Reactive oxygen species in the regulation of synaptic plasticity and memory

Cynthia A Massaad, Eric Klann, Cynthia A Massaad, Eric Klann

Abstract

The brain is a metabolically active organ exhibiting high oxygen consumption and robust production of reactive oxygen species (ROS). The large amounts of ROS are kept in check by an elaborate network of antioxidants, which sometimes fail and lead to neuronal oxidative stress. Thus, ROS are typically categorized as neurotoxic molecules and typically exert their detrimental effects via oxidation of essential macromolecules such as enzymes and cytoskeletal proteins. Most importantly, excessive ROS are associated with decreased performance in cognitive function. However, at physiological concentrations, ROS are involved in functional changes necessary for synaptic plasticity and hence, for normal cognitive function. The fine line of role reversal of ROS from good molecules to bad molecules is far from being fully understood. This review focuses on identifying the multiple sources of ROS in the mammalian nervous system and on presenting evidence for the critical and essential role of ROS in synaptic plasticity and memory. The review also shows that the inability to restrain either age- or pathology-related increases in ROS levels leads to opposite, detrimental effects that are involved in impairments in synaptic plasticity and memory function.

Figures

FIG. 1.
FIG. 1.
LTP in a rodent hippocampal slice. (A) Experimental setup for a typical LTP experiment in a hippocampal slice. The Schaffer collateral pathway is stimulated and fEPSPs are recorded in stratum radiatum (the dendrites of pyramidal neurons) in area CA1. (B) Sample fEPSPs before and after LTP has been induced by high-frequency stimulation of the Schaffer collaterals. fEPSP, field excitatory postsynaptic potential; CA, cornu ammonis; LTP, long-term potentiation.
FIG. 2.
FIG. 2.
Graph of a typical LTP experiment. A schematic graph representing the slope of the fEPSP in hippocampal slices before and after delivery of high-frequency stimulation (indicated by the arrow) of the Schaffer collateral to induce LTP (indicated by Δ) recorded from the dendrites in stratum radiatum of area CA1. HFS, high-frequency stimulation.
FIG. 3.
FIG. 3.
Essential cellular components of LTP and memory. Stimulation of presynaptic neurons causes the release of glutamate, which activates AMPA, NMDA, and mGluRs, resulting in massive Ca2+ influx and subsequent production of small messenger molecules such as cAMP and cyclic guanosine monophosphate/NO. These messengers activate multiple protein kinase signaling pathways, including CaMKII, PKA, PKC, and ERK, which ultimately result in the phosphorylation of CREB, which in turn recruits multiple transcription coactivators to initiate a wave of transcription/translation. The newly formed proteins modulate synaptic strength and efficacy via altering the electrical properties of membranes, increasing glutamate receptor expression, changing synaptic morphology, increasing the number of synapses etc., all of which are necessary for long-lasting LTP and the formation of long-term memories. In addition to CREB-mediated gene transcription, some components of these signaling cascades, such as NO and neurogranin, directly contribute to the induction and maintenance of LTP. ROS produced at various sites within the cell (as described in the text) are also essential to the induction of LTP and contribute to these signaling cascades at multiple levels by modifying the molecules marked by grey stars. Note that this is a simplified version of the complex signaling involved in LTP and memory formation. Ca2+, calcium; cAMP, cyclic adenosine monophosphate; CREB, cAMP response element binding protein; ERK, extracellular signal-regulated kinase; mGluR, metabotrobic glutamate receptor; NMDA, N-methyl-d-aspartate; NO, nitric oxide; PKA, protein kinase A; ROS, reactive oxygen species.
FIG. 4.
FIG. 4.
Production of superoxide by mitochondria. A schematic diagram illustrating the various elements of the electron transport chain located in the inner mitochondrial membrane. Note the production of superoxide at complexes I and III. The gray dotted line represents the path of electron transfer through the respiratory chain.
FIG. 5.
FIG. 5.
Production of H2O2 by monoamine oxidase. A schematic diagram illustrating the production of H2O2 from the monoamine oxidase located in the outer mitochondrial membrane. H2O2, hydrogen peroxide.
FIG. 6.
FIG. 6.
Production of nitric oxide by NOS. (A) NOS uses L-arginine and molecular oxygen as precursors to produce NO and L-citrulline. (B) NOS is active as a homodimer and has two domains: an oxygenase domain and a reductase domain. The oxygenase domain contains three bound cofactors (BH4, heme, and zinc) and functions as the active site of the enzyme. The reductase domain contains three cofactors as well (NADPH, FAD, and FMN) and functions primarily in the electron transfer within the enzyme and the regeneration of other cofactors. The oxygenase and reductase domains are linked together via a region that binds calmodulin (CaM), which is required for the activity of the enzyme (and therefore for NO production). (C) Production of peroxynitrite. Peroxinitrite is a short-lived oxidant species formed by the combination of superoxide and nitric oxide radicals. Peroxynitrite anion (ONOO−) is in equilibrium with peroxynitrous acid (ONOOH; pKa = 6.8); both are highly reactive species. Sites of peroxynitrite formation are assumed to be associated with the sources of superoxide (such as the mitochondrial respiratory chain complexes I and III or the NADPH oxidases) because NO is a relatively stable and highly diffusible free radical while superoxide is short-lived and has restricted diffusion across membranes. BH4, tetrahydrobiopterin; NOS, NO synthase.
FIG. 7.
FIG. 7.
Production of superoxide by NADPH oxidase. When NADPH oxidase is inactive, gp91phox and p22phox are membrane-bound while the four remaining subunits, p67phox, p47phox, p40phox, and Rac are cytosolic. Upon stimulation, the cytosolic subunits translocate to the membrane to form a complex with the membrane-bound components. The assembly of all subunits yields an active enzyme that catalyzes the oxidation of NADPH into NADP+, releasing an electron in the process. The electron is coupled to oxygen to generate superoxide. Although gp91phox is the catalytic core of the enzyme, responsible for the transmission of an electron to oxygen, the presence and correct positioning of all subunits is required for full function of the enzyme. GDI, guanine nucleotide dissociation inhibitor; GDP, guanosine diphosphate; Rac, ras-associated C3 botulinum toxin substrate.
FIG. 8.
FIG. 8.
A model for oxidative activation of PKC in LTP. LTP-inducing stimulation results in activation of the NMDA receptor and subsequent Ca2+ influx into the postsynaptic neuron. Ca2+ triggers production of superoxide via NADPH oxidase, which acts directly on cysteine residues in PKC. Oxidation of PKC results in zinc release and autonomously active PKC. It is unknown whether this activation occurs presynaptically or postsynaptically.
FIG. 9.
FIG. 9.
(A) Cellular localization of the three SOD isozymes and the dismutation of superoxide. SODs catalyze the dismutation of the superoxide radical into H2O2. There are three isoforms of SOD. SOD-1 (or Cu/Zn-SOD) is found in all intracellular compartments, including the cytoplasm, the nucleus, lysosomes, and the inner membrane space of mitochondria. SOD-2 (or manganese SOD) is localized primarily in the mitochondrial matrix. SOD-3 (or extracellular SOD) is present mainly in the extracellular space. In the brain, it can also be found on the endothelial cell surface and cytoplasm. (B) Removal of H2O2 by catalase. H2O2 produced in the cell by various reactions, including the dismutation of superoxide by SODs, is converted into water (H2O) by the action of catalase. SOD, superoxide dismutase.
FIG. 10.
FIG. 10.
Schematic representation of the glutathione synthesis and redox system. GSH is a tripeptide synthesized from glutamate, cysteine, and glycine by a two-step reaction requiring ATP. GSH is a major scavenger of H2O2. H2O2 is transformed into two molecules of water (H2O), whereas two GSH molecules are oxidized (GSSG) by the action of the seleno-enzyme glutathione peroxidase. GSSG can be converted back to GSH by the NADPH-dependent glutathione reductase. ATP, adenosine triphosphate; GSH, glutathione; GSSG, oxidized glutathione.
FIG. 11.
FIG. 11.
Vitamin C. Vitamin C (or ascorbate) is an antioxidant molecule that neutralizes free radicals (radical•) by donating an electron and becoming a free radical itself. However, the ascorbate radical is stable due to its resonance structure (shown by the dashed lines in the chemical structure). Vitamin C also is returned readily to its nonradical form via the action of either NADH- or NADPH-dependent reductases. In the presence of metal ions, however, the production of ascorbate radical can become overwhelming. For example, ascorbate acts as an electron acceptor for Fe3+, instead of H2O2, generating an ascorbate radical in the process. Copper ion (Cu2+) can also react with ascorbate, with 80 times more efficiency than Fe3+. Thus, Vitamin C can be a powerful antioxidant as long as metal ions are not present, but small amounts of vitamin C in the presence of metal ions can make vitamin C a dangerous prooxidant. Organisms have developed defenses against this process, such as having iron and copper bound to the transport proteins such as ferritin, transferritin, and caeruloplasmin. However, the exogenous introduction of metal ions from environmental pollutants can cause the failure of this defense mechanism.
FIG. 12.
FIG. 12.
Fenton chemistry. Ferrous iron (II) (Fe2+) is oxidized by H2O2 to produce ferric iron (III)(Fe3+), along with the highly reactive hydroxyl radical (OH•) and a hydroxyl anion (OH−). After the Fenton reaction, Fe3+ can be reduced back to Fe2+ by the action of H2O2 to produce a peroxyl radical (HOO•) and a proton in the process.
FIG. 13.
FIG. 13.
Dual roles for ROS in the brain. Under physiological conditions, ROS act as essential signaling molecules, necessary for the proper synaptic plasticity and normal memory. However, during aging, ischemia, trauma, and neurodegenerative diseases, the levels of ROS increase to levels higher than the antioxidant machinery of the cells can handle. Thus, the beneficial roles of ROS are overwhelmed by the ambiance of oxidative damage that ROS create.
FIG. 14.
FIG. 14.
Why does mitochondrial superoxide impair learning and memory during AD but not during normal aging? In contrast to cytosolic and extracellular superoxide, which contribute to normal synaptic plasticity and memory, mitochondrial superoxide does not appear to impact either normal synaptic plasticity and memory or age-dependent impairments in synaptic plasticity and memory. Perhaps this is due to limited diffusion of mitochondrial superoxide across the mitochondrial membrane. During AD, mitochondrial dysfunction is prevalent, hence increasing the probability for leakage of mitochondrial-produced free radicals through damaged membranes. Thus, mitochondrial superoxide plays a critical role in extreme oxidative stress that occurs during neurodegenerative diseases such AD. AD, Alzheimer's disease.

References

    1. Abdullaev JF. Caballero-Ortega H. Riveron-Negrete L. Pereda-Miranda R. Rivera-Luna R. Manuel HJ. Perez-Lopez I. Espinosa-Aguirre JJ. In vitro evaluation of the chemopreventive potential of saffron. Rev Invest Clin. 2002;54:430–436.
    1. Abe K. Sugiura M. Shoyama Y. Saito H. Crocin antagonizes ethanol inhibition of NMDA receptor-mediated responses in rat hippocampal neurons. Brain Res. 1998;787:132–138.
    1. Abraham WC. Williams JM. LTP maintenance and its protein synthesis-dependence. Neurobiol Learn Mem. 2008;89:260–268.
    1. Abramov AY. Jacobson J. Wientjes F. Hothersall J. Canevari L. Duchen MR. Expression and modulation of an NADPH oxidase in mammalian astrocytes. J Neurosci. 2005;25:9176–9184.
    1. Adam K. Lack of effect on mental efficiency of extra vitamin C. Am J Clin Nutr. 1981;34:1712–1716.
    1. Agrawal R. Tyagi E. Shukla R. Nath C. Effect of insulin and melatonin on acetylcholinesterase activity in the brain of amnesic mice. Behav Brain Res. 2008;189:381–386.
    1. Akbaraly NT. Faure H. Gourlet V. Favier A. Berr C. Plasma carotenoid levels and cognitive performance in an elderly population: results of the EVA Study. J Gerontol A Biol Sci Med Sci. 2007;62:308–316.
    1. Akhondzadeh S. Fallah-Pour H. Afkham K. Jamshidi AH. Khalighi-Cigaroudi F. Comparison of Crocus sativus L. and imipramine in the treatment of mild to moderate depression: a pilot double-blind randomized trial [ISRCTN45683816] BMC Complement Altern Med. 2004;4:12.
    1. Akterin S. Cowburn RF. Miranda-Vizuete A. Jimenez A. Bogdanovic N. Winblad B. Cedazo-Minguez A. Involvement of glutaredoxin-1 and thioredoxin-1 in beta-amyloid toxicity and Alzheimer's disease. Cell Death Differ. 2006;13:1454–1465.
    1. Alam ZI. Daniel SE. Lees AJ. Marsden DC. Jenner P. Halliwell B. A generalised increase in protein carbonyls in the brain in Parkinson's but not incidental Lewy body disease. J Neurochem. 1997;69:1326–1329.
    1. Almaguer-Melian W. Cruz-Aguado R. Bergado JA. Synaptic plasticity is impaired in rats with a low glutathione content. Synapse. 2000;38:369–374.
    1. Ames BN. Shigenaga MK. Hagen TM. Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci USA. 1993;90:7915–7922.
    1. Amiry-Moghaddam M. Lindland H. Zelenin S. Roberg BA. Gundersen BB. Petersen P. Rinvik E. Torgner IA. Ottersen OP. Brain mitochondria contain aquaporin water channels: evidence for the expression of a short AQP9 isoform in the inner mitochondrial membrane. FASEB J. 2005;19:1459–1467.
    1. Amiry-Moghaddam M. Ottersen OP. The molecular basis of water transport in the brain. Nat Rev Neurosci. 2003;4:991–1001.
    1. Anandatheerthavarada HK. Biswas G. Robin MA. Avadhani NG. Mitochondrial targeting and a novel transmembrane arrest of Alzheimer's amyloid precursor protein impairs mitochondrial function in neuronal cells. J Cell Biol. 2003;161:41–54.
    1. Anantharaman M. Tangpong J. Keller JN. Murphy MP. Markesbery WR. Kiningham KK. St. Clair DK. Beta-amyloid mediated nitration of manganese superoxide dismutase: implication for oxidative stress in a APPNLH/NLH X PS-1P264L/P264L double knock-in mouse model of Alzheimer's disease. Am J Pathol. 2006;168:1608–1618.
    1. Angelova P. Muller W. Oxidative modulation of the transient potassium current IA by intracellular arachidonic acid in rat CA1 pyramidal neurons. Eur J Neurosci. 2006;23:2375–2384.
    1. Anwyl R. Metabotropic glutamate receptor-dependent long-term potentiation. Neuropharmacology. 2009;56:735–740.
    1. Aoyama K. Watabe M. Nakaki T. Regulation of neuronal glutathione synthesis. J Pharmacol Sci. 2008;108:227–238.
    1. Aragon CM. Spivak K. Amit Z. Blockade of ethanol induced conditioned taste aversion by 3-amino-1,2,4-triazole: evidence for catalase mediated synthesis of acetaldehyde in rat brain. Life Sci. 1985;37:2077–2084.
    1. Artola A. Kamal A. Ramakers GM. Biessels GJ. Gispen WH. Diabetes mellitus concomitantly facilitates the induction of long-term depression and inhibits that of long-term potentiation in hippocampus. Eur J Neurosci. 2005;22:169–178.
    1. Auerbach JM. Segal M. Peroxide modulation of slow onset potentiation in rat hippocampus. J Neurosci. 1997;17:8695–8701.
    1. Awasthi D. Church DF. Torbati D. Carey ME. Pryor WA. Oxidative stress following traumatic brain injury in rats. Surg Neurol. 1997;47:575–581.
    1. Babior BM. NADPH oxidase. Curr Opin Immunol. 2004;16:42–47.
    1. Badaut J. Petit JM. Brunet JF. Magistretti PJ. Charriaut-Marlangue C. Regli L. Distribution of Aquaporin 9 in the adult rat brain: preferential expression in catecholaminergic neurons and in glial cells. Neuroscience. 2004;128:27–38.
    1. Ballatori N. Krance SM. Notenboom S. Shi S. Tieu K. Hammond CL. Glutathione dysregulation and the etiology and progression of human diseases. Biol Chem. 2009;390:191–214.
    1. Banfi B. Malgrange B. Knisz J. Steger K. Dubois-Dauphin M. Krause KH. NOX3, a superoxide-generating NADPH oxidase of the inner ear. J Biol Chem. 2004;279:46065–46072.
    1. Barbelivien A. Nyman L. Haapalinna A. Sirvio J. Inhibition of MAO-A activity enhances behavioural activity of rats assessed using water maze and open arena tasks. Pharmacol Toxicol. 2001;88:304–312.
    1. Barhwal K. Hota SK. Jain V. Prasad D. Singh SB. Ilavazhagan G. Acetyl-l-carnitine (ALCAR) prevents hypobaric hypoxia-induced spatial memory impairment through extracellular related kinase-mediated nuclear factor erythroid 2-related factor 2 phosphorylation. Neuroscience. 2009;161:501–514.
    1. Barnes CA. Memory deficits associated with senescence: a neurophysiological and behavioral study in the rat. J Comp Physiol Psychol. 1979;93:74–104.
    1. Barnes CA. Long-term potentiation and the ageing brain. Philos Trans R Soc Lond B Biol Sci. 2003;358:765–772.
    1. Bastug M. Ayhan S. Turan B. The effect of altered selenium and vitamin E nutritional status on learning and memory of third-generation rats. Biol Trace Elem Res. 1998;64:151–160.
    1. Baudier J. Deloulme JC. Van Dorsselaer A. Black D. Matthes HW. Purification and characterization of a brain-specific protein kinase C substrate, neurogranin (p17). Identification of a consensus amino acid sequence between neurogranin and neuromodulin (GAP43) that corresponds to the protein kinase C phosphorylation site and the calmodulin-binding domain. J Biol Chem. 1991;266:229–237.
    1. Baydas G. Koz ST. Tuzcu M. Nedzvetsky VS. Melatonin prevents gestational hyperhomocysteinemia-associated alterations in neurobehavioral developments in rats. J Pineal Res. 2008;44:181–188.
    1. Baydas G. Ozer M. Yasar A. Tuzcu M. Koz ST. Melatonin improves learning and memory performances impaired by hyperhomocysteinemia in rats. Brain Res. 2005;1046:187–194.
    1. Baydas G. Ozveren F. Akdemir I. Tuzcu M. Yasar A. Learning and memory deficits in rats induced by chronic thinner exposure are reversed by melatonin. J Pineal Res. 2005;39:50–56.
    1. Baydas G. Yasar A. Tuzcu M. Comparison of the impact of melatonin on chronic ethanol-induced learning and memory impairment between young and aged rats. J Pineal Res. 2005;39:346–352.
    1. Beal MF. Aging, energy, and oxidative stress in neurodegenerative diseases. Ann Neurol. 1995;38:357–366.
    1. Beal MF. Coenzyme Q10 as a possible treatment for neurodegenerative diseases. Free Radic Res. 2002;36:455–460.
    1. Behl C. Davis JB. Lesley R. Schubert D. Hydrogen peroxide mediates amyloid beta protein toxicity. Cell. 1994;77:817–827.
    1. Beni SM. Tsenter J. Alexandrovich AG. Galron-Krool N. Barzilai A. Kohen R. Grigoriadis N. Simeonidou C. Shohami E. CuZn-SOD deficiency, rather than overexpression, is associated with enhanced recovery and attenuated activation of NF-kappaB after brain trauma in mice. J Cereb Blood Flow Metab. 2006;26:478–490.
    1. Bergamasco B. Scarzella L. La Commare P. Idebenone, a new drug in the treatment of cognitive impairment in patients with dementia of the Alzheimer type. Funct Neurol. 1994;9:161–168.
    1. Bernabeu R. Princ F. de Stein ML. Fin C. Juknat AA. Batile A. Izquierdo I. Medina JH. Evidence for the involvement of hippocampal CO production in the acquisition and consolidation of inhibitory avoidance learning. Neuroreport. 1995;6:516–518.
    1. Bertoni-Freddari C. Mocchegiani E. Malavolta M. Casoli T. Di Stefano G. Fattoretti P. Synaptic and mitochondrial physiopathologic changes in the aging nervous system and the role of zinc ion homeostasis. Mech Ageing Dev. 2006;127:590–596.
    1. Bettger WJ. Zinc and selenium, site-specific versus general antioxidation. Can J Physiol Pharmacol. 1993;71:721–724.
    1. Betzen C. White R. Zehendner CM. Pietrowski E. Bender B. Luhmann HJ. Kuhlmann CR. Oxidative stress upregulates the NMDA receptor on cerebrovascular endothelium. Free Radic Biol Med. 2009;47:1212–1220.
    1. Bianchi A. Salomone S. Caraci F. Pizza V. Bernardini R. D'Amato CC. Role of magnesium, coenzyme Q10, riboflavin, and vitamin B12 in migraine prophylaxis. Vitam Horm. 2004;69:297–312.
    1. Bienert GP. Moller AL. Kristiansen KA. Schulz A. Moller IM. Schjoerring JK. Jahn TP. Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. J Biol Chem. 2007;282:1183–1192.
    1. Biessels GJ. Smale S. Duis SE. Kamal A. Gispen WH. The effect of gamma-linolenic acid-alpha-lipoic acid on functional deficits in the peripheral and central nervous system of streptozotocin-diabetic rats. J Neurol Sci. 2001;182:99–106.
    1. Biewenga GP. Haenen GR. Bast A. The pharmacology of the antioxidant lipoic acid. Gen Pharmacol. 1997;29:315–331.
    1. Bindokas VP. Jordan J. Lee CC. Miller RJ. Superoxide production in rat hippocampal neurons: selective imaging with hydroethidine. J Neurosci. 1996;16:1324–1336.
    1. Bing O. Grundemar L. Ny L. Moller C. Heilig M. Modulation of carbon monoxide production and enhanced spatial learning by tin protoporphyrin. Neuroreport. 1995;6:1369–1372.
    1. Bitanihirwe BK. Cunningham MG. Zinc: the brain's dark horse. Synapse. 2009;63:1029–1049.
    1. Bliss TV. Collingridge GL. A synaptic model of memory: long-term potentiation in the hippocampus. Nature. 1993;361:31–39.
    1. Blundon JA. Zakharenko SS. Dissecting the components of long-term potentiation. Neuroscientist. 2008;14:598–608.
    1. Bohme GA. Bon C. Lemaire M. Reibaud M. Piot O. Stutzmann JM. Doble A. Blanchard JC. Altered synaptic plasticity and memory formation in nitric oxide synthase inhibitor-treated rats. Proc Natl Acad Sci USA. 1993;90:9191–9194.
    1. Bolshakov VY. Siegelbaum SA. Postsynaptic induction and presynaptic expression of hippocampal long-term depression. Science. 1994;264:1148–1152.
    1. Borel P. Grolier P. Boirie Y. Simonet L. Verdier E. Rochette Y. Alexandre-Gouabau MC. Beaufrere B. Lairon D. Azais-Braesco V. Oxidative stress status and antioxidant status are apparently not related to carotenoid status in healthy subjects. J Lab Clin Med. 1998;132:61–66.
    1. Bossy-Wetzel E. Schwarzenbacher R. Lipton SA. Molecular pathways to neurodegeneration. Nat Med 10. 2004;Suppl:S2–S9.
    1. Bouslama M. Renaud J. Olivier P. Fontaine RH. Matrot B. Gressens P. Gallego J. Melatonin prevents learning disorders in brain-lesioned newborn mice. Neuroscience. 2007;150:712–719.
    1. Boutin JA. Audinot V. Ferry G. Delagrange P. Molecular tools to study melatonin pathways and actions. Trends Pharmacol Sci. 2005;26:412–419.
    1. Brechard S. Tschirhart EJ. Regulation of superoxide production in neutrophils: role of calcium influx. J Leukoc Biol. 2008;84:1223–1237.
    1. Brennan PA. Kishimoto J. Local inhibition of nitric oxide synthase activity in the accessory olfactory bulb does not prevent the formation of an olfactory memory in mice. Brain Res. 1993;619:306–312.
    1. Brigelius-Flohe R. Tissue-specific functions of individual glutathione peroxidases. Free Radic Biol Med. 1999;27:951–965.
    1. Bruce AJ. Malfroy B. Baudry M. beta-Amyloid toxicity in organotypic hippocampal cultures: protection by EUK-8, a synthetic catalytic free radical scavenger. Proc Natl Acad Sci USA. 1996;93:2312–2316.
    1. Brugge K. Nichols S. Saitoh T. Trauner D. Correlations of glutathione peroxidase activity with memory impairment in adults with Down syndrome. Biol Psychiatry. 1999;46:1682–1689.
    1. Burton GW. Ingold KU. Beta-carotene: an unusual type of lipid antioxidant. Science. 1984;224:569–573.
    1. Butterfield DA. Griffin S. Munch G. Pasinetti GM. Amyloid beta-peptide and amyloid pathology are central to the oxidative stress and inflammatory cascades under which Alzheimer's disease brain exists. J Alzheimers Dis. 2002;4:193–201.
    1. Butterfield DA. Kanski J. Brain protein oxidation in age-related neurodegenerative disorders that are associated with aggregated proteins. Mech Ageing Dev. 2001;122:945–962.
    1. Cabungcal JH. Preissmann D. Delseth C. Cuenod M. Do KQ. Schenk F. Transitory glutathione deficit during brain development induces cognitive impairment in juvenile and adult rats: relevance to schizophrenia. Neurobiol Dis. 2007;26:634–645.
    1. Cai F. Wang F. Lin FK. Liu C. Ma LQ. Liu J. Wu WN. Wang W. Wang JH. Chen JG. Redox modulation of long-term potentiation in the hippocampus via regulation of the glycogen synthase kinase-3beta pathway. Free Radic Biol Med. 2008;45:964–970.
    1. Calabresi P. Pisani A. Mercuri NB. Bernardi G. Long-term potentiation in the striatum is unmasked by removing the voltage-dependent magnesium block of NMDA receptor channels. Eur J Neurosci. 1992;4:929–935.
    1. Calixto AV. Duarte FS. Duzzioni M. Nascimento Hackl LP. Faria MS. De Lima TC. Role of ventral hippocampal nitric oxide/cGMP pathway in anxiety-related behaviors in rats submitted to the elevated T-maze. Behav Brain Res. 2010;207:112–117.
    1. Callio J. Oury TD. Chu CT. Manganese superoxide dismutase protects against 6-hydroxydopamine injury in mouse brains. J Biol Chem. 2005;280:18536–18542.
    1. Camara AK. Aldakkak M. Heisner JS. Rhodes SS. Riess ML. An J. Heinen A. Stowe DF. ROS scavenging before 27 degrees C ischemia protects hearts and reduces mitochondrial ROS, Ca2+ overload, and changes in redox state. Am J Physiol Cell Physiol. 2007;292:C2021–C2031.
    1. Cao G. Russell RM. Lischner N. Prior RL. Serum antioxidant capacity is increased by consumption of strawberries, spinach, red wine or vitamin C in elderly women. J Nutr. 1998;128:2383–2390.
    1. Cao XJ. Wang M. Chen WH. Zhu DM. She JQ. Ruan DY. Effects of chronic administration of melatonin on spatial learning ability and long-term potentiation in lead-exposed and control rats. Biomed Environ Sci. 2009;22:70–75.
    1. Carney JM. Starke-Reed PE. Oliver CN. Landum RW. Cheng MS. Wu JF. Floyd RA. Reversal of age-related increase in brain protein oxidation, decrease in enzyme activity, and loss in temporal and spatial memory by chronic administration of the spin-trapping compound N-tert-butyl-alpha-phenylnitrone. Proc Natl Acad Sci USA. 1991;88:3633–3636.
    1. Chae HZ. Kim IH. Kim K. Rhee SG. Cloning, sequencing, and mutation of thiol-specific antioxidant gene of Saccharomyces cerevisiae. J Biol Chem. 1993;268:16815–16821.
    1. Chapman PF. Atkins CM. Allen MT. Haley JE. Steinmetz JE. Inhibition of nitric oxide synthesis impairs two different forms of learning. Neuroreport. 1992;3:567–570.
    1. Chaudhury D. Wang LM. Colwell CS. Circadian regulation of hippocampal long-term potentiation. J Biol Rhythms. 2005;20:225–236.
    1. Chelikani P. Fita I. Loewen PC. Diversity of structures and properties among catalases. Cell Mol Life Sci. 2004;61:192–208.
    1. Chen Q. Powell DW. Rane MJ. Singh S. Butt W. Klein JB. McLeish KR. Akt phosphorylates p47phox and mediates respiratory burst activity in human neutrophils. J Immunol. 2003;170:5302–5308.
    1. Chen SJ. Sweatt JD. Klann E. Enhanced phosphorylation of the postsynaptic protein kinase C substrate RC3/neurogranin during long-term potentiation. Brain Res. 1997;749:181–187.
    1. Cheng S. Ma C. Qu H. Fan W. Pang J. He H. Differential effects of melatonin on hippocampal neurodegeneration in different aged accelerated senescence prone mouse-8. Neuro Endocrinol Lett. 2008;29:91–99.
    1. Chiu CS. Deng JS. Hsieh MT. Fan MJ. Lee MM. Chueh FS. Han CK. Lin YC. Peng WH. Yam (Dioscorea pseudojaponica Yamamoto) ameliorates cognition deficit and attenuates oxidative damage in senescent mice induced by D-galactose. Am J Chin Med. 2009;37:889–902.
    1. Christensen H. What cognitive changes can be expected with normal ageing? Aust NZ J Psychiatry. 2001;35:768–775.
    1. Chryssanthi DG. Lamari FN. Iatrou G. Pylara A. Karamanos NK. Cordopatis P. Inhibition of breast cancer cell proliferation by style constituents of different Crocus species. Anticancer Res. 2007;27:357–362.
    1. Clapp-Lilly KL. Smith MA. Perry G. Harris PL. Zhu X. Duffy LK. Melatonin acts as antioxidant and pro-oxidant in an organotypic slice culture model of Alzheimer's disease. Neuroreport. 2001;12:1277–1280.
    1. Clausen A. Doctrow S. Baudry M. Prevention of cognitive deficits and brain oxidative stress with superoxide dismutase/catalase mimetics in aged mice. Neurobiol Aging. 2008
    1. Clausen F. Marklund N. Lewen A. Hillered L. The nitrone free radical scavenger NXY-059 is neuroprotective when administered after traumatic brain injury in the rat. J Neurotrauma. 2008;25:1449–1457.
    1. Collins DR. Davies SN. Melatonin blocks the induction of long-term potentiation in an N-methyl-d-aspartate independent manner. Brain Res. 1997;767:162–165.
    1. Crofts AR. Barquera B. Gennis RB. Kuras R. Guergova-Kuras M. Berry EA. Mechanism of ubiquinol oxidation by the bc(1) complex: different domains of the quinol binding pocket and their role in the mechanism and binding of inhibitors. Biochemistry. 1999;38:15807–15826.
    1. Cruz-Aguado R. Almaguer-Melian W. Diaz CM. Lorigados L. Bergado J. Behavioral and biochemical effects of glutathione depletion in the rat brain. Brain Res Bull. 2001;55:327–333.
    1. Cutajar MC. Edwards TM. Evidence for the role of endogenous carbon monoxide in memory processing. J Cogn Neurosci. 2007;19:557–562.
    1. Cutajar MC. Edwards TM. Ng KT. Inhibition of endogenous carbon monoxide production induces transient retention losses in the day-old chick when trained using a single trial passive avoidance learning task. Neurobiol Learn Mem. 2005;83:243–250.
    1. Dalrymple-Alford JC. Jamieson CF. Donaldson IM. Effects of selegiline (deprenyl) on cognition in early Parkinson's disease. Clin Neuropharmacol. 1995;18:348–359.
    1. Dang PM. Fontayne A. Hakim J. El Benna J. Perianin A. Protein kinase C zeta phosphorylates a subset of selective sites of the NADPH oxidase component p47phox and participates in formyl peptide-mediated neutrophil respiratory burst. J Immunol. 2001;166:1206–1213.
    1. Dash PK. Zhao J. Orsi SA. Zhang M. Moore AN. Sulforaphane improves cognitive function administered following traumatic brain injury. Neurosci Lett. 2009;460:103–107.
    1. De Butte M. Fortin T. Pappas BA. Pinealectomy: behavioral and neuropathological consequences in a chronic cerebral hypoperfusion model. Neurobiol Aging. 2002;23:309–317.
    1. de Lima MN. Laranja DC. Caldana F. Bromberg E. Roesler R. Schroder N. Reversal of age-related deficits in object recognition memory in rats with l-deprenyl. Exp Gerontol. 2005;40:506–511.
    1. de Lima MN. Laranja DC. Caldana F. Grazziotin MM. Garcia VA. Dal Pizzol F. Bromberg E. Schroder N. Selegiline protects against recognition memory impairment induced by neonatal iron treatment. Exp Neurol. 2005;196:177–183.
    1. de Oliveira MR. Oliveira MW. Behr GA. Hoff ML. da Rocha RF. Moreira JC. Evaluation of the effects of vitamin A supplementation on adult rat substantia nigra and striatum redox and bioenergetic states: mitochondrial impairment, increased 3-nitrotyrosine and alpha-synuclein, but decreased D2 receptor contents. Prog Neuropsychopharmacol Biol Psychiatry. 2009;33:353–362.
    1. Dean O. Bush AI. Berk M. Copolov DL. van den BM. Glutathione depletion in the brain disrupts short-term spatial memory in the Y-maze in rats and mice. Behav Brain Res. 2009;198:258–262.
    1. Dexter DT. Carayon A. Javoy-Agid F. Agid Y. Wells FR. Daniel SE. Lees AJ. Jenner P. Marsden CD. Alterations in the levels of iron, ferritin and other trace metals in Parkinson's disease and other neurodegenerative diseases affecting the basal ganglia. Brain. 1991;114(Pt 4):1953–1975.
    1. Dexter DT. Carayon A. Vidailhet M. Ruberg M. Agid F. Agid Y. Lees AJ. Wells FR. Jenner P. Marsden CD. Decreased ferritin levels in brain in Parkinson's disease. J Neurochem. 1990;55:16–20.
    1. Dexter DT. Carter CJ. Wells FR. Javoy-Agid F. Agid Y. Lees A. Jenner P. Marsden CD. Basal lipid peroxidation in substantia nigra is increased in Parkinson's disease. J Neurochem. 1989;52:381–389.
    1. Dexter DT. Holley AE. Flitter WD. Slater TF. Wells FR. Daniel SE. Lees AJ. Jenner P. Marsden CD. Increased levels of lipid hydroperoxides in the parkinsonian substantia nigra: an HPLC and ESR study. Mov Disord. 1994;9:92–97.
    1. Di Mascio P. Kaiser S. Sies H. Lycopene as the most efficient biological carotenoid singlet oxygen quencher. Arch Biochem Biophys. 1989;274:532–538.
    1. Donahue AN. Aschner M. Lash LH. Syversen T. Sonntag WE. Growth hormone administration to aged animals reduces disulfide glutathione levels in hippocampus. Mech Ageing Dev. 2006;127:57–63.
    1. Doyle KP. Simon RP. Stenzel-Poore MP. Mechanisms of ischemic brain damage. Neuropharmacology. 2008;55:310–318.
    1. Du H. Guo L. Fang F. Chen D. Sosunov AA. McKhann GM. Yan Y. Wang C. Zhang H. Molkentin JD. Gunn-Moore FJ. Vonsattel JP. Arancio O. Chen JX. Yan SD. Cyclophilin D deficiency attenuates mitochondrial and neuronal perturbation and ameliorates learning and memory in Alzheimer's disease. Nat Med. 2008;14:1097–1105.
    1. Dugan LL. Sensi SL. Canzoniero LM. Handran SD. Rothman SM. Lin TS. Goldberg MP. Choi DW. Mitochondrial production of reactive oxygen species in cortical neurons following exposure to N-methyl-d-aspartate. J Neurosci. 1995;15:6377–6388.
    1. Dumont M. Ho DJ. Calingasan NY. Xu H. Gibson G. Beal MF. Mitochondrial dihydrolipoyl succinyltransferase deficiency accelerates amyloid pathology and memory deficit in a transgenic mouse model of amyloid deposition. Free Radic Biol Med. 2009;47:1019–1027.
    1. Dumont M. Wille E. Stack C. Calingasan NY. Beal MF. Lin MT. Reduction of oxidative stress, amyloid deposition, and memory deficit by manganese superoxide dismutase overexpression in a transgenic mouse model of Alzheimer's disease. FASEB J. 2009;23:2459–2466.
    1. Dykens JA. Isolated cerebral and cerebellar mitochondria produce free radicals when exposed to elevated CA2+ and Na+: implications for neurodegeneration. J Neurochem. 1994;63:584–591.
    1. Eccles JC. Mechanisms of long-term memory. J Physiol (Paris) 1986;81:312–317.
    1. Eftekharzadeh B. Maghsoudi N. Khodagholi F. Stabilization of transcription factor Nrf2 by tBHQ prevents oxidative stress-induced amyloid beta formation in NT2N neurons. Biochimie. 2010;92:245–253.
    1. Elchuri S. Oberley TD. Qi W. Eisenstein RS. Jackson RL. Van Remmen H. Epstein CJ. Huang TT. CuZnSOD deficiency leads to persistent and widespread oxidative damage and hepatocarcinogenesis later in life. Oncogene. 2005;24:367–380.
    1. Emsley J. Nature's Building Blocks. An A-Z Guide to the Elements. Oxford: Oxford University Press; 2002. Manganese; pp. 249–253.
    1. Engelhart MJ. Geerlings MI. Ruitenberg A. van Swieten JC. Hofman A. Witteman JC. Breteler MM. Dietary intake of antioxidants and risk of Alzheimer disease. JAMA. 2002;287:3223–3229.
    1. Engelhart MJ. Ruitenberg A. Meijer J. Kiliaan A. van Swieten JC. Hofman A. Witteman JC. Breteler MM. Plasma levels of antioxidants are not associated with Alzheimer's disease or cognitive decline. Dement Geriatr Cogn Disord. 2005;19:134–139.
    1. Esposito L. Raber J. Kekonius L. Yan F. Yu GQ. Bien-Ly N. Puolivali J. Scearce-Levie K. Masliah E. Mucke L. Reduction in mitochondrial superoxide dismutase modulates Alzheimer's disease-like pathology and accelerates the onset of behavioral changes in human amyloid precursor protein transgenic mice. J Neurosci. 2006;26:5167–5179.
    1. Estall LB. Grant SJ. Cicala GA. Inhibition of nitric oxide (NO) production selectively impairs learning and memory in the rat. Pharmacol Biochem Behav. 1993;46:959–962.
    1. Farooqui T. Iron-induced oxidative stress modulates olfactory learning and memory in honeybees. Behav Neurosci. 2008;122:433–447.
    1. Farr SA. Poon HF. Dogrukol-Ak D. Drake J. Banks WA. Eyerman E. Butterfield DA. Morley JE. The antioxidants alpha-lipoic acid and N-acetylcysteine reverse memory impairment and brain oxidative stress in aged SAMP8 mice. J Neurochem. 2003;84:1173–1183.
    1. Fedorov NB. Pasinelli P. Oestreicher AB. DeGraan PN. Reymann KG. Antibodies to postsynaptic PKC substrate neurogranin prevent long-term potentiation in hippocampal CA1 neurons. Eur J Neurosci. 1995;7:819–822.
    1. Feng Z. Chang Y. Cheng Y. Zhang BL. Qu ZW. Qin C. Zhang JT. Melatonin alleviates behavioral deficits associated with apoptosis and cholinergic system dysfunction in the APP 695 transgenic mouse model of Alzheimer's disease. J Pineal Res. 2004;37:129–136.
    1. Feng Z. Cheng Y. Zhang JT. Long-term effects of melatonin or 17 beta-estradiol on improving spatial memory performance in cognitively impaired, ovariectomized adult rats. J Pineal Res. 2004;37:198–206.
    1. Feng Z. Zhang JT. Long-term melatonin or 17beta-estradiol supplementation alleviates oxidative stress in ovariectomized adult rats. Free Radic Biol Med. 2005;39:195–204.
    1. Filip V. Kolibas E. Selegiline in the treatment of Alzheimer's disease: a long-term randomized placebo-controlled trial. Czech and Slovak Senile Dementia of Alzheimer Type Study Group. J Psychiatry Neurosci. 1999;24:234–243.
    1. Fin C. Schmitz PK. Da Silva RC. Bernabeu R. Medina JH. Izquierdo I. Intrahippocampal, but not intra-amygdala, infusion of an inhibitor of heme oxygenase causes retrograde amnesia in the rat. Eur J Pharmacol. 1994;271:227–229.
    1. Font L. Miquel M. Aragon CM. Involvement of brain catalase activity in the acquisition of ethanol-induced conditioned place preference. Physiol Behav. 2008;93:733–741.
    1. Forster MJ. Dubey A. Dawson KM. Stutts WA. Lal H. Sohal RS. Age-related losses of cognitive function and motor skills in mice are associated with oxidative protein damage in the brain. Proc Natl Acad Sci USA. 1996;93:4765–4769.
    1. Fox MA. Chen RS. Holmes CS. Gender differences in memory and learning in children with insulin-dependent diabetes mellitus (IDDM) over a 4-year follow-up interval. J Pediatr Psychol. 2003;28:569–578.
    1. Fridovich I. Superoxide radical and superoxide dismutases. Annu Rev Biochem. 1995;64:97–112.
    1. Fuchs O. Babusiak M. Vyoral D. Petrak J. Role of zinc in eukaryotic cells, zinc transporters and zinc-containing proteins. Review article. Sb Lek. 2003;104:157–170.
    1. Fukui K. Onodera K. Shinkai T. Suzuki S. Urano S. Impairment of learning and memory in rats caused by oxidative stress and aging, and changes in antioxidative defense systems. Ann NY Acad Sci. 2001;928:168–175.
    1. Fukunaga K. Horikawa K. Shibata S. Takeuchi Y. Miyamoto E. Ca2+/calmodulin-dependent protein kinase II-dependent long-term potentiation in the rat suprachiasmatic nucleus and its inhibition by melatonin. J Neurosci Res. 2002;70:799–807.
    1. Fullerton HJ. Ditelberg JS. Chen SF. Sarco DP. Chan PH. Epstein CJ. Ferriero DM. Copper/zinc superoxide dismutase transgenic brain accumulates hydrogen peroxide after perinatal hypoxia ischemia. Ann Neurol. 1998;44:357–364.
    1. Furling D. Ghribi O. Lahsaini A. Mirault ME. Massicotte G. Impairment of synaptic transmission by transient hypoxia in hippocampal slices: improved recovery in glutathione peroxidase transgenic mice. Proc Natl Acad Sci USA. 2000;97:4351–4356.
    1. Gabbita SP. Lovell MA. Markesbery WR. Increased nuclear DNA oxidation in the brain in Alzheimer's disease. J Neurochem. 1998;71:2034–2040.
    1. Gahtan E. Auerbach JM. Groner Y. Segal M. Reversible impairment of long-term potentiation in transgenic Cu/Zn-SOD mice. Eur J Neurosci. 1998;10:538–544.
    1. Garcia T. Ribes D. Colomina MT. Cabre M. Domingo JL. Gomez M. Evaluation of the protective role of melatonin on the behavioral effects of aluminum in a mouse model of Alzheimer's disease. Toxicology. 2009;265:49–55.
    1. Gaziano JM. Hatta A. Flynn M. Johnson EJ. Krinsky NI. Ridker PM. Hennekens CH. Frei B. Supplementation with beta-carotene in vivo and in vitro does not inhibit low density lipoprotein oxidation. Atherosclerosis. 1995;112:187–195.
    1. Gille L. Nohl H. The ubiquinol/bc1 redox couple regulates mitochondrial oxygen radical formation. Arch Biochem Biophys. 2001;388:34–38.
    1. Gillis JC. Benefield P. McTavish D. Idebenone. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic use in age-related cognitive disorders. Drugs Aging. 1994;5:133–152.
    1. Gonenc S. Uysal N. Acikgoz O. Kayatekin BM. Sonmez A. Kiray M. Aksu I. Gulecer B. Topcu A. Semin I. Effects of melatonin on oxidative stress and spatial memory impairment induced by acute ethanol treatment in rats. Physiol Res. 2005;54:341–348.
    1. Gong L. Gao TM. Huang H. Tong Z. Redox modulation of large conductance calcium-activated potassium channels in CA1 pyramidal neurons from adult rat hippocampus. Neurosci Lett. 2000;286:191–194.
    1. Good PF. Hsu A. Werner P. Perl DP. Olanow CW. Protein nitration in Parkinson's disease. J Neuropathol Exp Neurol. 1998;57:338–342.
    1. Gorell JM. Ordidge RJ. Brown GG. Deniau JC. Buderer NM. Helpern JA. Increased iron-related MRI contrast in the substantia nigra in Parkinson's disease. Neurology. 1995;45:1138–1143.
    1. Gould TJ. Feiro OR. Age-related deficits in the retention of memories for cued fear conditioning are reversed by galantamine treatment. Behav Brain Res. 2005;165:160–171.
    1. Gravina SA. Mieyal JJ. Thioltransferase is a specific glutathionyl mixed disulfide oxidoreductase. Biochemistry. 1993;32:3368–3376.
    1. Griendling KK. Novel NAD(P)H oxidases in the cardiovascular system. Heart. 2004;90:491–493.
    1. Griffith OW. Stuehr DJ. Nitric oxide synthases: properties and catalytic mechanism. Annu Rev Physiol. 1995;57:707–736.
    1. Grodstein F. Kang JH. Glynn RJ. Cook NR. Gaziano JM. A randomized trial of beta carotene supplementation and cognitive function in men: the Physicians' Health Study II. Arch Intern Med. 2007;167:2184–2190.
    1. Guo Q. Fu W. Holtsberg FW. Steiner SM. Mattson MP. Superoxide mediates the cell-death-enhancing action of presenilin-1 mutations. J Neurosci Res. 1999;56:457–470.
    1. Gupta R. Singh M. Sharma A. Neuroprotective effect of antioxidants on ischaemia and reperfusion-induced cerebral injury. Pharmacol Res. 2003;48:209–215.
    1. Gutteridge JM. Free radicals in disease processes: a compilation of cause and consequence. Free Radic Res Commun. 1993;19:141–158.
    1. Haas RH. The evidence basis for coenzyme Q therapy in oxidative phosphorylation disease. Mitochondrion. 2007;7(Suppl):S136–S145.
    1. Hagen JW. Barclay CR. Anderson BJ. Feeman DJ. Segal SS. Bacon G. Goldstein GW. Intellective functioning and strategy use in children with insulin-dependent diabetes mellitus. Child Dev. 1990;61:1714–1727.
    1. Haller J. Weggemans RM. Ferry M. Guigoz Y. Mental health: minimental state examination and geriatric depression score of elderly Europeans in the SENECA study of 1993. Eur J Clin Nutr. 1996;50(Suppl 2):S112–S116.
    1. Halliwell B. Drug antioxidant effects. A basis for drug selection? Drugs. 1991;42:569–605.
    1. Halliwell B. Reactive oxygen species and the central nervous system. J Neurochem. 1992;59:1609–1623.
    1. Hambidge KM. Krebs NF. Zinc deficiency: a special challenge. J Nutr. 2007;137:1101–1105.
    1. Hamel E. Nicolakakis N. Aboulkassim T. Ongali B. Tong XK. Oxidative stress and cerebrovascular dysfunction in mouse models of Alzheimer's disease. Exp Physiol. 2008;93:116–120.
    1. Hamer DH. Metallothionein. Annu Rev Biochem. 1986;55:913–951.
    1. Hardeland R. Antioxidative protection by melatonin: multiplicity of mechanisms from radical detoxification to radical avoidance. Endocrine. 2005;27:119–130.
    1. Harman D. Aging: a theory based on free radical and radiation chemistry. J Gerontol. 1956;11:298–300.
    1. Harris-Cerruti C. Kamsler A. Kaplan B. Lamb B. Segal M. Groner Y. Functional and morphological alterations in compound transgenic mice overexpressing Cu/Zn superoxide dismutase and amyloid precursor protein [correction] Eur J Neurosci. 2004;19:1174–1190.
    1. Harrison FE. Hosseini AH. Dawes SM. Weaver S. May JM. Ascorbic acid attenuates scopolamine-induced spatial learning deficits in the water maze. Behav Brain Res. 2009;205:550–558.
    1. He XL. Zhou WQ. Bi MG. Du GH. Neuroprotective effects of icariin on memory impairment and neurochemical deficits in senescence-accelerated mouse prone 8 (SAMP8) mice. Brain Res. 2010;1334:73–83.
    1. Head E. Hartley J. Kameka AM. Mehta R. Ivy GO. Ruehl WW. Milgram NW. The effects of L-deprenyl on spatial short term memory in young and aged dogs. Prog Neuropsychopharmacol Biol Psychiatry. 1996;20:515–530.
    1. Heinzel B. John M. Klatt P. Bohme E. Mayer B. Ca2+/calmodulin-dependent formation of hydrogen peroxide by brain nitric oxide synthase. Biochem J. 1992;281(Pt 3):627–630.
    1. Hensley K. Hall N. Subramaniam R. Cole P. Harris M. Aksenov M. Aksenova M. Gabbita SP. Wu JF. Carney JM. Brain regional correspondence between Alzheimer's disease histopathology and biomarkers of protein oxidation. J Neurochem. 1995;65:2146–2156.
    1. Hidalgo C. Carrasco MA. Munoz P. Nunez MT. A role for reactive oxygen/nitrogen species and iron on neuronal synaptic plasticity. Antioxid Redox Signal. 2007;9:245–255.
    1. Hidalgo J. Aschner M. Zatta P. Vasak M. Roles of the metallothionein family of proteins in the central nervous system. Brain Res Bull. 2001;55:133–145.
    1. Hill KE. McCollum GW. Boeglin ME. Burk RF. Thioredoxin reductase activity is decreased by selenium deficiency. Biochem Biophys Res Commun. 1997;234:293–295.
    1. Holmgren A. Johansson C. Berndt C. Lonn ME. Hudemann C. Lillig CH. Thiol redox control via thioredoxin and glutaredoxin systems. Biochem Soc Trans. 2005;33:1375–1377.
    1. Holscher C. Rose SP. An inhibitor of nitric oxide synthesis prevents memory formation in the chick. Neurosci Lett. 1992;145:165–167.
    1. Hongpaisan J. Winters CA. Andrews SB. Calcium-dependent mitochondrial superoxide modulates nuclear CREB phosphorylation in hippocampal neurons. Mol Cell Neurosci. 2003;24:1103–1115.
    1. This reference has been deleted.
    1. Hongpaisan J. Winters CA. Andrews SB. Strong calcium entry activates mitochondrial superoxide generation, upregulating kinase signaling in hippocampal neurons. J Neurosci. 2004;24:10878–10887.
    1. Hosseinzadeh H. Ziaee T. Sadeghi A. The effect of saffron, Crocus sativus stigma, extract and its constituents, safranal and crocin on sexual behaviors in normal male rats. Phytomedicine. 2008;15:491–495.
    1. Hossmann KA. Viability thresholds and the penumbra of focal ischemia. Ann Neurol. 1994;36:557–565.
    1. Hota SK. Hota KB. Prasad D. Ilavazhagan G. Singh SB. Oxidative-stress-induced alterations in Sp factors mediate transcriptional regulation of the NR1 subunit in hippocampus during hypoxia. Free Radic Biol Med. 2010;49:178–191.
    1. Howland JG. Wang YT. Synaptic plasticity in learning and memory: stress effects in the hippocampus. Prog Brain Res. 2008;169:145–158.
    1. Hu D. Cao P. Thiels E. Chu CT. Wu GY. Oury TD. Klann E. Hippocampal long-term potentiation, memory, and longevity in mice that overexpress mitochondial superoxide dismutase. Neurobiol Learn Mem. 2007;87:372–384.
    1. Hu D. Klann E. Thiels E. Superoxide dismutase and hippocampal function: age and isozyme matter. Antioxid Redox Signal. 2007;9:201–210.
    1. Hu D. Serrano F. Oury TD. Klann E. Aging-dependent alterations in synaptic plasticity and memory in mice that overexpress extracellular superoxide dismutase. J Neurosci. 2006;26:3933–3941.
    1. Hu P. Bretsky P. Crimmins EM. Guralnik JM. Reuben DB. Seeman TE. Association between serum beta-carotene levels and decline of cognitive function in high-functioning older persons with or without apolipoprotein E 4 alleles: MacArthur studies of successful aging. J Gerontol A Biol Sci Med Sci. 2006;61:616–620.
    1. Huang KP. Huang FL. Chen HC. Characterization of a 7.5-kDa protein kinase C substrate (RC3 protein, neurogranin) from rat brain. Arch Biochem Biophys. 1993;305:570–580.
    1. Huang KP. Huang FL. Jager T. Li J. Reymann KG. Balschun D. Neurogranin/RC3 enhances long-term potentiation and learning by promoting calcium-mediated signaling. J Neurosci. 2004;24:10660–10669.
    1. Huddleston AT. Tang W. Takeshima H. Hamilton SL. Klann E. Superoxide-induced potentiation in the hippocampus requires activation of ryanodine receptor type 3 and ERK. J Neurophysiol. 2008;99:1565–1571.
    1. Ichitani Y. Okaichi H. Yoshikawa T. Ibata Y. Learning behaviour in chronic vitamin E-deficient and -supplemented rats: radial arm maze learning and passive avoidance response. Behav Brain Res. 1992;51:157–164.
    1. Ishihara K. Katsuki H. Sugimura M. Satoh M. Idebenone and vinpocetine augment long-term potentiation in hippocampal slices in the guinea pig. Neuropharmacology. 1989;28:569–573.
    1. Ishrat T. Khan MB. Hoda MN. Yousuf S. Ahmad M. Ansari MA. Ahmad AS. Islam F. Coenzyme Q10 modulates cognitive impairment against intracerebroventricular injection of streptozotocin in rats. Behav Brain Res. 2006;171:9–16.
    1. Ishrat T. Parveen K. Khan MM. Khuwaja G. Khan MB. Yousuf S. Ahmad A. Shrivastav P. Islam F. Selenium prevents cognitive decline and oxidative damage in rat model of streptozotocin-induced experimental dementia of Alzheimer's type. Brain Res. 2009;1281:117–127.
    1. Jackson SH. Gallin JI. Holland SM. The p47phox mouse knock-out model of chronic granulomatous disease. J Exp Med. 1995;182:751–758.
    1. Kagi JH. Schaffer A. Biochemistry of metallothionein. Biochemistry. 1988;27:8509–8515.
    1. Kalinina EV. Chernov NN. Saprin AN. Involvement of thio-, peroxi-, and glutaredoxins in cellular redox-dependent processes. Biochemistry (Mosc) 2008;73:1493–1510.
    1. Kamal A. Biessels GJ. Gispen WH. Ramakers GM. Synaptic transmission changes in the pyramidal cells of the hippocampus in streptozotocin-induced diabetes mellitus in rats. Brain Res. 2006;1073–1074:276–280.
    1. Kamsler A. Avital A. Greenberger V. Segal M. Aged SOD overexpressing mice exhibit enhanced spatial memory while lacking hippocampal neurogenesis. Antioxid Redox Signal. 2007;9:181–189.
    1. Kamsler A. Segal M. Hydrogen peroxide modulation of synaptic plasticity. J Neurosci. 2003;23:269–276.
    1. Kamsler A. Segal M. Paradoxical actions of hydrogen peroxide on long-term potentiation in transgenic superoxide dismutase-1 mice. J Neurosci. 2003;23:10359–10367.
    1. Kang JH. Grodstein F. Plasma carotenoids and tocopherols and cognitive function: a prospective study. Neurobiol Aging. 2008;29:1394–1403.
    1. Kanninen K. Heikkinen R. Malm T. Rolova T. Kuhmonen S. Leinonen H. Yla-Herttuala S. Tanila H. Levonen AL. Koistinaho M. Koistinaho J. Intrahippocampal injection of a lentiviral vector expressing Nrf2 improves spatial learning in a mouse model of Alzheimer's disease. Proc Natl Acad Sci USA. 2009;106:16505–16510.
    1. Kanninen K. Malm TM. Jyrkkanen HK. Goldsteins G. Keksa-Goldsteine V. Tanila H. Yamamoto M. Yla-Herttuala S. Levonen AL. Koistinaho J. Nuclear factor erythroid 2-related factor 2 protects against beta amyloid. Mol Cell Neurosci. 2008;39:302–313.
    1. Kanterewicz BI. Knapp LT. Klann E. Stimulation of p42 and p44 mitogen-activated protein kinases by reactive oxygen species and nitric oxide in hippocampus. J Neurochem. 1998;70:1009–1016.
    1. Kanterewicz BI. Urban NN. McMahon DB. Norman ED. Giffen LJ. Favata MF. Scherle PA. Trzskos JM. Barrionuevo G. Klann E. The extracellular signal-regulated kinase cascade is required for NMDA receptor-independent LTP in area CA1 but not area CA3 of the hippocampus. J Neurosci. 2000;20:3057–3066.
    1. Katsuki H. Nakanishi C. Saito H. Matsuki N. Biphasic effect of hydrogen peroxide on field potentials in rat hippocampal slices. Eur J Pharmacol. 1997;337:213–218.
    1. Keller JN. Kindy MS. Holtsberg FW. St. Clair DK. Yen HC. Germeyer A. Steiner SM. Bruce-Keller AJ. Hutchins JB. Mattson MP. Mitochondrial manganese superoxide dismutase prevents neural apoptosis and reduces ischemic brain injury: suppression of peroxynitrite production, lipid peroxidation, and mitochondrial dysfunction. J Neurosci. 1998;18:687–697.
    1. Kemmerling U. Munoz P. Muller M. Sanchez G. Aylwin ML. Klann E. Carrasco MA. Hidalgo C. Calcium release by ryanodine receptors mediates hydrogen peroxide-induced activation of ERK and CREB phosphorylation in N2a cells and hippocampal neurons. Cell Calcium. 2007;41:491–502.
    1. Kenchappa RS. Ravindranath V. Glutaredoxin is essential for maintenance of brain mitochondrial complex I: studies with MPTP. FASEB J. 2003;17:717–719.
    1. Kieburtz K. McDermott M. Como P. Growdon J. Brady J. Carter J. Huber S. Kanigan B. Landow E. Rudolph A, et al. The effect of deprenyl and tocopherol on cognitive performance in early untreated Parkinson's disease. Parkinson Study Group. Neurology. 1994;44:1756–1759.
    1. Kim MJ. Shin KS. Chung YB. Jung KW. Cha CI. Shin DH. Immunohistochemical study of p47Phox and gp91Phox distributions in rat brain. Brain Res. 2005;1040:178–186.
    1. Kim SJ. Linden DJ. Ubiquitous plasticity and memory storage. Neuron. 2007;56:582–592.
    1. Kim SU. Jin MH. Kim YS. Lee SH. Cho YS. Cho KJ. Lee KS. Kim YI. Kim GW. Kim JM. Lee TH. Lee YH. Shong M. Kim HC. Chang KT. Yu DY. Lee DS. Peroxiredoxin II preserves cognitive function against age-linked hippocampal oxidative damage. Neurobiol Aging. 2009 [Epub ahead of print].
    1. Kimura H. Hydrogen sulfide: from brain to gut. Antioxid Redox Signal. 2010;12:1111–1123.
    1. Kiray M. Bagriyanik HA. Pekcetin C. Ergur BU. Uysal N. Protective effects of deprenyl in transient cerebral ischemia in rats. Chin J Physiol. 2008;51:275–281.
    1. Kiray M. Bagriyanik HA. Pekcetin C. Ergur BU. Uysal N. Ozyurt D. Buldan Z. Deprenyl and the relationship between its effects on spatial memory, oxidant stress and hippocampal neurons in aged male rats. Physiol Res. 2006;55:205–212.
    1. Kiray M. Uysal N. Sonmez A. Acikgoz O. Gonenc S. Positive effects of deprenyl and estradiol on spatial memory and oxidant stress in aged female rat brains. Neurosci Lett. 2004;354:225–228.
    1. Kishida KT. Hoeffer CA. Hu D. Pao M. Holland SM. Klann E. Synaptic plasticity deficits and mild memory impairments in mouse models of chronic granulomatous disease. Mol Cell Biol. 2006;26:5908–5920.
    1. Kishida KT. Klann E. Sources and targets of reactive oxygen species in synaptic plasticity and memory. Antioxid Redox Signal. 2007;9:233–244.
    1. Kishida KT. Pao M. Holland SM. Klann E. NADPH oxidase is required for NMDA receptor-dependent activation of ERK in hippocampal area CA1. J Neurochem. 2005;94:299–306.
    1. Kiyota Y. Hamajo K. Miyamoto M. Nagaoka A. Effect of idebenone (CV-2619) on memory impairment observed in passive avoidance task in rats with cerebral embolization. Jpn J Pharmacol. 1985;37:300–302.
    1. Kiyota Y. Miyamoto M. Nagaoka A. [Ameliorating effects of idebenone and indeloxazine hydrochloride on impairment of radial maze learning in cerebral embolized rats] Nippon Yakurigaku Zasshi. 1989;93:197–202.
    1. Klann E. Cell-permeable scavengers of superoxide prevent long-term potentiation in hippocampal area CA1. J Neurophysiol. 1998;80:452–457.
    1. Klann E. Roberson ED. Knapp LT. Sweatt JD. A role for superoxide in protein kinase C activation and induction of long-term potentiation. J Biol Chem. 1998;273:4516–4522.
    1. Klann E. Sweatt JD. Altered protein synthesis is a trigger for long-term memory formation. Neurobiol Learn Mem. 2008;89:247–259.
    1. Knapp LT. Klann E. Potentiation of hippocampal synaptic transmission by superoxide requires the oxidative activation of protein kinase C. J Neurosci. 2002;22:674–683.
    1. Knapp LT. Klann E. Role of reactive oxygen species in hippocampal long-term potentiation: contributory or inhibitory? J Neurosci Res. 2002;70:1–7.
    1. Kotler M. Rodriguez C. Sainz RM. Antolin I. Menendez-Pelaez A. Melatonin increases gene expression for antioxidant enzymes in rat brain cortex. J Pineal Res. 1998;24:83–89.
    1. Kucukatay V. Hacioglu G. Ozkaya G. Agar A. Yargicoglu P. The effect of diabetes mellitus on active avoidance learning in rats: the role of nitric oxide. Med Sci Monit. 2009;15:BR88–BR93.
    1. Kuhad A. Sethi R. Chopra K. Lycopene attenuates diabetes-associated cognitive decline in rats. Life Sci. 2008;83:128–134.
    1. Lahiri DK. Xu Y. Klaunig J. Baiyewu O. Ogunniyi A. Hall K. Hendrie H. Sahota A. Effect of oxidative stress on DNA damage and beta-amyloid precursor proteins in lymphoblastoid cell lines from a Nigerian population. Ann NY Acad Sci. 1999;893:331–336.
    1. Lai J. Yin S. Xu Q. Hu S. [Protection of zinc and selenium content of brain and blood on learning and memory exposed to lead in growing rats] Wei Sheng Yan Jiu. 2004;33:218–220.
    1. Lal H. Pogacar S. Daly PR. Puri SK. Behavioral and neuropathological manifestations of nutritionally induced central nervous system “aging” in the rat. Prog Brain Res. 1973;40:128–140.
    1. Lambert AJ. Brand MD. Superoxide production by NADH:ubiquinone oxidoreductase (complex I) depends on the pH gradient across the mitochondrial inner membrane. Biochem J. 2004;382:511–517.
    1. Lambeth JD. NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol. 2004;4:181–189.
    1. Landaw SA. Callahan EW., Jr. Schmid R. Catabolism of heme in vivo: comparison of the simultaneous production of bilirubin and carbon monoxide. J Clin Invest. 1970;49:914–925.
    1. Larson J. Jessen RE. Uz T. Arslan AD. Kurtuncu M. Imbesi M. Manev H. Impaired hippocampal long-term potentiation in melatonin MT2 receptor-deficient mice. Neurosci Lett. 2006;393:23–26.
    1. Lazo JS. Kondo Y. Dellapiazza D. Michalska AE. Choo KH. Pitt BR. Enhanced sensitivity to oxidative stress in cultured embryonic cells from transgenic mice deficient in metallothionein I and II genes. J Biol Chem. 1995;270:5506–5510.
    1. Lee JE. Kim H. Jang H. Cho EJ. Youn HD. Hydrogen peroxide triggers the proteolytic cleavage and the inactivation of calcineurin. J Neurochem. 2007;100:1703–1712.
    1. Leon J. Acuna-Castroviejo D. Sainz RM. Mayo JC. Tan DX. Reiter RJ. Melatonin and mitochondrial function. Life Sci. 2004;75:765–790.
    1. Letechipia-Vallejo G. Lopez-Loeza E. Espinoza-Gonzalez V. Gonzalez-Burgos I. Olvera-Cortes ME. Morali G. Cervantes M. Long-term morphological and functional evaluation of the neuroprotective effects of post-ischemic treatment with melatonin in rats. J Pineal Res. 2007;42:138–146.
    1. Levin ED. Christopher NC. Crapo JD. Memory decline of aging reduced by extracellular superoxide dismutase overexpression. Behav Genet. 2005;35:447–453.
    1. Levin ED. Perraut C. Pollard N. Freedman JH. Metallothionein expression and neurocognitive function in mice. Physiol Behav. 2006;87:513–518.
    1. Li F. Calingasan NY. Yu F. Mauck WM. Toidze M. Almeida CG. Takahashi RH. Carlson GA. Flint BM. Lin MT. Gouras GK. Increased plaque burden in brains of APP mutant MnSOD heterozygous knockout mice. J Neurochem. 2004;89:1308–1312.
    1. Li J. Pak JH. Huang FL. Huang KP. N-methyl-d-aspartate induces neurogranin/RC3 oxidation in rat brain slices. J Biol Chem. 1999;274:1294–1300.
    1. Li Y. Huang TT. Carlson EJ. Melov S. Ursell PC. Olson JL. Noble LJ. Yoshimura MP. Berger C. Chan PH. Wallace DC. Epstein CJ. Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nat Genet. 1995;11:376–381.
    1. Lin HH. Chen CH. Hsieh WK. Chiu TH. Lai CC. Hydrogen peroxide increases the activity of rat sympathetic preganglionic neurons in vivo and in vitro. Neuroscience. 2003;121:641–647.
    1. Ling ZQ. Tian Q. Wang L. Fu ZQ. Wang XC. Wang Q. Wang JZ. Constant illumination induces Alzheimer-like damages with endoplasmic reticulum involvement and the protection of melatonin. J Alzheimers Dis. 2009;16:287–300.
    1. Liu J. Head E. Gharib AM. Yuan W. Ingersoll RT. Hagen TM. Cotman CW. Ames BN. Memory loss in old rats is associated with brain mitochondrial decay and RNA/DNA oxidation: partial reversal by feeding acetyl-l-carnitine and/or R-alpha-lipoic acid. Proc Natl Acad Sci USA. 2002;99:2356–2361.
    1. Liu R. Liu IY. Bi X. Thompson RF. Doctrow SR. Malfroy B. Baudry M. Reversal of age-related learning deficits and brain oxidative stress in mice with superoxide dismutase/catalase mimetics. Proc Natl Acad Sci USA. 2003;100:8526–8531.
    1. Liu XJ. Wu WT. Effects of ligustrazine, tanshinone II A, ubiquinone, and idebenone on mouse water maze performance. Zhongguo Yao Li Xue Bao. 1999;20:987–990.
    1. Lo EH. Moskowitz MA. Jacobs TP. Exciting, radical, suicidal: how brain cells die after stroke. Stroke. 2005;36:189–192.
    1. Luchsinger JA. Tang MX. Shea S. Mayeux R. Antioxidant vitamin intake and risk of Alzheimer disease. Arch Neurol. 2003;60:203–208.
    1. Maalouf M. Rho JM. Oxidative impairment of hippocampal long-term potentiation involves activation of protein phosphatase 2A and is prevented by ketone bodies. J Neurosci Res. 2008;86:3322–3330.
    1. Machado MS. Rosa RM. Dantas AS. Reolon GK. Appelt HR. Braga AL. Henriques JA. Roesler R. An organic selenium compound attenuates apomorphine-induced stereotypy in mice. Neurosci Lett. 2006;410:198–202.
    1. Mahoney CW. Pak JH. Huang KP. Nitric oxide modification of rat brain neurogranin. Identification of the cysteine residues involved in intramolecular disulfide bridge formation using site-directed mutagenesis. J Biol Chem. 1996;271:28798–28804.
    1. Maia FD. Pitombeira BS. Araujo DT. Cunha GM. Viana GS. l-Deprenyl prevents lipid peroxidation and memory deficits produced by cerebral ischemia in rats. Cell Mol Neurobiol. 2004;24:87–100.
    1. Makhro AV. Mashkina AP. Solenaya OA. Trunova OA. Kozina LS. Arutyunian AV. Bulygina ER. Prenatal hyperhomocysteinemia as a model of oxidative stress of the brain. Bull Exp Biol Med. 2008;146:33–35.
    1. Malenka RC. Bear MF. LTP and LTD: an embarrassment of riches. Neuron. 2004;44:5–21.
    1. Malenka RC. Nicoll RA. Long-term potentiation—a decade of progress? Science. 1999;285:1870–1874.
    1. Manczak M. Anekonda TS. Henson E. Park BS. Quinn J. Reddy PH. Mitochondria are a direct site of A beta accumulation in Alzheimer's disease neurons: implications for free radical generation and oxidative damage in disease progression. Hum Mol Genet. 2006;15:1437–1449.
    1. Manczak M. Park BS. Jung Y. Reddy PH. Differential expression of oxidative phosphorylation genes in patients with Alzheimer's disease: implications for early mitochondrial dysfunction and oxidative damage. Neuromolecular Med. 2004;5:147–162.
    1. Manda K. Ueno M. Anzai K. Memory impairment, oxidative damage and apoptosis induced by space radiation: ameliorative potential of alpha-lipoic acid. Behav Brain Res. 2008;187:387–395.
    1. Manda K. Ueno M. Moritake T. Anzai K. Radiation-induced cognitive dysfunction and cerebellar oxidative stress in mice: protective effect of alpha-lipoic acid. Behav Brain Res. 2007;177:7–14.
    1. Manrique HM. Miquel M. Aragon CM. Brain catalase mediates potentiation of social recognition memory produced by ethanol in mice. Drug Alcohol Depend. 2005;79:343–350.
    1. Maragos WF. Jakel R. Chesnut D. Pocernich CB. Butterfield DA. St Clair D. Cass WA. Methamphetamine toxicity is attenuated in mice that overexpress human manganese superoxide dismutase. Brain Res. 2000;878:218–222.
    1. Marcus DL. Strafaci JA. Freedman ML. Differential neuronal expression of manganese superoxide dismutase in Alzheimer's disease. Med Sci Monit. 2006;12:BR8–BR14.
    1. Markesbery WR. Lovell MA. Four-hydroxynonenal, a product of lipid peroxidation, is increased in the brain in Alzheimer's disease. Neurobiol Aging. 1998;19:33–36.
    1. Marklund N. Clausen F. McIntosh TK. Hillered L. Free radical scavenger posttreatment improves functional and morphological outcome after fluid percussion injury in the rat. J Neurotrauma. 2001;18:821–832.
    1. Martin KR. Failla ML. Smith JC., Jr Beta-carotene and lutein protect HepG2 human liver cells against oxidant-induced damage. J Nutr. 1996;126:2098–2106.
    1. Martin M. Macias M. Escames G. Leon J. Acuna-Castroviejo D. Melatonin but not vitamins C and E maintains glutathione homeostasis in t-butyl hydroperoxide-induced mitochondrial oxidative stress. FASEB J. 2000;14:1677–1679.
    1. Massaad CA. Washington TM. Pautler RG. Klann E. Overexpression of SOD-2 reduces hippocampal superoxide and prevents memory deficits in a mouse model of Alzheimer's disease. Proc Natl Acad Sci USA. 2009;106:13576–13581.
    1. Maxwell CJ. Hicks MS. Hogan DB. Basran J. Ebly EM. Supplemental use of antioxidant vitamins and subsequent risk of cognitive decline and dementia. Dement Geriatr Cogn Disord. 2005;20:45–51.
    1. McCaffery P. Zhang J. Crandall JE. Retinoic acid signaling and function in the adult hippocampus. J Neurobiol. 2006;66:780–791.
    1. McCarty MF. Barroso-Aranda J. Contreras F. The “rejuvenatory” impact of lipoic acid on mitochondrial function in aging rats may reflect induction and activation of PPAR-gamma coactivator-1alpha. Med Hypotheses. 2009;72:29–33.
    1. McDonald SR. Sohal RS. Forster MJ. Concurrent administration of coenzyme Q10 and alpha-tocopherol improves learning in aged mice. Free Radic Biol Med. 2005;38:729–736.
    1. McGahon BM. Martin DS. Horrobin DF. Lynch MA. Age-related changes in LTP and antioxidant defenses are reversed by an alpha-lipoic acid-enriched diet. Neurobiol Aging. 1999;20:655–664.
    1. McLean CW. Mirochnitchenko O. Claus CP. Noble-Haeusslein LJ. Ferriero DM. Overexpression of glutathione peroxidase protects immature murine neurons from oxidative stress. Dev Neurosci. 2005;27:169–175.
    1. McNeill G. Avenell A. Campbell MK. Cook JA. Hannaford PC. Kilonzo MM. Milne AC. Ramsay CR. Seymour DG. Stephen AI. Vale LD. Effect of multivitamin and multimineral supplementation on cognitive function in men and women aged 65 years and over: a randomised controlled trial. Nutr J. 2007;6:10.
    1. Mecocci P. MacGarvey U. Kaufman AE. Koontz D. Shoffner JM. Wallace DC. Beal MF. Oxidative damage to mitochondrial DNA shows marked age-dependent increases in human brain. Ann Neurol. 1993;34:609–616.
    1. Meffert MK. Haley JE. Schuman EM. Schulman H. Madison DV. Inhibition of hippocampal heme oxygenase, nitric oxide synthase, and long-term potentiation by metalloporphyrins. Neuron. 1994;13:1225–1233.
    1. Melov S. Adlard PA. Morten K. Johnson F. Golden TR. Hinerfeld D. Schilling B. Mavros C. Masters CL. Volitakis I. Li QX. Laughton K. Hubbard A. Cherny RA. Gibson B. Bush AI. Mitochondrial oxidative stress causes hyperphosphorylation of tau. PLoS ONE. 2007;2:e536.
    1. Meydani M. Martin A. Ribaya-Mercado JD. Gong J. Blumberg JB. Russell RM. Beta-carotene supplementation increases antioxidant capacity of plasma in older women. J Nutr. 1994;124:2397–2403.
    1. Mieyal JJ. Srinivasan V. Starke DW. Gravina SA. Mieyal P. Glutathionyl specificity of thioltransferase: mechanistic and physiological applications. In: Packer L, editor; Cadenas E, editor. Biothiols in health and disease. New York: Marcel Decker; 1995. pp. 305–372.
    1. Milbury PE, editor; Richer AC, editor. Understanding the Antioxidant Controversy: Scrutinizing the Fountain of Youth. Westport, CT: Greenwood Publishing Group; 2007.
    1. Milgram NW. Araujo JA. Hagen TM. Treadwell BV. Ames BN. Acetyl-L-carnitine and alpha-lipoic acid supplementation of aged beagle dogs improves learning in two landmark discrimination tests. FASEB J. 2007;21:3756–3762.
    1. Miller ER., III Pastor-Barriuso R. Dalal D. Riemersma RA. Appel LJ. Guallar E. Meta-analysis: high-dosage vitamin E supplementation may increase all-cause mortality. Ann Intern Med. 2005;142:37–46.
    1. Mingaud F. Mormede C. Etchamendy N. Mons N. Niedergang B. Wietrzych M. Pallet V. Jaffard R. Krezel W. Higueret P. Marighetto A. Retinoid hyposignaling contributes to aging-related decline in hippocampal function in short-term/working memory organization and long-term declarative memory encoding in mice. J Neurosci. 2008;28:279–291.
    1. Mishima K. Pu F. Kaneko T. Egashira N. Iwasaki K. Fujiwara M. Post-ischemic administration [correction of administeration] but not pre-ischemic administration [correction of administeration] of NG-nitro-L-arginine prevents spatial memory impairments and apoptosis by an inhibition of a delayed increase in NOx- in the hippocampus following repeated cerebral ischemia. Neuropharmacology. 2003;44:533–540.
    1. Miyamoto E. Molecular mechanism of neuronal plasticity: induction and maintenance of long-term potentiation in the hippocampus. J Pharmacol Sci. 2006;100:433–442.
    1. Morris MC. Evans DA. Bienias JL. Tangney CC. Wilson RS. Vitamin E and cognitive decline in older persons. Arch Neurol. 2002;59:1125–1132.
    1. Muller FL. Lustgarten MS. Jang Y. Richardson A. Van Remmen H. Trends in oxidative aging theories. Free Radic Biol Med. 2007;43:477–503.
    1. Muller FL. Song W. Liu Y. Chaudhuri A. Pieke-Dahl S. Strong R. Huang TT. Epstein CJ. Roberts LJ. Csete M. Faulkner JA. Van Remmen H. Absence of CuZn superoxide dismutase leads to elevated oxidative stress and acceleration of age-dependent skeletal muscle atrophy. Free Radic Biol Med. 2006;40:1993–2004.
    1. Muller W. Bittner K. Differential oxidative modulation of voltage-dependent K+ currents in rat hippocampal neurons. J Neurophysiol. 2002;87:2990–2995.
    1. Murali G. Panneerselvam C. Modulatory role of glutathione monoester in augmenting age-associated neuronal antioxidant system. Exp Aging Res. 2008;34:419–436.
    1. Muriach M. Lopez-Pedrajas R. Barcia JM. Sanchez-Villarejo MV. Almansa I. Romero FJ. Cocaine causes memory and learning impairments in rats. Involvement of nuclear factor kappa B and oxidative stress, and prevention by topiramate. J Neurochem. 2010;114:675–684.
    1. Murray CA. Lynch MA. Evidence that increased hippocampal expression of the cytokine interleukin-1 beta is a common trigger for age- and stress-induced impairments in long-term potentiation. J Neurosci. 1998;18:2974–2981.
    1. Nakashima AS. Dyck RH. Zinc and cortical plasticity. Brain Res Rev. 2009;59:347–373.
    1. Nguyen PV. Woo NH. Regulation of hippocampal synaptic plasticity by cyclic AMP-dependent protein kinases. Prog Neurobiol. 2003;71:401–437.
    1. Nguyen T. Huang HC. Pickett CB. Transcriptional regulation of the antioxidant response element. Activation by Nrf2 and repression by MafK. J Biol Chem. 2000;275:15466–15473.
    1. Nielsen S. Smith BL. Christensen EI. Agre P. Distribution of the aquaporin CHIP in secretory and resorptive epithelia and capillary endothelia. Proc Natl Acad Sci USA. 1993;90:7275–7279.
    1. Nitta A. Murakami Y. Furukawa Y. Kawatsura W. Hayashi K. Yamada K. Hasegawa T. Nabeshima T. Oral administration of idebenone induces nerve growth factor in the brain and improves learning and memory in basal forebrain-lesioned rats. Naunyn Schmiedebergs Arch Pharmacol. 1994;349:401–407.
    1. Nizhnikov ME. Molina JC. Spear NE. Central reinforcing effects of ethanol are blocked by catalase inhibition. Alcohol. 2007;41:525–534.
    1. Noor JI. Ikeda T. Mishima K. Aoo N. Ohta S. Egashira N. Iwasaki K. Fujiwara M. Ikenoue T. Short-term administration of a new free radical scavenger, edaravone, is more effective than its long-term administration for the treatment of neonatal hypoxic-ischemic encephalopathy. Stroke. 2005;36:2468–2474.
    1. Nordberg M. Nordberg GF. Toxicological aspects of metallothionein. Cell Mol Biol. 2000;46:451–463.
    1. Ochiai T. Shimeno H. Mishima K. Iwasaki K. Fujiwara M. Tanaka H. Shoyama Y. Toda A. Eyanagi R. Soeda S. Protective effects of carotenoids from saffron on neuronal injury in vitro and in vivo. Biochim Biophys Acta. 2007;1770:578–584.
    1. Ohwada K. Takeda H. Yamazaki M. Isogai H. Nakano M. Shimomura M. Fukui K. Urano S. Pyrroloquinoline quinone (PQQ) prevents cognitive deficit caused by oxidative stress in rats. J Clin Biochem Nutr. 2008;42:29–34.
    1. Olanow CW. Oxidation reactions in Parkinson's disease. Neurology. 1990;40(10 Suppl 3) suppl 32–37; discussion 37–39.
    1. Olcese JM. Cao C. Mori T. Mamcarz MB. Maxwell A. Runfeldt MJ. Wang L. Zhang C. Lin X. Zhang G. Arendash GW. Protection against cognitive deficits and markers of neurodegeneration by long-term oral administration of melatonin in a transgenic model of Alzheimer disease. J Pineal Res. 2009;47:82–96.
    1. Omaye ST. Burri BJ. Swendseid ME. Henning SM. Briggs LA. Bowen HT. Ota RB. Blood antioxidants changes in young women following beta-carotene depletion and repletion. J Am Coll Nutr. 1996;15:469–474.
    1. Orr WC. Radyuk SN. Prabhudesai L. Toroser D. Benes JJ. Luchak JM. Mockett RJ. Rebrin I. Hubbard JG. Sohal RS. Overexpression of glutamate-cysteine ligase extends life span in Drosophila melanogaster. J Biol Chem. 2005;280:37331–37338.
    1. Otani H. Togashi H. Jesmin S. Sakuma I. Yamaguchi T. Matsumoto M. Kakehata H. Yoshioka M. Temporal effects of edaravone, a free radical scavenger, on transient ischemia-induced neuronal dysfunction in the rat hippocampus. Eur J Pharmacol. 2005;512:129–137.
    1. Ozcan M. Yilmaz B. Carpenter DO. Effects of melatonin on synaptic transmission and long-term potentiation in two areas of mouse hippocampus. Brain Res. 2006;1111:90–94.
    1. Ozdemir D. Tugyan K. Uysal N. Sonmez U. Sonmez A. Acikgoz O. Ozdemir N. Duman M. Ozkan H. Protective effect of melatonin against head trauma-induced hippocampal damage and spatial memory deficits in immature rats. Neurosci Lett. 2005;385:234–239.
    1. Packer L. Witt EH. Tritschler HJ. Alpha-lipoic acid as a biological antioxidant. Free Radic Biol Med. 1995;19:227–250.
    1. Paiva SA. Russell RM. Beta-carotene and other carotenoids as antioxidants. J Am Coll Nutr. 1999;18:426–433.
    1. Pak JH. Huang FL. Li J. Balschun D. Reymann KG. Chiang C. Westphal H. Huang KP. Involvement of neurogranin in the modulation of calcium/calmodulin-dependent protein kinase II, synaptic plasticity, and spatial learning: a study with knockout mice. Proc Natl Acad Sci USA. 2000;97:11232–11237.
    1. Palozza P. Calviello G. Bartoli GM. Prooxidant activity of beta-carotene under 100% oxygen pressure in rat liver microsomes. Free Radic Biol Med. 1995;19:887–892.
    1. Palozza P. Luberto C. Calviello G. Ricci P. Bartoli GM. Antioxidant and prooxidant role of beta-carotene in murine normal and tumor thymocytes: effects of oxygen partial pressure. Free Radic Biol Med. 1997;22:1065–1073.
    1. Park JD. Liu Y. Klaassen CD. Protective effect of metallothionein against the toxicity of cadmium and other metals(1) Toxicology. 2001;163:93–100.
    1. Pekcetin C. Kiray M. Ergur BU. Tugyan K. Bagriyanik HA. Erbil G. Baykara B. Camsari UM. Carnosine attenuates oxidative stress and apoptosis in transient cerebral ischemia in rats. Acta Biol Hung. 2009;60:137–148.
    1. Pepe S. Marasco SF. Haas SJ. Sheeran FL. Krum H. Rosenfeldt FL. Coenzyme Q10 in cardiovascular disease. Mitochondrion. 2007;7(Suppl):S154–S167.
    1. Perkins AJ. Hendrie HC. Callahan CM. Gao S. Unverzagt FW. Xu Y. Hall KS. Hui SL. Association of antioxidants with memory in a multiethnic elderly sample using the Third National Health and Nutrition Examination Survey. Am J Epidemiol. 1999;150:37–44.
    1. Perrig WJ. Perrig P. Stahelin HB. The relation between antioxidants and memory performance in the old and very old. J Am Geriatr Soc. 1997;45:718–724.
    1. Pieri C. Marra M. Moroni F. Recchioni R. Marcheselli F. Melatonin: a peroxyl radical scavenger more effective than vitamin E. Life Sci. 1994;55:L271–L276.
    1. Pieri C. Moroni F. Marra M. Marcheselli F. Recchioni R. Melatonin is an efficient antioxidant. Arch Gerontol Geriatr. 1995;20:159–165.
    1. Pineda JA. Aono M. Sheng H. Lynch J. Wellons JC. Laskowitz DT. Pearlstein RD. Bowler R. Crapo J. Warner DS. Extracellular superoxide dismutase overexpression improves behavioral outcome from closed head injury in the mouse. J Neurotrauma. 2001;18:625–634.
    1. Pitsikas N. Zisopoulou S. Tarantilis PA. Kanakis CD. Polissiou MG. Sakellaridis N. Effects of the active constituents of Crocus sativus L., crocins on recognition and spatial rats' memory. Behav Brain Res. 2007;183:141–146.
    1. Podda M. Tritschler HJ. Ulrich H. Packer L. Alpha-lipoic acid supplementation prevents symptoms of vitamin E deficiency. Biochem Biophys Res Commun. 1994;204:98–104.
    1. Poeggeler B. Saarela S. Reiter RJ. Tan DX. Chen LD. Manchester LC. Barlow-Walden LR. Melatonin—a highly potent endogenous radical scavenger and electron donor: new aspects of the oxidation chemistry of this indole accessed in vitro. Ann NY Acad Sci. 1994;738:419–420.
    1. Pollock JD. Williams DA. Gifford MA. Li LL. Du X. Fisherman J. Orkin SH. Doerschuk CM. Dinauer MC. Mouse model of X-linked chronic granulomatous disease, an inherited defect in phagocyte superoxide production. Nat Genet. 1995;9:202–209.
    1. Poon HF. Calabrese V. Scapagnini G. Butterfield DA. Free radicals and brain aging. Clin Geriatr Med. 2004;20:329–359.
    1. Poon HF. Farr SA. Banks WA. Pierce WM. Klein JB. Morley JE. Butterfield DA. Proteomic identification of less oxidized brain proteins in aged senescence-accelerated mice following administration of antisense oligonucleotide directed at the Abeta region of amyloid precursor protein. Brain Res Mol Brain Res. 2005;138:8–16.
    1. Poon HF. Farr SA. Thongboonkerd V. Lynn BC. Banks WA. Morley JE. Klein JB. Butterfield DA. Proteomic analysis of specific brain proteins in aged SAMP8 mice treated with alpha-lipoic acid: implications for aging and age-related neurodegenerative disorders. Neurochem Int. 2005;46:159–168.
    1. Poser S. Storm DR. Role of Ca2+-stimulated adenylyl cyclases in LTP and memory formation. Int J Dev Neurosci. 2001;19:387–394.
    1. Poss KD. Thomas MJ. Ebralidze AK. O'Dell TJ. Tonegawa S. Hippocampal long-term potentiation is normal in heme oxygenase-2 mutant mice. Neuron. 1995;15:867–873.
    1. Pou S. Keaton L. Surichamorn W. Rosen GM. Mechanism of superoxide generation by neuronal nitric-oxide synthase. J Biol Chem. 1999;274:9573–9580.
    1. Pou S. Pou WS. Bredt DS. Snyder SH. Rosen GM. Generation of superoxide by purified brain nitric oxide synthase. J Biol Chem. 1992;267:24173–24176.
    1. Pu F. Mishima K. Irie K. Motohashi K. Tanaka Y. Orito K. Egawa T. Kitamura Y. Egashira N. Iwasaki K. Fujiwara M. Neuroprotective effects of quercetin and rutin on spatial memory impairment in an 8-arm radial maze task and neuronal death induced by repeated cerebral ischemia in rats. J Pharmacol Sci. 2007;104:329–334.
    1. Qi W. Reiter RJ. Tan DX. Garcia JJ. Manchester LC. Karbownik M. Calvo JR. Chromium(III)-induced 8-hydroxydeoxyguanosine in DNA and its reduction by antioxidants: comparative effects of melatonin, ascorbate, and vitamin E. Environ Health Perspect. 2000;108:399–402.
    1. Quertemont E. Escarabajal MD. De Witte P. Role of catalase in ethanol-induced conditioned taste aversion: a study with 3-amino-1,2,4-triazole. Drug Alcohol Depend. 2003;70:77–83.
    1. Quick KL. Ali SS. Arch R. Xiong C. Wozniak D. Dugan LL. A carboxyfullerene SOD mimetic improves cognition and extends the lifespan of mice. Neurobiol Aging. 2008;29:117–128.
    1. Quinn JF. Bussiere JR. Hammond RS. Montine TJ. Henson E. Jones RE. Stackman RW., Jr Chronic dietary alpha-lipoic acid reduces deficits in hippocampal memory of aged Tg2576 mice. Neurobiol Aging. 2007;28:213–225.
    1. Quinn MT. Gauss KA. Structure and regulation of the neutrophil respiratory burst oxidase: comparison with nonphagocyte oxidases. J Leukoc Biol. 2004;76:760–781.
    1. Radi R. Beckman JS. Bush KM. Freeman BA. Peroxynitrite oxidation of sulfhydryls. The cytotoxic potential of superoxide and nitric oxide. J Biol Chem. 1991;266:4244–4250.
    1. Raghavendra M. Trigunayat A. Singh RK. Mitra S. Goel RK. Acharya SB. Effect of ethanolic extract of root of Pongamia pinnata (L) pierre on oxidative stress, behavioral and histopathological alterations induced by cerebral ischemia—reperfusion and long-term hypoperfusion in rats. Indian J Exp Biol. 2007;45:868–876.
    1. Raghavendra V. Kulkarni SK. Possible antioxidant mechanism in melatonin reversal of aging and chronic ethanol-induced amnesia in plus-maze and passive avoidance memory tasks. Free Radic Biol Med. 2001;30:595–602.
    1. Ramakers GM. Pasinelli P. Hens JJ. Gispen WH. De Graan PN. Protein kinase C in synaptic plasticity: changes in the in situ phosphorylation state of identified pre- and postsynaptic substrates. Prog Neuropsychopharmacol Biol Psychiatry. 1997;21:455–486.
    1. Rao PV. Maddala R. John F. Zigler JS., Jr Expression of nonphagocytic NADPH oxidase system in the ocular lens. Mol Vis. 2004;10:112–121.
    1. Rawashdeh O. de Borsetti NH. Roman G. Cahill GM. Melatonin suppresses nighttime memory formation in zebrafish. Science. 2007;318:1144–1146.
    1. Ray R. Shah AM. NADPH oxidase and endothelial cell function. Clin Sci (Lond) 2005;109:217–226.
    1. Reagan LP. McEwen BS. Diabetes, but not stress, reduces neuronal nitric oxide synthase expression in rat hippocampus: implications for hippocampal synaptic plasticity. Neuroreport. 2002;13:1801–1804.
    1. Reis EA. Zugno AI. Franzon R. Tagliari B. Matte C. Lammers ML. Netto CA. Wyse AT. Pretreatment with vitamins E and C prevent the impairment of memory caused by homocysteine administration in rats. Metab Brain Dis. 2002;17:211–217.
    1. Reiter RJ. Acuna-Castroviejo D. Tan DX. Burkhardt S. Free radical-mediated molecular damage. Mechanisms for the protective actions of melatonin in the central nervous system. Ann NY Acad Sci. 2001;939:200–215.
    1. Reiter RJ. Tan DX. Leon J. Kilic U. Kilic E. When melatonin gets on your nerves: its beneficial actions in experimental models of stroke. Exp Biol Med (Maywood) 2005;230:104–117.
    1. Reiter RJ. Tan DX. Terron MP. Flores LJ. Czarnocki Z. Melatonin and its metabolites: new findings regarding their production and their radical scavenging actions. Acta Biochim Pol. 2007;54:1–9.
    1. Reynolds IJ. Hastings TG. Glutamate induces the production of reactive oxygen species in cultured forebrain neurons following NMDA receptor activation. J Neurosci. 1995;15:3318–3327.
    1. Rimmele U. Spillmann M. Bartschi C. Wolf OT. Weber CS. Ehlert U. Wirtz PH. Melatonin improves memory acquisition under stress independent of stress hormone release. Psychopharmacology (Berl) 2009;202:663–672.
    1. Rosa RM. Flores DG. Appelt HR. Braga AL. Henriques JA. Roesler R. Facilitation of long-term object recognition memory by pretraining administration of diphenyl diselenide in mice. Neurosci Lett. 2003;341:217–220.
    1. Rotruck JT. Pope AL. Ganther HE. Swanson AB. Hafeman DG. Hoekstra WG. Selenium: biochemical role as a component of glutathione peroxidase. Science. 1973;179:588–590.
    1. Sacktor N. Schifitto G. McDermott MP. Marder K. McArthur JC. Kieburtz K. Transdermal selegiline in HIV-associated cognitive impairment: pilot, placebo-controlled study. Neurology. 2000;54:233–235.
    1. Sarter M. van der LA. Vitamin E deprivation in rats: some behavioral and histochemical observations. Neurobiol Aging. 1987;8:297–307.
    1. Sato M. Bremner I. Oxygen free radicals and metallothionein. Free Radic Biol Med. 1993;14:325–337.
    1. Schuman EM. Madison DV. A requirement for the intercellular messenger nitric oxide in long-term potentiation. Science. 1991;254:1503–1506.
    1. Seif-El-Nasr M. Atia AS. Abdelsalam RM. Effect of MAO-B inhibition against ischemia-induced oxidative stress in the rat brain. Comparison with a rational antioxidant. Arzneimittelforschung. 2008;58:160–167.
    1. Sentman ML. Granstrom M. Jakobson H. Reaume A. Basu S. Marklund SL. Phenotypes of mice lacking extracellular superoxide dismutase and copper- and zinc-containing superoxide dismutase. J Biol Chem. 2006;281:6904–6909.
    1. Serrano F. Chang A. Hernandez C. Pautler RG. Sweatt JD. Klann E. NADPH oxidase mediates beta-amyloid peptide-induced activation of ERK in hippocampal organotypic cultures. Mol Brain. 2:31–2009.
    1. Serrano F. Kolluri NS. Wientjes FB. Card JP. Klann E. NADPH oxidase immunoreactivity in the mouse brain. Brain Res. 2003;988:193–198.
    1. Shahidi S. Komaki A. Mahmoodi M. Atrvash N. Ghodrati M. Ascorbic acid supplementation could affect passive avoidance learning and memory in rat. Brain Res Bull. 2008;76:109–113.
    1. Shaji AV. Kulkarni SK. Evidence of GABAergic modulation in melatonin-induced short-term memory deficits and food consumption. Methods Find Exp Clin Pharmacol. 1998;20:311–319.
    1. Shang YZ. Miao H. Cheng JJ. Qi JM. Effects of amelioration of total flavonoids from stems and leaves of Scutellaria baicalensis Georgi on cognitive deficits, neuronal damage and free radicals disorder induced by cerebral ischemia in rats. Biol Pharm Bull. 2006;29:805–810.
    1. Sharma M. Briyal S. Gupta YK. Effect of alpha lipoic acid, melatonin and trans resveratrol on intracerebroventricular streptozotocin induced spatial memory deficit in rats. Indian J Physiol Pharmacol. 2005;49:395–402.
    1. This reference has been deleted.
    1. Sharma M. Gupta YK. Effect of chronic treatment of melatonin on learning, memory and oxidative deficiencies induced by intracerebroventricular streptozotocin in rats. Pharmacol Biochem Behav. 2001;70:325–331.
    1. Sharma M. Gupta YK. Effect of alpha lipoic acid on intracerebroventricular streptozotocin model of cognitive impairment in rats. Eur Neuropsychopharmacol. 2003;13:241–247.
    1. Shen Y. Zhang G. Liu L. Xu S. Suppressive effects of melatonin on amyloid-beta-induced glial activation in rat hippocampus. Arch Med Res. 2007;38:284–290.
    1. Shen YX. Wei W. Yang J. Liu C. Dong C. Xu SY. Improvement of melatonin to the learning and memory impairment induced by amyloid beta-peptide 25–35 in elder rats. Acta Pharmacol Sin. 2001;22:797–803.
    1. Shen YX. Xu SY. Wei W. Sun XX. Liu LH. Yang J. Dong C. The protective effects of melatonin from oxidative damage induced by amyloid beta-peptide 25–35 in middle-aged rats. J Pineal Res. 2002;32:85–89.
    1. Shen YX. Xu SY. Wei W. Sun XX. Yang J. Liu LH. Dong C. Melatonin reduces memory changes and neural oxidative damage in mice treated with D-galactose. J Pineal Res. 2002;32:173–178.
    1. Shetty PK. Huang FL. Huang KP. Ischemia-elicited oxidative modulation of Ca2+/calmodulin-dependent protein kinase II. J Biol Chem. 2008;283:5389–5401.
    1. Sheu FS. Mahoney CW. Seki K. Huang KP. Nitric oxide modification of rat brain neurogranin affects its phosphorylation by protein kinase C and affinity for calmodulin. J Biol Chem. 1996;271:22407–22413.
    1. Shin JH. London J. Le Pecheur M. Hoger H. Pollak D. Lubec G. Aberrant neuronal and mitochondrial proteins in hippocampus of transgenic mice overexpressing human Cu/Zn superoxide dismutase 1. Free Radic Biol Med. 2004;37:643–653.
    1. Shinomura T. Nakao S. Mori K. Reduction of depolarization-induced glutamate release by heme oxygenase inhibitor: possible role of carbon monoxide in synaptic transmission. Neurosci Lett. 1994;166:131–134.
    1. Shukitt-Hale B. Erat SA. Joseph JA. Spatial learning and memory deficits induced by dopamine administration with decreased glutathione. Free Radic Biol Med. 1998;24:1149–1158.
    1. Smith CD. Carney JM. Starke-Reed PE. Oliver CN. Stadtman ER. Floyd RA. Markesbery WR. Excess brain protein oxidation and enzyme dysfunction in normal aging and in Alzheimer disease. Proc Natl Acad Sci USA. 1991;88:10540–10543.
    1. Smith MA. Richey Harris PL. Sayre LM. Beckman JS. Perry G. Widespread peroxynitrite-mediated damage in Alzheimer's disease. J Neurosci. 1997;17:2653–2657.
    1. Sohal RS. Mockett RJ. Orr WC. Mechanisms of aging: an appraisal of the oxidative stress hypothesis. Free Radic Biol Med. 2002;33:575–586.
    1. Soto-Moyano R. Burgos H. Flores F. Valladares L. Sierralta W. Fernandez V. Perez H. Hernandez P. Hernandez A. Melatonin administration impairs visuo-spatial performance and inhibits neocortical long-term potentiation in rats. Pharmacol Biochem Behav. 2006;85:408–414.
    1. St Pierre J. Buckingham JA. Roebuck SJ. Brand MD. Topology of superoxide production from different sites in the mitochondrial electron transport chain. J Biol Chem. 2002;277:44784–44790.
    1. Stahl W. Sies H. Uptake of lycopene and its geometrical isomers is greater from heat-processed than from unprocessed tomato juice in humans. J Nutr. 1992;122:2161–2166.
    1. Stevens CF. Wang Y. Reversal of long-term potentiation by inhibitors of haem oxygenase. Nature. 1993;364:147–149.
    1. Stone JR. Marletta MA. Soluble guanylate cyclase from bovine lung: activation with nitric oxide and carbon monoxide and spectral characterization of the ferrous and ferric states. Biochemistry. 1994;33:5636–5640.
    1. Stowe DF. Camara AK. Mitochondrial reactive oxygen species production in excitable cells: modulators of mitochondrial and cell function. Antioxid Redox Signal. 2009;11:1373–1414.
    1. Su JH. Deng G. Cotman CW. Neuronal DNA damage precedes tangle formation and is associated with up-regulation of nitrotyrosine in Alzheimer's disease brain. Brain Res. 1997;774:193–199.
    1. Sugiura M. Shoyama Y. Saito H. Abe K. Crocin (crocetin di-gentiobiose ester) prevents the inhibitory effect of ethanol on long-term potentiation in the dentate gyrus in vivo. J Pharmacol Exp Ther. 1994;271:703–707.
    1. Sugiura M. Shoyama Y. Saito H. Abe K. The effects of ethanol and crocin on the induction of long-term potentiation in the CA1 region of rat hippocampal slices. Jpn J Pharmacol. 1995;67:395–397.
    1. Suh YA. Arnold RS. Lassegue B. Shi J. Xu X. Sorescu D. Chung AB. Griendling KK. Lambeth JD. Cell transformation by the superoxide-generating oxidase Mox1. Nature. 1999;401:79–82.
    1. Sumien N. Heinrich KR. Shetty RA. Sohal RS. Forster MJ. Prolonged intake of coenzyme Q10 impairs cognitive functions in mice. J Nutr. 2009;139:1926–1932.
    1. Sumimoto H. Miyano K. Takeya R. Molecular composition and regulation of the Nox family NAD(P)H oxidases. Biochem Biophys Res Commun. 2005;338:677–686.
    1. Sweatt JD. The neuronal MAP kinase cascade: a biochemical signal integration system subserving synaptic plasticity and memory. J Neurochem. 2001;76:1–10.
    1. Sykes AG. Advances in Inorganic Chemistry. London, UK: Academic Press; 1998.
    1. Takahata K. Minami A. Kusumoto H. Shimazu S. Yoneda F. Effects of selegiline alone or with donepezil on memory impairment in rats. Eur J Pharmacol. 2005;518:140–144.
    1. Talaei SA. Sheibani V. Salami M. Light deprivation improves melatonin related suppression of hippocampal plasticity. Hippocampus. 2010;20:447–455.
    1. Tammariello SP. Quinn MT. Estus S. NADPH oxidase contributes directly to oxidative stress and apoptosis in nerve growth factor-deprived sympathetic neurons. J Neurosci. 2000;20:RC53.
    1. Tan DX. Manchester LC. Reiter RJ. Qi WB. Karbownik M. Calvo JR. Significance of melatonin in antioxidative defense system: reactions and products. Biol Signals Recept. 2000;9:137–159.
    1. Tan DX. Manchester LC. Terron MP. Flores LJ. Reiter RJ. One molecule, many derivatives: a never-ending interaction of melatonin with reactive oxygen and nitrogen species? J Pineal Res. 2007;42:28–42.
    1. Tan DX. Reiter RJ. Manchester LC. Yan MT. El Sawi M. Sainz RM. Mayo JC. Kohen R. Allegra M. Hardeland R. Chemical and physical properties and potential mechanisms: melatonin as a broad spectrum antioxidant and free radical scavenger. Curr Top Med Chem. 2002;2:181–197.
    1. Tang F. Nag S. Shiu SY. Pang SF. The effects of melatonin and Ginkgo biloba extract on memory loss and choline acetyltransferase activities in the brain of rats infused intracerebroventricularly with beta-amyloid 1–40. Life Sci. 2002;71:2625–2631.
    1. Tanzi RE. Bertram L. Twenty years of the Alzheimer's disease amyloid hypothesis: a genetic perspective. Cell. 2005;120:545–555.
    1. Tejada-Simon MV. Serrano F. Villasana LE. Kanterewicz BI. Wu GY. Quinn MT. Klann E. Synaptic localization of a functional NADPH oxidase in the mouse hippocampus. Mol Cell Neurosci. 2005;29:97–106.
    1. Tenhunen R. Marver HS. Schmid R. The enzymatic conversion of heme to bilirubin by microsomal heme oxygenase. Proc Natl Acad Sci USA. 1968;61:748–755.
    1. Thiels E. Urban NN. Gonzalez-Burgos GR. Kanterewicz BI. Barrionuevo G. Chu CT. Oury TD. Klann E. Impairment of long-term potentiation and associative memory in mice that overexpress extracellular superoxide dismutase. J Neurosci. 2000;20:7631–7639.
    1. Tsunekawa H. Noda Y. Mouri A. Yoneda F. Nabeshima T. Synergistic effects of selegiline and donepezil on cognitive impairment induced by amyloid beta (25–35) Behav Brain Res. 2008;190:224–232.
    1. Tsuru-Aoyagi K. Potts MB. Trivedi A. Pfankuch T. Raber J. Wendland M. Claus CP. Koh SE. Ferriero D. Noble-Haeusslein LJ. Glutathione peroxidase activity modulates recovery in the injured immature brain. Ann Neurol. 2009;65:540–549.
    1. Turrens JF. Beconi M. Barilla J. Chavez UB. McCord JM. Mitochondrial generation of oxygen radicals during reoxygenation of ischemic tissues. Free Radic Res Commun. 1991;12–13(Pt 2):681–689.
    1. Tuzcu M. Baydas G. Effect of melatonin and vitamin E on diabetes-induced learning and memory impairment in rats. Eur J Pharmacol. 2006;537:106–110.
    1. Tveden-Nyborg P. Johansen LK. Raida Z. Villumsen CK. Larsen JO. Lykkesfeldt J. Vitamin C deficiency in early postnatal life impairs spatial memory and reduces the number of hippocampal neurons in guinea pigs. Am J Clin Nutr. 2009;90:540–546.
    1. Uc EY. McDermott MP. Marder KS. Anderson SW. Litvan I. Como PG. Auinger P. Chou KL. Growdon JC. Incidence of and risk factors for cognitive impairment in an early Parkinson disease clinical trial cohort. Neurology. 2009;73:1469–1477.
    1. Vallet P. Charnay Y. Steger K. Ogier-Denis E. Kovari E. Herrmann F. Michel JP. Szanto I. Neuronal expression of the NADPH oxidase NOX4, and its regulation in mouse experimental brain ischemia. Neuroscience. 2005;132:233–238.
    1. Vanden Hoek TL. Becker LB. Shao Z. Li C. Schumacker PT. Reactive oxygen species released from mitochondria during brief hypoxia induce preconditioning in cardiomyocytes. J Biol Chem. 1998;273:18092–18098.
    1. Voet D, editor; Voet JG, editor; Pratt CW, editor. Fundamentals of Biochemistry. Life at the Molecular Level. New York: John Wiley and Sons; 2008.
    1. Voronkova KV. Meleshkov MN. Use of Noben (idebenone) in the treatment of dementia and memory impairments without dementia. Neurosci Behav Physiol. 2009;39:501–506.
    1. Waltereit R. Weller M. Signaling from cAMP/PKA to MAPK and synaptic plasticity. Mol Neurobiol. 2003;27:99–106.
    1. Wang HL. Chen XT. Yin ST. Liu J. Tang ML. Wu CY. Ruan DY. Opposite effects of alpha-lipoic acid on antioxidation and long-term potentiation in control and chronically lead-exposed rats. Naunyn Schmiedebergs Arch Pharmacol. 2008;378:303–310.
    1. Wang LM. Suthana NA. Chaudhury D. Weaver DR. Colwell CS. Melatonin inhibits hippocampal long-term potentiation. Eur J Neurosci. 2005;22:2231–2237.
    1. Wang Q. Zhao X. He S. Liu Y. An M. Ji J. Differential proteomics analysis of specific carbonylated proteins in the temporal cortex of aged rats: the deterioration of antioxidant system. Neurochem Res. 2010;35:13–21.
    1. Wang SJ. Chen HH. Presynaptic mechanisms underlying the alpha-lipoic acid facilitation of glutamate exocytosis in rat cerebral cortex nerve terminals. Neurochem Int. 2007;50:51–60.
    1. Wang W. Shinto L. Connor WE. Quinn JF. Nutritional biomarkers in Alzheimer's disease: the association between carotenoids, n-3 fatty acids, and dementia severity. J Alzheimers Dis. 2008;13:31–38.
    1. Wang W. Wang S. Nishanian EV. Del Pilar CA. Wesley RA. Danner RL. Signaling by eNOS through a superoxide-dependent p42/44 mitogen-activated protein kinase pathway. Am J Physiol Cell Physiol. 2001;281:C544–C554.
    1. Wang Y. Su M. Tian DP. Effects of prolonged selenium deficiency on synaptic structures in CA3 area of hippocampus in the third generation rats. Zhonghua Bing Li Xue Za Zhi. 2005;34:302–304.
    1. Watson JB. Arnold MM. Ho YS. O'Dell TJ. Age-dependent modulation of hippocampal long-term potentiation by antioxidant enzymes. J Neurosci Res. 2006;84:1564–1574.
    1. Wells WW. Yang Y. Deits TL. Gan ZR. Thioltransferases. Adv Enzymol Relat Areas Mol Biol. 1993;66:149–201.
    1. Wengreen HJ. Munger RG. Corcoran CD. Zandi P. Hayden KM. Fotuhi M. Skoog I. Norton MC. Tschanz J. Breitner JC. Welsh-Bohmer KA. Antioxidant intake and cognitive function of elderly men and women: the Cache County Study. J Nutr Health Aging. 2007;11:230–237.
    1. West MJ. Kawas CH. Martin LJ. Troncoso JC. The CA1 region of the human hippocampus is a hot spot in Alzheimer's disease. Ann NY Acad Sci. 2000;908:255–259.
    1. Wolfler A. Caluba HC. Abuja PM. Dohr G. Schauenstein K. Liebmann PM. Prooxidant activity of melatonin promotes fas-induced cell death in human leukemic Jurkat cells. FEBS Lett. 2001;502:127–131.
    1. Wolters CA. Yu SL. Hagen JW. Kail R. Short-term memory and strategy use in children with insulin-dependent diabetes mellitus. J Consult Clin Psychol. 1996;64:1397–1405.
    1. Woodall AA. Britton G. Jackson MJ. Carotenoids and protection of phospholipids in solution or in liposomes against oxidation by peroxyl radicals: relationship between carotenoid structure and protective ability. Biochim Biophys Acta. 1997;1336:575–586.
    1. Wu A. Ying Z. Gomez-Pinilla F. Vitamin E protects against oxidative damage and learning disability after mild traumatic brain injury in rats. Neurorehabil Neural Repair. 2010;24:290–298.
    1. Wu H. Zhou Y. Xiong ZQ. Transducer of regulated CREB and late phase long-term synaptic potentiation. FEBS J. 2007;274:3218–3223.
    1. Wu J. Li J. Huang KP. Huang FL. Attenuation of protein kinase C and cAMP-dependent protein kinase signal transduction in the neurogranin knockout mouse. J Biol Chem. 2002;277:19498–19505.
    1. Wu L. Wang R. Carbon monoxide: endogenous production, physiological functions, and pharmacological applications. Pharmacol Rev. 2005;57:585–630.
    1. Xia Y. Dawson VL. Dawson TM. Snyder SH. Zweier JL. Nitric oxide synthase generates superoxide and nitric oxide in arginine-depleted cells leading to peroxynitrite-mediated cellular injury. Proc Natl Acad Sci USA. 1996;93:6770–6774.
    1. Xia Y. Tsai AL. Berka V. Zweier JL. Superoxide generation from endothelial nitric-oxide synthase. A Ca2+/calmodulin-dependent and tetrahydrobiopterin regulatory process. J Biol Chem. 1998;273:25804–25808.
    1. Xie Z. Sastry BR. Induction of hippocampal long-term potentiation by alpha-tocopherol. Brain Res. 1993;604:173–179.
    1. Xie Z. Sastry BR. Impairment of long-term potentiation in rats fed with vitamin E-deficient diet. Brain Res. 1995;681:193–196.
    1. Yamada K. Tanaka T. Han D. Senzaki K. Kameyama T. Nabeshima T. Protective effects of idebenone and alpha-tocopherol on beta-amyloid-(1-42)-induced learning and memory deficits in rats: implication of oxidative stress in beta-amyloid-induced neurotoxicity in vivo. Eur J Neurosci. 1999;11:83–90.
    1. Yamamoto T. Yatsugi S. Ohno M. Furuya Y. Kitajima I. Ueki S. Minaprine improves impairment of working memory induced by scopolamine and cerebral ischemia in rats. Psychopharmacology (Berl) 1990;100:316–322.
    1. Yamazaki N. Kiyota Y. Take Y. Miyamoto M. Nagawa Y. Nagaoka A. Effects of idebenone on memory impairment induced in ischemic and embolization models of cerebrovascular disturbance in rats. Arch Gerontol Geriatr. 1989;8:213–224.
    1. Yamazaki N. Nagaoka A. Nagawa Y. [Effect of idebenone on scopolamine-induced impairment of short-term memory in rats] Yakubutsu Seishin Kodo. 1985;5:321–328.
    1. Yamazaki N. Nomura M. Nagaoka A. Nagawa Y. Idebenone improves learning and memory impairment induced by cholinergic or serotonergic dysfunction in rats. Arch Gerontol Geriatr. 1989;8:225–239.
    1. Yao J. Taylor M. Davey F. Ren Y. Aiton J. Coote P. Fang F. Chen JX. Yan SD. Gunn-Moore FJ. Interaction of amyloid binding alcohol dehydrogenase/Abeta mediates up-regulation of peroxiredoxin II in the brains of Alzheimer's disease patients and a transgenic Alzheimer's disease mouse model. Mol Cell Neurosci. 2007;35:377–382.
    1. Yi JS. Holbrook BC. Michalek RD. Laniewski NG. Grayson JM. Electron transport complex I is required for CD8+ T cell function. J Immunol. 2006;177:852–862.
    1. Yoritaka A. Hattori N. Uchida K. Tanaka M. Stadtman ER. Mizuno Y. Immunohistochemical detection of 4-hydroxynonenal protein adducts in Parkinson disease. Proc Natl Acad Sci USA. 1996;93:2696–2701.
    1. Yoshida M. Watanabe C. Horie K. Satoh M. Sawada M. Shimada A. Neurobehavioral changes in metallothionein-null mice prenatally exposed to mercury vapor. Toxicol Lett. 2005;155:361–368.
    1. Zeevalk GD. Bernard LP. Song C. Gluck M. Ehrhart J. Mitochondrial inhibition and oxidative stress: reciprocating players in neurodegeneration. Antioxid Redox Signal. 2005;7:1117–1139.
    1. Zhang Y. Shoyama Y. Sugiura M. Saito H. Effects of Crocus sativus L. on the ethanol-induced impairment of passive avoidance performances in mice. Biol Pharm Bull. 1994;17:217–221.
    1. Zhang Z. Shen X. Xu X. Effects of selenium on the damage of learning-memory ability of mice induced by fluoride. Wei Sheng Yan Jiu. 2001;30:144–146.
    1. Zhao J. Moore AN. Clifton GL. Dash PK. Sulforaphane enhances aquaporin-4 expression and decreases cerebral edema following traumatic brain injury. J Neurosci Res. 2005;82:499–506.
    1. Zhao J. Moore AN. Redell JB. Dash PK. Enhancing expression of Nrf2-driven genes protects the blood brain barrier after brain injury. J Neurosci. 2007;27:10240–10248.
    1. Zheng YQ. Liu JX. Wang JN. Xu L. Effects of crocin on reperfusion-induced oxidative/nitrative injury to cerebral microvessels after global cerebral ischemia. Brain Res. 2007;1138:86–94.
    1. Zhu LQ. Wang SH. Ling ZQ. Wang DL. Wang JZ. Effect of inhibiting melatonin biosynthesis on spatial memory retention and tau phosphorylation in rat. J Pineal Res. 2004;37:71–77.
    1. Zhuo M. Laitinen JT. Li XC. Hawkins RD. On the respective roles of nitric oxide and carbon monoxide in long-term potentiation in the hippocampus. Learn Mem. 1999;6:63–76.
    1. Zhuo M. Small SA. Kandel ER. Hawkins RD. Nitric oxide and carbon monoxide produce activity-dependent long-term synaptic enhancement in hippocampus. Science. 1993;260:1946–1950.
    1. Zoccarato F. Cavallini L. Bortolami S. Alexandre A. Succinate modulation of H2O2 release at NADH:ubiquinone oxidoreductase (complex I) in brain mitochondria. Biochem J. 2007;406:125–129.
    1. Zorumski CF. Izumi Y. Nitric oxide and hippocampal synaptic plasticity. Biochem Pharmacol. 1993;46:777–785.

Source: PubMed

3
Abonneren