-gamma following traumatic and metabolic injury. J. Neurotrauma 18, 351–35910.1089/08977150151071035
    1. Lee H. F., Lee T. S., Kou Y. R. (2012). Anti-inflammatory and neuroprotective effects of triptolide on traumatic brain injury in rats. Respir. Physiol. Neurobiol. 182, 1–810.1016/j.resp.2012.01.016
    1. Lenzlinger P. M., Morganti-Kossmann M. C., Laurer H. L., McIntosh T. K. (2001). The duality of the inflammatory response to traumatic brain injury. Mol. Neurobiol. 24, 169–18110.1385/MN:24:1-3:169
    1. Lo T. Y., Jones P. A., Minns R. A. (2009). Pediatric brain trauma outcome prediction using paired serum levels of inflammatory mediators and brain-specific proteins. J. Neurotrauma 26, 1479–148710.1089/neu.2008.0753
    1. Lo T. Y., Jones P. A., Minns R. A. (2010). Combining coma score and serum biomarker levels to predict unfavorable outcome following childhood brain trauma. J. Neurotrauma 27, 2139–214510.1089/neu.2010.1387
    1. Loscher C. E., Mills K. H., Lynch M. A. (2003). Interleukin-1 receptor antagonist exerts agonist activity in the hippocampus independent of the interleukin-1 type I receptor. J. Neuroimmunol. 137, 117–12410.1016/S0165-5728(03)00072-9
    1. Loy D. N., Sroufe A. E., Pelt J. L., Burke D. A., Cao Q. L., Talbott J. F., et al. (2005). Serum biomarkers for experimental acute spinal cord injury: rapid elevation of neuron-specific enolase and S-100beta. Neurosurgery 56, 391–397; discussion 391–397.10.1227/01.NEU.0000148906.83616.D2
    1. Lu B., Rutledge B. J., Gu L., Fiorillo J., Lukacs N. W., Kunkel S. L., et al. (1998). Abnormalities in monocyte recruitment and cytokine expression in monocyte chemoattractant protein 1-deficient mice. J. Exp. Med. 187, 601–60810.1084/jem.187.4.601
    1. Lu K. T., Wang Y. W., Wo Y. Y., Yang Y. L. (2005a). Extracellular signal-regulated kinase-mediated IL-1-induced cortical neuron damage during traumatic brain injury. Neurosci. Lett. 386, 40–4510.1016/j.neulet.2005.05.057
    1. Lu K. T., Wang Y. W., Yang J. T., Yang Y. L., Chen H. I. (2005b). Effect of interleukin-1 on traumatic brain injury-induced damage to hippocampal neurons. J. Neurotrauma 22, 885–89510.1089/neu.2005.22.1011
    1. Lu K. T., Wu C. Y., Yen H. H., Peng J. H., Wang C. L., Yang Y. L. (2007). Bumetanide administration attenuated traumatic brain injury through IL-1 overexpression. Neurol. Res. 29, 404–40910.1179/016164107X204738
    1. Luheshi N. M., Rothwell N. J., Brough D. (2009). Dual functionality of interleukin-1 family cytokines: implications for anti-interleukin-1 therapy. Br. J. Pharmacol. 157, 1318–132910.1111/j.1476-5381.2009.00331.x
    1. Ma J., Novikov L. N., Karlsson K., Kellerth J. O., Wiberg M. (2001). Plexus avulsion and spinal cord injury increase the serum concentration of S-100 protein: an experimental study in rats. Scand. J. Plast. Reconstr. Surg. Hand. Surg. 35, 355–35910.1080/028443101317149318
    1. Maas A. I., Hukkelhoven C. W., Marshall L. F., Steyerberg E. W. (2005). Prediction of outcome in traumatic brain injury with computed tomographic characteristics: a comparison between the computed tomographic classification and combinations of computed tomographic predictors. Neurosurgery 57, 1173–1182; discussion 1173–1182.
    1. Maegele M., Riess P., Sauerland S., Bouillon B., Hess S., McIntosh T. K., et al. (2005). Characterization of a new rat model of experimental combined neurotrauma. Shock 23, 476–48110.1097/01.shk.0000159929.87737.5c
    1. Maegele M., Sauerland S., Bouillon B., Schafer U., Trubel H., Riess P., et al. (2007). Differential immunoresponses following experimental traumatic brain injury, bone fracture and “two-hit”-combined neurotrauma. Inflamm. Res. 56, 318–32310.1007/s00011-007-6141-3
    1. Maier B., Laurer H. L., Rose S., Buurman W. A., Marzi I. (2005). Physiological levels of pro- and anti-inflammatory mediators in cerebrospinal fluid and plasma: a normative study. J. Neurotrauma 22, 822–83510.1089/neu.2005.22.822
    1. Maier B., Schwerdtfeger K., Mautes A., Holanda M., Muller M., Steudel W. I., et al. (2001). Differential release of interleukines 6, 8, and 10 in cerebrospinal fluid and plasma after traumatic brain injury. Shock 15, 421–42610.1097/00024382-200115060-00002
    1. Marquardt G., Setzer M., Seifert V. (2004a). Protein S-100b as serum marker for prediction of functional outcome in metastatic spinal cord compression. Acta Neurochir. (Wien) 146, 449–45210.1007/s00701-004-0242-3
    1. Marquardt G., Setzer M., Seifert V. (2004b). Protein S-100b for individual prediction of functional outcome in spinal epidural empyema. Spine 29, 59–6210.1097/01.BRS.0000103661.78939.02
    1. Marshall L. F., Marshall S. B., Klauber M. R., Van Berkum Clark M., Eisenberg H., Jane J. A., et al. (1992). The diagnosis of head injury requires a classification based on computed axial tomography. J. Neurotrauma 9(Suppl. 1), S287–S292
    1. Marz P., Cheng J. G., Gadient R. A., Patterson P. H., Stoyan T., Otten U., et al. (1998). Sympathetic neurons can produce and respond to interleukin 6. Proc. Natl. Acad. Sci. U.S.A. 95, 3251–325610.1073/pnas.95.6.3251
    1. McClain C. J., Cohen D., Ott L., Dinarello C. A., Young B. (1987). Ventricular fluid interleukin-1 activity in patients with head injury. J. Lab. Clin. Med. 110, 48–54
    1. Meixensberger J., Roosen K. (1998). Clinical and pathophysiological significance of severe neurotrauma in polytraumatized patients. Langenbecks Arch. Surg. 383, 214–21910.1007/s004230050121
    1. Missler U., Wiesmann M., Wittmann G., Magerkurth O., Hagenstrom H. (1999). Measurement of glial fibrillary acidic protein in human blood: analytical method and preliminary clinical results. Clin. Chem. 45, 138–141
    1. Molina-Holgado E., Ortiz S., Molina-Holgado F., Guaza C. (2000). Induction of COX-2 and PGE(2) biosynthesis by IL-1beta is mediated by PKC and mitogen-activated protein kinases in murine astrocytes. Br. J. Pharmacol. 131, 152–15910.1038/sj.bjp.0703557
    1. Mondello S., Gabrielli A., Catani S., D’Ippolito M., Jeromin A., Ciaramella A., et al. (2012). Increased levels of serum MAP-2 at 6-months correlate with improved outcome in survivors of severe traumatic brain injury. Brain Inj. 26, 1629–163510.3109/02699052.2012.700083
    1. Mondello S., Robicsek S. A., Gabrielli A., Brophy G. M., Papa L., Tepas J., et al. (2010). AlphaII-spectrin breakdown products (SBDPs): diagnosis and outcome in severe traumatic brain injury patients. J. Neurotrauma 27, 1203–121310.1089/neu.2010.1278
    1. Morganti-Kossman M. C., Lenzlinger P. M., Hans V., Stahel P., Csuka E., Ammann E., et al. (1997). Production of cytokines following brain injury: beneficial and deleterious for the damaged tissue. Mol. Psychiatry 2, 133–13610.1038/sj.mp.4000227
    1. Morganti-Kossmann M. C., Kossmann T., Wahl S. M. (1992). Cytokines and neuropathology. Trends Pharmacol. Sci. 13, 286–29110.1016/0165-6147(92)90087-M
    1. Morganti-Kossmann M. C., Lenzlinger P. M., Hans V., Stahel P., Csuka E., Ammann E., et al. (1997). Production of cytokines following brain injury: beneficial and deleterious for the damaged tissue. Mol. Psychiatry 2, 133–13610.1038/sj.mp.4000227
    1. Morganti-Kossmann M. C., Rancan M., Stahel P. F., Kossmann T. (2002). Inflammatory response in acute traumatic brain injury: a double-edged sword. Curr. Opin. Crit. Care 8, 101–10510.1097/00075198-200204000-00002
    1. Mushkudiani N. A., Hukkelhoven C. W., Hernandez A. V., Murray G. D., Choi S. C., Maas A. I., et al. (2008). A systematic review finds methodological improvements necessary for prognostic models in determining traumatic brain injury outcomes. J. Clin. Epidemiol. 61, 331–34310.1016/j.jclinepi.2007.06.011
    1. Mussack T., Biberthaler P., Kanz K. G., Wiedemann E., Gippner-Steppert C., Mutschler W., et al. (2002). Serum S-100B and interleukin-8 as predictive markers for comparative neurologic outcome analysis of patients after cardiac arrest and severe traumatic brain injury. Crit. Care Med. 30, 2669–267410.1097/00003246-200212000-00010
    1. Nagy G., Dzsinich C., Selmeci L., Sepa G., Dzsinich M., Kekesi V., et al. (2002). Biochemical alterations in cerebrospinal fluid during thoracoabdominal aortic cross-clamping in dogs. Ann. Vasc. Surg. 16, 436–44110.1007/s10016-001-0037-4
    1. Narayan R. K., Kishore P. R., Becker D. P., Ward J. D., Enas G. G., Greenberg R. P., et al. (1982). Intracranial pressure: to monitor or not to monitor? A review of our experience with severe head injury. J. Neurosurg. 56, 650–65910.3171/jns.1982.56.5.0650
    1. Neidhardt R., Keel M., Steckholzer U., Safret A., Ungethuem U., Trentz O., et al. (1997). Relationship of interleukin-10 plasma levels to severity of injury and clinical outcome in injured patients. J. Trauma 42, 863–870; discussion 870–861.10.1097/00005373-199705000-00017
    1. Nitta T., Allegretta M., Okumura K., Sato K., Steinman L. (1992). Neoplastic and reactive human astrocytes express interleukin-8 gene. Neurosurg. Rev. 15, 203–20710.1007/BF00345934
    1. Nybo L., Nielsen B., Pedersen B. K., Moller K., Secher N. H. (2002). Interleukin-6 release from the human brain during prolonged exercise. J. Physiol. (Lond.) 542, 991–99510.1113/jphysiol.2002.022285
    1. Nylen K., Ost M., Csajbok L. Z., Nilsson I., Blennow K., Nellgard B., et al. (2006). Increased serum-GFAP in patients with severe traumatic brain injury is related to outcome. J. Neurol. Sci. 240, 85–9110.1016/j.jns.2005.09.007
    1. O’Connor J. J., Coogan A. N. (1999). Actions of the pro-inflammatory cytokine IL-1 beta on central synaptic transmission. Exp. Physiol. 84, 601–61410.1111/j.1469-445X.1999.01892.x
    1. Otto V. I., Gloor S. M., Frentzel S., Gilli U., Ammann E., Hein A. E., et al. (2002). The production of macrophage inflammatory protein-2 induced by soluble intercellular adhesion molecule-1 in mouse astrocytes is mediated by src tyrosine kinases and p42/44 mitogen-activated protein kinase. J. Neurochem. 80, 824–83410.1046/j.0022-3042.2001.00748.x
    1. Otto V. I., Stahel P. F., Rancan M., Kariya K., Shohami E., Yatsiv I., et al. (2001). Regulation of chemokines and chemokine receptors after experimental closed head injury. Neuroreport 12, 2059–206410.1097/00001756-200107030-00053
    1. Pagulayan K. F., Temkin N. R., Machamer J., Dikmen S. S. (2006). A longitudinal study of health-related quality of life after traumatic brain injury. Arch. Phys. Med. Rehabil. 87, 611–61810.1016/j.apmr.2006.01.018
    1. Palfreyman J. W., Thomas D. G., Ratcliffe J. G. (1978). Radioimmunoassay of human myelin basic protein in tissue extract, cerebrospinal fluid and serum and its clinical application to patients with head injury. Clin. Chim. Acta 82, 259–27010.1016/0009-8981(78)90008-6
    1. Papa L., Lewis L. M., Falk J. L., Zhang Z., Silvestri S., Giordano P., et al. (2012). Elevated levels of serum glial fibrillary acidic protein breakdown products in mild and moderate traumatic brain injury are associated with intracranial lesions and neurosurgical intervention. Ann. Emerg. Med. 59, 471–48310.1016/j.annemergmed.2011.08.021
    1. Park D., Joo S. S., Lee H. J., Choi K. C., Kim S. U., Kim Y. B. (2012). Microtubule-associated protein 2, an early blood marker of ischemic brain injury. J. Neurosci. Res. 90, 461–46710.1002/jnr.23096
    1. Pelinka L. E., Kroepfl A., Leixnering M., Buchinger W., Raabe A., Redl H. (2004a). GFAP versus S-100B in serum after traumatic brain injury: relationship to brain damage and outcome. J. Neurotrauma 21, 1553–156110.1089/neu.2004.21.1553
    1. Pelinka L. E., Kroepfl A., Schmidhammer R., Krenn M., Buchinger W., Redl H., et al. (2004b). Glial fibrillary acidic protein in serum after traumatic brain injury and multiple trauma. J. Trauma 57, 1006–101210.1097/01.TA.0000108998.48026.C3
    1. Penkowa M., Camats J., Hadberg H., Quintana A., Rojas S., Giralt M., et al. (2003). Astrocyte-targeted expression of interleukin-6 protects the central nervous system during neuroglial degeneration induced by 6-aminonicotinamide. J. Neurosci. Res. 73, 481–49610.1002/jnr.10681
    1. Penkowa M., Giralt M., Carrasco J., Hadberg H., Hidalgo J. (2000). Impaired inflammatory response and increased oxidative stress and neurodegeneration after brain injury in interleukin-6-deficient mice. Glia 32, 271–28510.1002/1098-1136(200012)32:3<271::AID-GLIA70>;2-5
    1. Perez-Barcena J., Ibanez J., Brell M., Crespi C., Frontera G., Llompart-Pou J. A., et al. (2011). Lack of correlation among intracerebral cytokines, intracranial pressure, and brain tissue oxygenation in patients with traumatic brain injury and diffuse lesions. Crit. Care Med. 39, 533–54010.1097/CCM.0b013e318205c7a4
    1. Piazza O., Storti M. P., Cotena S., Stoppa F., Perrotta D., Esposito G., et al. (2007). S-100B is not a reliable prognostic index in paediatric TBI. Pediatr. Neurosurg. 43, 258–26410.1159/000103304
    1. Pinteaux E., Parker L. C., Rothwell N. J., Luheshi G. N. (2002). Expression of interleukin-1 receptors and their role in interleukin-1 actions in murine microglial cells. J. Neurochem. 83, 754–76310.1046/j.1471-4159.2002.01184.x
    1. Pleines U. E., Morganti-Kossmann M. C., Rancan M., Joller H., Trentz O., Kossmann T. (2001). S-100 beta reflects the extent of injury and outcome, whereas neuronal specific enolase is a better indicator of neuroinflammation in patients with severe traumatic brain injury. J. Neurotrauma 18, 491–49810.1089/089771501300227297
    1. Pleines U. E., Stover J. F., Kossmann T., Trentz O., Morganti-Kossmann M. C. (1998). Soluble ICAM-1 in CSF coincides with the extent of cerebral damage in patients with severe traumatic brain injury. J. Neurotrauma 15, 399–40910.1089/neu.1998.15.399
    1. Posmantur R. M., Kampfl A., Taft W. C., Bhattacharjee M., Dixon C. E., Bao J., et al. (1996). Diminished microtubule-associated protein 2 (MAP2) immunoreactivity following cortical impact brain injury. J. Neurotrauma 13, 125–13710.1089/neu.1996.13.125
    1. Quagliarello V. J., Wispelwey B., Long W. J., Jr., Scheld W. M. (1991). Recombinant human interleukin-1 induces meningitis and blood-brain barrier injury in the rat. Characterization and comparison with tumor necrosis factor. J. Clin. Invest. 87, 1360–136610.1172/JCI115140
    1. Rainey T., Lesko M., Sacho R., Lecky F., Childs C. (2009). Predicting outcome after severe traumatic brain injury using the serum S-100B biomarker: results using a single (24h) time-point. Resuscitation 80, 341–34510.1016/j.resuscitation.2008.11.021
    1. Ramilo O., Saez-Llorens X., Mertsola J., Jafari H., Olsen K. D., Hansen E. J., et al. (1990). Tumor necrosis factor alpha/cachectin and interleukin 1 beta initiate meningeal inflammation. J. Exp. Med. 172, 497–50710.1084/jem.172.2.497
    1. Relton J. K., Rothwell N. J. (1992). Interleukin-1 receptor antagonist inhibits ischaemic and excitotoxic neuronal damage in the rat. Brain Res. Bull. 29, 243–24610.1016/0361-9230(92)90033-T
    1. Ringheim G. E., Burgher K. L., Heroux J. A. (1995). Interleukin-6 mRNA expression by cortical neurons in culture: evidence for neuronal sources of interleukin-6 production in the brain. J. Neuroimmunol. 63, 113–12310.1016/0165-5728(95)00134-4
    1. Riva-Depaty I., Fardeau C., Mariani J., Bouchaud C., Delhaye-Bouchaud N. (1994). Contribution of peripheral macrophages and microglia to the cellular reaction after mechanical or neurotoxin-induced lesions of the rat brain. Exp. Neurol. 128, 77–8710.1006/exnr.1994.1114
    1. Romano M., Sironi M., Toniatti C., Polentarutti N., Fruscella P., Ghezzi P., et al. (1997). Role of IL-6 and its soluble receptor in induction of chemokines and leukocyte recruitment. Immunity 6, 315–32510.1016/S1074-7613(00)80334-9
    1. Ross S. A., Halliday M. I., Campbell G. C., Byrnes D. P., Rowlands B. J. (1994). The presence of tumour necrosis factor in CSF and plasma after severe head injury. Br. J. Neurosurg. 8, 419–42510.3109/02688699408995109
    1. Rothwell N. (2003). Interleukin-1 and neuronal injury: mechanisms, modification, and therapeutic potential. Brain Behav. Immun. 17, 152–15710.1016/S0889-1591(02)00098-3
    1. Rutland-Brown W., Langlois J. A., Thomas K. E., Xi Y. L. (2006). Incidence of traumatic brain injury in the United States, 2003. J. Head Trauma Rehabil. 21, 544–54810.1097/00001199-200611000-00009
    1. Sallmann S., Juttler E., Prinz S., Petersen N., Knopf U., Weiser T., et al. (2000). Induction of interleukin-6 by depolarization of neurons. J. Neurosci. 20, 8637–8642
    1. Salmond C. H., Menon D. K., Chatfield D. A., Williams G. B., Pena A., Sahakian B. J., et al. (2006). Diffusion tensor imaging in chronic head injury survivors: correlations with learning and memory indices. Neuroimage 29, 117–12410.1016/j.neuroimage.2005.07.012
    1. Savola O., Pyhtinen J., Leino T. K., Siitonen S., Niemela O., Hillbom M. (2004). Effects of head and extracranial injuries on serum protein S-100B levels in trauma patients. J. Trauma 56, 1229–1234; discussion 1234.10.1097/01.TA.0000096644.08735.72
    1. Scherbel U., Raghupathi R., Nakamura M., Saatman K. E., Trojanowski J. Q., Neugebauer E., et al. (1999). Differential acute and chronic responses of tumor necrosis factor-deficient mice to experimental brain injury. Proc. Natl. Acad. Sci. U.S.A. 96, 8721–872610.1073/pnas.96.15.8721
    1. Schiff L., Hadker N., Weiser S., Rausch C. (2012). A literature review of the feasibility of glial fibrillary acidic protein as a biomarker for stroke and traumatic brain injury. Mol. Diagn. Ther. 16, 79–9210.1007/BF03256432
    1. Schmidt O. I., Heyde C. E., Ertel W., Stahel P. F. (2005). Closed head injury – an inflammatory disease? Brain Res. Brain Res. Rev. 48, 388–39910.1016/j.brainresrev.2004.12.028
    1. Schobitz B., De Kloet E. R., Sutanto W., Holsboer F. (1993). Cellular localization of interleukin 6 mRNA and interleukin 6 receptor mRNA in rat brain. Eur. J. Neurosci. 5, 1426–143510.1111/j.1460-9568.1993.tb00210.x
    1. Schroeter M., Kury P., Jander S. (2003). Inflammatory gene expression in focal cortical brain ischemia: differences between rats and mice. Brain Res. Mol. Brain Res. 117, 1–710.1016/S0169-328X(03)00255-9
    1. Sebire G., Emilie D., Wallon C., Hery C., Devergne O., Delfraissy J. F., et al. (1993). In vitro production of IL-6, IL-1 beta, and tumor necrosis factor-alpha by human embryonic microglial and neural cells. J. Immunol. 150, 1517–1523
    1. Semple B. D., Bye N., Rancan M., Ziebell J. M., Morganti-Kossmann M. C. (2010a). Role of CCL2 (MCP-1) in traumatic brain injury (TBI): evidence from severe TBI patients and CCL2-/- mice. J. Cereb. Blood Flow Metab. 30, 769–78210.1038/jcbfm.2009.240
    1. Semple B. D., Bye N., Ziebell J. M., Morganti-Kossmann M. C. (2010b). Deficiency of the chemokine receptor CXCR2 attenuates neutrophil infiltration and cortical damage following closed head injury. Neurobiol. Dis. 40, 394–40310.1016/j.nbd.2010.06.015
    1. Semple B. D., Kossmann T., Morganti-Kossmann M. C. (2010c). Role of chemokines in CNS health and pathology: a focus on the CCL2/CCR2 and CXCL8/CXCR2 networks. J. Cereb. Blood Flow Metab. 30, 459–47310.1038/jcbfm.2009.240
    1. Shimonkevitz R., Bar-Or D., Harris L., Dole K., McLaughlin L., Yukl R. (1999). Transient monocyte release of interleukin-10 in response to traumatic brain injury. Shock 12, 10–1610.1097/00024382-199911001-00030
    1. Shiozaki T., Hayakata T., Tasaki O., Hosotubo H., Fuijita K., Mouri T., et al. (2005). Cerebrospinal fluid concentrations of anti-inflammatory mediators in early-phase severe traumatic brain injury. Shock 23, 406–41010.1097/01.shk.0000161385.62758.24
    1. Shohami E., Bass R., Wallach D., Yamin A., Gallily R. (1996). Inhibition of tumor necrosis factor alpha (TNFalpha) activity in rat brain is associated with cerebroprotection after closed head injury. J. Cereb. Blood Flow Metab. 16, 378–384
    1. Shohami E., Gallily R., Mechoulam R., Bass R., Ben-Hur T. (1997). Cytokine production in the brain following closed head injury: dexanabinol (HU-211) is a novel TNF-alpha inhibitor and an effective neuroprotectant. J. Neuroimmunol. 72, 169–17710.1016/S0165-5728(96)00181-6
    1. Shohami E., Ginis I., Hallenbeck J. M. (1999). Dual role of tumor necrosis factor alpha in brain injury. Cytokine Growth Factor Rev. 10, 119–13010.1016/S1359-6101(99)00008-8
    1. Shohami E., Novikov M., Bass R., Yamin A., Gallily R. (1994). Closed head injury triggers early production of TNF alpha and IL-6 by brain tissue. J. Cereb. Blood Flow Metab. 14, 615–61910.1038/jcbfm.1994.76
    1. Shojo H., Kaneko Y., Mabuchi T., Kibayashi K., Adachi N., Borlongan C. V. (2010). Genetic and histologic evidence implicates role of inflammation in traumatic brain injury-induced apoptosis in the rat cerebral cortex following moderate fluid percussion injury. Neuroscience 171, 1273–128210.1016/j.neuroscience.2010.10.018
    1. Singhal A., Baker A. J., Hare G. M., Reinders F. X., Schlichter L. C., Moulton R. J. (2002). Association between cerebrospinal fluid interleukin-6 concentrations and outcome after severe human traumatic brain injury. J. Neurotrauma 19, 929–93710.1089/089771502320317087
    1. Skouen J. S., Brisby H., Otani K., Olmarker K., Rosengren L., Rydevik B. (1999). Protein markers in cerebrospinal fluid in experimental nerve root injury. A study of slow-onset chronic compression effects or the biochemical effects of nucleus pulposus on sacral nerve roots. Spine 24, 2195–220010.1097/00007632-199911010-00004
    1. Stahel P. F., Shohami E., Younis F. M., Kariya K., Otto V. I., Lenzlinger P. M., et al. (2000). Experimental closed head injury: analysis of neurological outcome, blood-brain barrier dysfunction, intracranial neutrophil infiltration, and neuronal cell death in mice deficient in genes for pro-inflammatory cytokines. J. Cereb. Blood Flow Metab. 20, 369–380
    1. Statler K. D., Jenkins L. W., Dixon C. E., Clark R. S., Marion D. W., Kochanek P. M. (2001). The simple model versus the super model: translating experimental traumatic brain injury research to the bedside. J. Neurotrauma 18, 1195–120610.1089/089771501317095232
    1. Stein D. M., Lindell A., Murdock K. R., Kufera J. A., Menaker J., Keledjian K., et al. (2011). Relationship of serum and cerebrospinal fluid biomarkers with intracranial hypertension and cerebral hypoperfusion after severe traumatic brain injury. J. Trauma 70, 1096–110310.1097/TA.0b013e3181f8aa91
    1. Steyerberg E. W., Mushkudiani N., Perel P., Butcher I., Lu J., McHugh G. S., et al. (2008). Predicting outcome after traumatic brain injury: development and international validation of prognostic scores based on admission characteristics. PLoS Med. 5:e165; discussion e165.10.1371/journal.pmed.0050165
    1. Stover J. F., Schoning B., Beyer T. F., Woiciechowsky C., Unterberg A. W. (2000). Temporal profile of cerebrospinal fluid glutamate, interleukin-6, and tumor necrosis factor-alpha in relation to brain edema and contusion following controlled cortical impact injury in rats. Neurosci. Lett. 288, 25–2810.1016/S0304-3940(00)01187-3
    1. Strandberg T. (2009). Adults with acquired traumatic brain injury: experiences of a changeover process and consequences in everyday life. Soc. Work Health Care 48, 276–29710.1080/00981380802533322
    1. Sullivan P. G., Bruce-Keller A. J., Rabchevsky A. G., Christakos S., Clair D. K., Mattson M. P., et al. (1999). Exacerbation of damage and altered NF-kappaB activation in mice lacking tumor necrosis factor receptors after traumatic brain injury. J. Neurosci. 19, 6248–6256
    1. Svetlov S. I., Larner S. F., Kirk D. R., Atkinson J., Hayes R. L., Wang K. K. (2009). Biomarkers of blast-induced neurotrauma: profiling molecular and cellular mechanisms of blast brain injury. J. Neurotrauma 26, 913–92110.1089/neu.2008.0609
    1. Tarkowski E., Rosengren L., Blomstrand C., Wikkelso C., Jensen C., Ekholm S., et al. (1995). Early intrathecal production of interleukin-6 predicts the size of brain lesion in stroke. Stroke 26, 1393–139810.1161/01.STR.26.8.1393
    1. Tasci A., Okay O., Gezici A. R., Ergun R., Ergungor F. (2003). Prognostic value of interleukin-1 beta levels after acute brain injury. Neurol. Res. 25, 871–87410.1179/016164103771953998
    1. Taupin V., Toulmond S., Serrano A., Benavides J., Zavala F. (1993). Increase in IL-6, IL-1 and TNF levels in rat brain following traumatic lesion. Influence of pre- and post-traumatic treatment with Ro5 4864, a peripheral-type (p site) benzodiazepine ligand. J. Neuroimmunol. 42, 177–18510.1016/0165-5728(93)90008-M
    1. Tehranian R., Andell-Jonsson S., Beni S. M., Yatsiv I., Shohami E., Bartfai T., et al. (2002). Improved recovery and delayed cytokine induction after closed head injury in mice with central overexpression of the secreted isoform of the interleukin-1 receptor antagonist. J. Neurotrauma 19, 939–95110.1089/089771502320317096
    1. Thomas D. G., Palfreyman J. W., Ratcliffe J. G. (1978). Serum-myelin-basic-protein assay in diagnosis and prognosis of patients with head injury. Lancet 1, 113–11510.1016/S0140-6736(78)90415-4
    1. Threlkeld S. W., Lynch J. L., Lynch K. M., Sadowska G. B., Banks W. A., Stonestreet B. S. (2010). Ovine proinflammatory cytokines cross the murine blood-brain barrier by a common saturable transport mechanism. Neuroimmunomodulation 17, 405–41010.1159/000288265
    1. Torabian S., Kashani-Sabet M. (2005). Biomarkers for melanoma. Curr. Opin. Oncol. 17, 167–17110.1097/01.cco.0000154039.07466.5d
    1. Toulmond S., Rothwell N. J. (1995). Interleukin-1 receptor antagonist inhibits neuronal damage caused by fluid percussion injury in the rat. Brain Res. 671, 261–26610.1016/0006-8993(94)01343-G
    1. Touzani O., Boutin H., Lefeuvre R., Parker L., Miller A., Luheshi G., et al. (2002). Interleukin-1 influences ischemic brain damage in the mouse independently of the interleukin-1 type I receptor. J. Neurosci. 22, 38–43
    1. Townend W. J., Guy M. J., Pani M. A., Martin B., Yates D. W. (2002). Head injury outcome prediction in the emergency department: a role for protein S-100B? J. Neurol. Neurosurg. Psychiatry 73, 542–54610.1136/jnnp.73.5.542
    1. Treggiari M. M., Schutz N., Yanez N. D., Romand J. A. (2007). Role of intracranial pressure values and patterns in predicting outcome in traumatic brain injury: a systematic review. Neurocrit. Care 6, 104–11210.1007/s12028-007-0012-1
    1. Trembovler V., Beit-Yannai E., Younis F., Gallily R., Horowitz M., Shohami E. (1999). Antioxidants attenuate acute toxicity of tumor necrosis factor-alpha induced by brain injury in rat. J. Interferon Cytokine Res. 19, 791–79510.1089/107999099313640
    1. Uzan M., Tanriverdi T., Baykara O., Kafadar A., Sanus G. Z., Tureci E., et al. (2005). Association between interleukin-1 beta (IL-1beta) gene polymorphism and outcome after head injury: an early report. Acta Neurochir. (Wien) 147, 715–720; discussion 720.10.1007/s00701-005-0529-z
    1. van Dongen E. P., Ter Beek H. T., Boezeman E. H., Schepens M. A., Langemeijer H. J., Aarts L. P. (1998). Normal serum concentrations of S-100 protein and changes in cerebrospinal fluid concentrations of S-100 protein during and after thoracoabdominal aortic aneurysm surgery: is S-100 protein a biochemical marker of clinical value in detecting spinal cord ischemia? J. Vasc. Surg. 27, 344–34610.1016/S0741-5214(98)70365-9
    1. van Dongen E. P., Ter Beek H. T., Schepens M. A., Morshuis W. J., Haas F. J., De Boer A., et al. (1999). The relationship between evoked potentials and measurements of S-100 protein in cerebrospinal fluid during and after thoracoabdominal aortic aneurysm surgery. J. Vasc. Surg. 30, 293–30010.1016/S0741-5214(99)70140-0
    1. van Geel W. J., De Reus H. P., Nijzing H., Verbeek M. M., Vos P. E., Lamers K. J. (2002). Measurement of glial fibrillary acidic protein in blood: an analytical method. Clin. Chim. Acta 326, 151–15410.1016/S0009-8981(02)00330-3
    1. van Horssen R., Eggermont A. M., Ten Hagen T. L. (2006). Endothelial monocyte-activating polypeptide-II and its functions in (patho)physiological processes. Cytokine Growth Factor Rev. 17, 339–34810.1016/j.cytogfr.2006.08.001
    1. Van Wagoner N. J., Benveniste E. N. (1999). Interleukin-6 expression and regulation in astrocytes. J. Neuroimmunol. 100, 124–13910.1016/S0165-5728(99)00187-3
    1. Van Wagoner N. J., Oh J. W., Repovic P., Benveniste E. N. (1999). Interleukin-6 (IL-6) production by astrocytes: autocrine regulation by IL-6 and the soluble IL-6 receptor. J. Neurosci. 19, 5236–5244
    1. Vos P. E., Jacobs B., Andriessen T. M., Lamers K. J., Borm G. F., Beems T., et al. (2010). GFAP and S-100B are biomarkers of traumatic brain injury: an observational cohort study. Neurology 75, 1786–179310.1212/WNL.0b013e3181fd62d2
    1. Vos P. E., Lamers K. J., Hendriks J. C., Van Haaren M., Beems T., Zimmerman C., et al. (2004). Glial and neuronal proteins in serum predict outcome after severe traumatic brain injury. Neurology 62, 1303–131010.1212/01.WNL.0000120550.00643.DC
    1. Wang X. Q., Peng Y. P., Lu J. H., Cao B. B., Qiu Y. H. (2009). Neuroprotection of interleukin-6 against NMDA attack and its signal transduction by JAK and MAPK. Neurosci. Lett. 450, 122–12610.1016/j.neulet.2009.08.053
    1. Weckbach S., Perl M., Heiland T., Braumuller S., Stahel P. F., Flierl M. A., et al. (2012). A new experimental polytrauma model in rats: molecular characterization of the early inflammatory response. Mediators Inflamm. 2012, 890816.10.1155/2012/890816
    1. Whalen M. J., Carlos T. M., Kochanek P. M., Wisniewski S. R., Bell M. J., Clark R. S., et al. (2000). Interleukin-8 is increased in cerebrospinal fluid of children with severe head injury. Crit. Care Med. 28, 929–93410.1097/00003246-200011000-00029
    1. Williams A. J., Wei H. H., Dave J. R., Tortella F. C. (2007). Acute and delayed neuroinflammatory response following experimental penetrating ballistic brain injury in the rat. J. Neuroinflammation 4, 17.10.1186/1742-2094-4-17
    1. Winnerkvist A., Anderson R. E., Hansson L. O., Rosengren L., Estrera A. E., Huynh T. T., et al. (2007). Multilevel somatosensory evoked potentials and cerebrospinal proteins: indicators of spinal cord injury in thoracoabdominal aortic aneurysm surgery. Eur. J. Cardiothorac. Surg. 31, 637–64210.1016/j.ejcts.2007.01.007
    1. Winter C. D., Iannotti F., Pringle A. K., Trikkas C., Clough G. F., Church M. K. (2002). A microdialysis method for the recovery of IL-1beta, IL-6 and nerve growth factor from human brain in vivo. J. Neurosci. Methods 119, 45–5010.1016/S0165-0270(02)00153-X
    1. Winter C. D., Pringle A. K., Clough G. F., Church M. K. (2004). Raised parenchymal interleukin-6 levels correlate with improved outcome after traumatic brain injury. Brain 127, 315–32010.1093/brain/awh039
    1. Woiciechowsky C., Schoning B., Cobanov J., Lanksch W. R., Volk H. D., Docke W. D. (2002). Early IL-6 plasma concentrations correlate with severity of brain injury and pneumonia in brain-injured patients. J. Trauma 52, 339–34510.1097/00005373-200202000-00021
    1. Woodroofe M. N., Sarna G. S., Wadhwa M., Hayes G. M., Loughlin A. J., Tinker A., et al. (1991). Detection of interleukin-1 and interleukin-6 in adult rat brain, following mechanical injury, by in vivo microdialysis: evidence of a role for microglia in cytokine production. J. Neuroimmunol. 33, 227–23610.1016/0165-5728(91)90110-S
    1. Wu D., Pardridge W. M. (1999). Neuroprotection with noninvasive neurotrophin delivery to the brain. Proc. Natl. Acad. Sci. U.S.A. 96, 254–25910.1073/pnas.96.9.4959
    1. Xie K. (2001). Interleukin-8 and human cancer biology. Cytokine Growth Factor Rev. 12, 375–39110.1016/S1359-6101(01)00016-8
    1. Xu J., Fan G., Chen S., Wu Y., Xu X. M., Hsu C. Y. (1998). Methylprednisolone inhibition of TNF-alpha expression and NF-kB activation after spinal cord injury in rats. Brain Res. Mol. Brain Res. 59, 135–14210.1016/S0169-328X(98)00142-9
    1. Yan E. B., Hellewell S. C., Bellander B. M., Agyapomaa D. A., Morganti-Kossmann M. C. (2011). Post-traumatic hypoxia exacerbates neurological deficit, neuroinflammation and cerebral metabolism in rats with diffuse traumatic brain injury. J. Neuroinflammation 8, 147.10.1186/1742-2094-8-147
    1. Yang G. Y., Liu X. H., Kadoya C., Zhao Y. J., Mao Y., Davidson B. L., et al. (1998). Attenuation of ischemic inflammatory response in mouse brain using an adenoviral vector to induce overexpression of interleukin-1 receptor antagonist. J. Cereb. Blood Flow Metab. 18, 840–847
    1. Yao C., Williams A. J., Ottens A. K., Lu X. C., Liu M. C., Hayes R. L., et al. (2009). P43/pro-EMAPII: a potential biomarker for discriminating traumatic versus ischemic brain injury. J. Neurotrauma 26, 1295–130510.1089/neu.2008.0811
    1. Yao C., Williams A. J., Ottens A. K., May Lu X. C., Chen R., Wang K. K., et al. (2008). Detection of protein biomarkers using high-throughput immunoblotting following focal ischemic or penetrating ballistic-like brain injuries in rats. Brain Inj. 22, 723–73210.1080/02699050802304706
    1. Yatsiv I., Morganti-Kossmann M. C., Perez D., Dinarello C. A., Novick D., Rubinstein M., et al. (2002). Elevated intracranial IL-18 in humans and mice after traumatic brain injury and evidence of neuroprotective effects of IL-18-binding protein after experimental closed head injury. J. Cereb. Blood Flow Metab. 22, 971–978
    1. Zeitzer M. B., Brooks J. M. (2008). In the line of fire: traumatic brain injury among Iraq War veterans. AAOHN J. 56, 347–353; quiz 354–345.10.3928/08910162-20080801-03
    1. Zhang L., Li H. Y., Li H., Zhao J., Su L., Zhang Y., et al. (2011). Lipopolysaccharide activated phosphatidylcholine-specific phospholipase C and induced IL-8 and MCP-1 production in vascular endothelial cells. J. Cell. Physiol. 226, 1694–170110.1002/jcp.22691
    1. Ziebell J. M., Bye N., Semple B. D., Kossmann T., Morganti-Kossmann M. C. (2011). Attenuated neurological deficit, cell death and lesion volume in Fas-mutant mice is associated with altered neuroinflammation following traumatic brain injury. Brain Res. 1414, 94–10510.1016/j.brainres.2011.07.056

Source: PubMed

3
Abonneren