Clinical Pharmacokinetics and Pharmacodynamics of Dexmedetomidine

Maud A S Weerink, Michel M R F Struys, Laura N Hannivoort, Clemens R M Barends, Anthony R Absalom, Pieter Colin, Maud A S Weerink, Michel M R F Struys, Laura N Hannivoort, Clemens R M Barends, Anthony R Absalom, Pieter Colin

Abstract

Dexmedetomidine is an α2-adrenoceptor agonist with sedative, anxiolytic, sympatholytic, and analgesic-sparing effects, and minimal depression of respiratory function. It is potent and highly selective for α2-receptors with an α2:α1 ratio of 1620:1. Hemodynamic effects, which include transient hypertension, bradycardia, and hypotension, result from the drug's peripheral vasoconstrictive and sympatholytic properties. Dexmedetomidine exerts its hypnotic action through activation of central pre- and postsynaptic α2-receptors in the locus coeruleus, thereby inducting a state of unconsciousness similar to natural sleep, with the unique aspect that patients remain easily rousable and cooperative. Dexmedetomidine is rapidly distributed and is mainly hepatically metabolized into inactive metabolites by glucuronidation and hydroxylation. A high inter-individual variability in dexmedetomidine pharmacokinetics has been described, especially in the intensive care unit population. In recent years, multiple pharmacokinetic non-compartmental analyses as well as population pharmacokinetic studies have been performed. Body size, hepatic impairment, and presumably plasma albumin and cardiac output have a significant impact on dexmedetomidine pharmacokinetics. Results regarding other covariates remain inconclusive and warrant further research. Although initially approved for intravenous use for up to 24 h in the adult intensive care unit population only, applications of dexmedetomidine in clinical practice have been widened over the past few years. Procedural sedation with dexmedetomidine was additionally approved by the US Food and Drug Administration in 2003 and dexmedetomidine has appeared useful in multiple off-label applications such as pediatric sedation, intranasal or buccal administration, and use as an adjuvant to local analgesia techniques.

Conflict of interest statement

Funding

Only departmental funding was used to assist with the preparation of this review.

Conflict of Interest

Maud A. S. Weerink, Laura N. Hannivoort, Clemens R. M. Barends, and Pieter Colin have no conflicts of interest to declare. Michel M. R. F. Struys’s research group/department received grants and funding from The Medicines Company (Parsippany, NJ, USA), Masimo (Irvine, CA, USA), Fresenius (Bad Homburg, Germany), Acacia Design (Maastricht, The Netherlands), and Medtronic (Dublin, Ireland); and he has received honoraria from The Medicines Company (Parsippany, NJ, USA), Masimo (Irvine, CA, USA), Fresenius (Bad Homburg, Germany), Baxter (Deerfield, IL, USA), Medtronic (Dublin, Ireland), and Demed Medical (Temse, Belgium). Anthony R. Absalom’s research group/department received grants and funding from The Medicines Company (Parsippany, NJ, USA), Masimo (Irvine, CA, USA), Fresenius (Bad Homburg, Germany), Acacia Design (Maastricht, The Netherlands), and Medtronic (Dublin, Ireland); and he has received honoraria from The Medicines Company (Parsippany, NJ, USA) and Janssen Pharmaceutica NV (Beerse, Belgium).

Figures

Fig. 1
Fig. 1
Simulated concentration time profiles according to the different reported adult population pharmacokinetic models. A 35-µg loading dose infused over 10 min (i.e. at an infusion rate of 210 µg/h), followed by a 35-µg/h maintenance dose was simulated to illustrate the impact of the different covariates on the concentration time profile in the first 2 h after dosing. In addition, on the top of each graph the predicted dexmedetomidine (DMED) plasma concentration at steady state is shown for the typical patient with, between parentheses, the expected fold-difference in the Css for patients with a covariate at opposite sides of the studied covariate range. ALB albumin, ALT alanine aminotransferase, FFM fat free mass, TBW total body weight. Created with R® (R foundation for statistical computing, Vienna, Austria)

References

    1. Belleville JP, Ward DS, Bloor BC, Maze M. Effects of intravenous dexmedetomidine in humans. I. Sedation, ventilation, and metabolic rate. Anesthesiology. 1992;77:1125–1133. doi: 10.1097/00000542-199212000-00013.
    1. US Food and Drug Administration. Precedex label. 1999. Available from: . Accessed 14 Nov 2016.
    1. European Medicines Agency. European Public Assessment Report. 2016. Available from: . Accessed 14 Nov 2016.
    1. Virtanen R, Savola JM, Saano V, Nyman L. Characterization of the selectivity, specificity and potency of medetomidine as an alpha 2-adrenoceptor agonist. Eur J Pharmacol. 1988;150:9–14. doi: 10.1016/0014-2999(88)90744-3.
    1. Guo TZ, Tinklenberg J, Oliker R, Maze M. Central alpha 1-adrenoceptor stimulation functionally antagonizes the hypnotic response to dexmedetomidine, an alpha 2-adrenoceptor agonist. Anesthesiology. 1991;75:252–256. doi: 10.1097/00000542-199108000-00013.
    1. Hall JE, Uhrich TD, Barney JA, et al. Sedative, amnestic, and analgesic properties of small-dose dexmedetomidine infusions. Anesth Analg. 2000;90:699–705. doi: 10.1097/00000539-200003000-00035.
    1. Lobo FA, Wagemakers M, Absalom AR. Anaesthesia for awake craniotomy. Br J Anaesth. 2016;116:740–744. doi: 10.1093/bja/aew113.
    1. MacMillan LB, Hein L, Smith MS, et al. Central hypotensive effects of the alpha2a-adrenergic receptor subtype. Science. 1996;273:801–803. doi: 10.1126/science.273.5276.801.
    1. Ebert TJ, Hall JE, Barney JA, et al. The effects of increasing plasma concentrations of dexmedetomidine in humans. Anesthesiology. 2000;93:382–394. doi: 10.1097/00000542-200008000-00016.
    1. Sulaiman S, Karthekeyan RB, Vakamudi M, et al. The effects of dexmedetomidine on attenuation of stress response to endotracheal intubation in patients undergoing elective off-pump coronary artery bypass grafting. Ann Card Anaesth. 2012;15:39–43. doi: 10.4103/0971-9784.91480.
    1. Kunisawa T, Ueno M, Kurosawa A, et al. Dexmedetomidine can stabilize hemodynamics and spare anesthetics before cardiopulmonary bypass. J Anesth. 2011;25:818–822. doi: 10.1007/s00540-011-1215-3.
    1. Yildiz M, Tavlan A, Tuncer S, et al. Effect of dexmedetomidine on haemodynamic responses to laryngoscopy and intubation : perioperative haemodynamics and anaesthetic requirements. Drugs R D. 2006;7:43–52. doi: 10.2165/00126839-200607010-00004.
    1. Mendeley Ltd. Mendeley reference manager. Amsterdam: Elsevier; 2016.
    1. DrugBank. Dexmedetomidine. 2016. Available from: . Accessed 17 Nov 2016.
    1. Anttila M, Penttilä J, Helminen A, et al. Bioavailability of dexmedetomidine after extravascular doses in healthy subjects. Br J Clin Pharmacol. 2003;56:691–693. doi: 10.1046/j.1365-2125.2003.01944.x.
    1. Yoo H, Iirola T, Vilo S, et al. Mechanism-based population pharmacokinetic and pharmacodynamic modeling of intravenous and intranasal dexmedetomidine in healthy subjects. Eur J Clin Pharmacol. 2015;71:1197–1207. doi: 10.1007/s00228-015-1913-0.
    1. Iirola T, Vilo S, Manner T, et al. Bioavailability of dexmedetomidine after intranasal administration. Eur J Clin Pharmacol. 2011;67:825–831. doi: 10.1007/s00228-011-1002-y.
    1. Li BL, Zhang N, Huang JX, et al. A comparison of intranasal dexmedetomidine for sedation in children administered either by atomiser or by drops. Anaesthesia. 2016;71:522–528. doi: 10.1111/anae.13407.
    1. Karol MD, Maze M. Pharmacokinetics and interaction pharmacodynamics of dexmedetomidine in humans. Best Pract Res Clin Anaesthesiol. 2000;14:261–269. doi: 10.1053/bean.2000.0081.
    1. De Wolf AM, Fragen RJ, Avram MJ, et al. The pharmacokinetics of dexmedetomidine in volunteers with severe renal impairment. Anesth Analg. 2001;93:1205–1209. doi: 10.1097/00000539-200111000-00031.
    1. Dyck JB, Maze M, Haack C, et al. The pharmacokinetics and hemodynamic effects of intravenous and intramuscular dexmedetomidine hydrochloride in adult human volunteers. Anesthesiology. 1993;78:813–820. doi: 10.1097/00000542-199305000-00002.
    1. Venn RM, Karol MD, Grounds RM. Pharmacokinetics of dexmedetomidine infusions for sedation of postoperative patients requiring intensive care. Br J Anaesth. 2002;88:669–675. doi: 10.1093/bja/88.5.669.
    1. Iirola T, Aantaa R, Laitio R, et al. Pharmacokinetics of prolonged infusion of high-dose dexmedetomidine in critically ill patients. Crit Care. 2011;15:R257. doi: 10.1186/cc10518.
    1. Välitalo PA, Ahtola-Sätilä T, Wighton A, et al. Population pharmacokinetics of dexmedetomidine in critically ill patients. Clin Drug Invest. 2013;33:579–587. doi: 10.1007/s40261-013-0101-1.
    1. Zhang T, Deng Y, He P, et al. Effects of mild hypoalbuminemia on the pharmacokinetics and pharmacodynamics of dexmedetomidine in patients after major abdominal or thoracic surgery. J Clin Anesth. 2015;27:632–637. doi: 10.1016/j.jclinane.2015.06.002.
    1. Dutta S, Lal R, Karol MD, et al. Influence of cardiac output on dexmedetomidine pharmacokinetics. J Pharm Sci. 2000;89:519–527. doi: 10.1002/(SICI)1520-6017(200004)89:4<519::AID-JPS9>;2-U.
    1. Rodrigues AD, Roberts EM. The in vitro interaction of dexmedetomidine with human liver microsomal cytochrome P4502D6 (CYP2D6) Drug Metab Dispos. 1997;25:651–655.
    1. Abbott Laboratories. Precedex approval documents. 2001. Available from: . Accessed 15 Nov 2016.
    1. Lee S, Kim B-H, Lim K, et al. Pharmacokinetics and pharmacodynamics of intravenous dexmedetomidine in healthy Korean subjects. J Clin Pharm Ther. 2012;37:698–703. doi: 10.1111/j.1365-2710.2012.01357.x.
    1. Kivistö KT, Kallio A, Neuvonen PJ. Pharmacokinetics and pharmacodynamics of transdermal dexmedetomidine. Eur J Clin Pharmacol. 1994;46:345–349. doi: 10.1007/BF00194403.
    1. Benet L. Changes in plasma protein binding have little clinical relevance. Clin Pharmacol Ther. 2002;71:115–121. doi: 10.1067/mcp.2002.121829.
    1. Iirola T, Ihmsen H, Laitio R, et al. Population pharmacokinetics of dexmedetomidine during long-term sedation in intensive care patients. Br J Anaesth. 2012;108:460–468. doi: 10.1093/bja/aer441.
    1. Johnson JA. Influence of race or ethnicity on pharmacokinetics of drugs. J Pharm Sci. 1997;86:1328–1333. doi: 10.1021/js9702168.
    1. Tellor BR, Arnold HM, Micek ST, Kollef MH. Occurrence and predictors of dexmedetomidine infusion intolerance and failure. Hosp Pract. 2012;40:186–192. doi: 10.3810/hp.2012.02.959.
    1. Kurnik D, Muszkat M, Sofowora GG, et al. Ethnic and genetic determinants of cardiovascular response to the selective 2-adrenoceptor agonist dexmedetomidine. Hypertension. 2008;51:406–411. doi: 10.1161/HYPERTENSIONAHA.107.098939.
    1. Kohli U, Pandharipande P, Muszkat M, et al. CYP2A6 genetic variation and dexmedetomidine disposition. Eur J Clin Pharmacol. 2012;68:937–942. doi: 10.1007/s00228-011-1208-z.
    1. Holliday SF, Kane-Gill SL, Empey PE, et al. Interpatient variability in dexmedetomidine response: a survey of the literature. Sci World J. 2014;2014:805013. doi: 10.1155/2014/805013.
    1. Talke P, Richardson CA, Scheinin M, Fisher DM. Postoperative pharmacokinetics and sympatholytic effects of dexmedetomidine. Anesth Analg. 1997;85:1136–1142. doi: 10.1213/00000539-199711000-00033.
    1. Lin L, Guo X, Zhang M-Z, et al. Pharmacokinetics of dexmedetomidine in Chinese post-surgical intensive care unit patients. Acta Anaesthesiol Scand. 2011;55:359–367. doi: 10.1111/j.1399-6576.2010.02392.x.
    1. Cortínez LI, Anderson BJ, Holford NHG, et al. Dexmedetomidine pharmacokinetics in the obese. Eur J Clin Pharmacol. 2015;71:1501–1508. doi: 10.1007/s00228-015-1948-2.
    1. Kuang Y, Xiang Y, Guo C-X, et al. Population pharmacokinetics study of dexmedetomidine in Chinese adult patients during spinal anesthesia. Int J Clin Pharmacol Ther. 2016;54:200–207. doi: 10.5414/CP202521.
    1. Hannivoort LN, Eleveld DJ, Proost JH, et al. Development of an optimized pharmacokinetic model of dexmedetomidine using target-controlled infusion in healthy volunteers. Anesthesiology. 2015;123:357–367. doi: 10.1097/ALN.0000000000000740.
    1. Potts AL, Anderson BJ, Warman GR, et al. Dexmedetomidine pharmacokinetics in pediatric intensive care: a pooled analysis. Paediatr Anaesth. 2009;19:1119–1129. doi: 10.1111/j.1460-9592.2009.03133.x.
    1. Wiczling P, Bartkowska-Śniatkowska A, Szerkus O, et al. The pharmacokinetics of dexmedetomidine during long-term infusion in critically ill pediatric patients: a Bayesian approach with informative priors. J Pharmacokinet Pharmacodyn. 2016;43:315–324. doi: 10.1007/s10928-016-9474-0.
    1. Su F, Gastonguay MR, Nicolson SC, et al. Dexmedetomidine pharmacology in neonates and infants after open heart surgery. Anesth Analg. 2016;122:1556–1566. doi: 10.1213/ANE.0000000000000869.
    1. Su F, Nicolson SC, Gastonguay MR, et al. Population pharmacokinetics of dexmedetomidine in infants after open heart surgery. Anesth Analg. 2010;110:1383–1392. doi: 10.1213/ANE.0b013e3181d783c8.
    1. Liu H-C, Lian Q-Q, Wu F-F, et al. Population pharmacokinetics of dexmedetomidine after short intravenous infusion in Chinese children. Eur J Drug Metab Pharmacokinet. 2016
    1. Eleveld DJ, Proost JH, Cortínez LI, et al. A general purpose pharmacokinetic model for propofol. Anesth Analg. 2014;118:1221–1237. doi: 10.1213/ANE.0000000000000165.
    1. Nelson LE, Lu J, Guo T, et al. The alpha2-adrenoceptor agonist dexmedetomidine converges on an endogenous sleep-promoting pathway to exert its sedative effects. Anesthesiology. 2003;98:428–436. doi: 10.1097/00000542-200302000-00024.
    1. Zhang Z, Ferretti V, Güntan İ, et al. Neuronal ensembles sufficient for recovery sleep and the sedative actions of α2 adrenergic agonists. Nat Neurosci. 2015;18:553–561. doi: 10.1038/nn.3957.
    1. Segal IS, Vickery RG, Walton JK, et al. Dexmedetomidine diminishes halothane anesthetic requirements in rats through a postsynaptic alpha 2 adrenergic receptor. Anesthesiology. 1988;69:818–823. doi: 10.1097/00000542-198812000-00004.
    1. Vuyk J, Sitsen E, Reekers M, et al. Intravenous anesthetics. In: Miller RD, Cohen NH, Eriksson LI, et al., editors. Miller’s anesthesia. 8. Amsterdam: Elsevier; 2015. pp. 854–859.
    1. Angst MS, Ramaswamy B, Davies MF, Maze M. Comparative analgesic and mental effects of increasing plasma concentrations of dexmedetomidine and alfentanil in humans. Anesthesiology. 2004;101:744–752. doi: 10.1097/00000542-200409000-00024.
    1. Doze VA, Chen BX, Maze M. Dexmedetomidine produces a hypnotic-anesthetic action in rats via activation of central alpha-2 adrenoceptors. Anesthesiology. 1989;71:75–79. doi: 10.1097/00000542-198907000-00014.
    1. Doze V, Chen BX, Li Z, Maze M. Pharmacologic characterization of the receptor mediating the hypnotic action of dexmedetomidine. Acta Vet Scand Suppl. 1989;85:61–64.
    1. Correa-Sales C, Rabin BC, Maze M. A hypnotic response to dexmedetomidine, an alpha 2 agonist, is mediated in the locus coeruleus in rats. Anesthesiology. 1992;76:948–952. doi: 10.1097/00000542-199206000-00013.
    1. Bloor BC, Ward DS, Belleville JP, Maze M. Effects of intravenous dexmedetomidine in humans. II. Hemodynamic changes. Anesthesiology. 1992;77:1134–1142. doi: 10.1097/00000542-199212000-00014.
    1. Riker RR, Shehabi Y, Bokesch PM, et al. Dexmedetomidine vs midazolam for sedation of critically ill patients; a randomized trial. JAMA. 2009;301:489. doi: 10.1001/jama.2009.56.
    1. Jakob SM. Dexmedetomidine vs midazolam or propofol for sedation during prolonged mechanical ventilation. JAMA. 2012;307:1151. doi: 10.1001/jama.2012.304.
    1. Chen K, Lu Z, Xin YC, et al. Alpha-2 agonists for long-term sedation during mechanical ventilation in critically ill patients. Cochrane Database Syst Rev. 2015;1:CD010269.
    1. Maldonado JR, Wysong A, van der Starre PJA, et al. Dexmedetomidine and the reduction of postoperative delirium after cardiac surgery. Psychosomatics. 2009;50:206–217. doi: 10.1176/appi.psy.50.3.206.
    1. Pandharipande PP, Pun BT, Herr DL, et al. Effect of sedation with dexmedetomidine vs lorazepam on acute brain dysfunction in mechanically ventilated patients. JAMA. 2007;298:2644. doi: 10.1001/jama.298.22.2644.
    1. Lin Y, Chen J, Wang Z. Meta-analysis of factors which influence delirium following cardiac surgery. J Card Surg. 2012;27:481–492. doi: 10.1111/j.1540-8191.2012.01472.x.
    1. Candiotti KA, Bergese SD, Bokesch PM, et al. Monitored anesthesia care with dexmedetomidine: a prospective, randomized, double-blind, multicenter trial. Anesth Analg. 2010;110:47–56. doi: 10.1213/ane.0b013e3181ae0856.
    1. Bergese SD, Candiotti KA, Bokesch PM, et al. A phase IIIb, randomized, double-blind, placebo-controlled, multicenter study evaluating the safety and efficacy of dexmedetomidine for sedation during awake fiberoptic intubation. Am J Ther. 2010;17:586–595. doi: 10.1097/MJT.0b013e3181d69072.
    1. Talke P, Stapelfeldt C, Garcia P. Dexmedetomidine does not reduce epileptiform discharges in adults with epilepsy. J Neurosurg Anesthesiol. 2007;19:195–199. doi: 10.1097/ANA.0b013e318060d281.
    1. Gerlach AT, Murphy CV, Dasta JF. An updated focused review of dexmedetomidine in adults. Ann Pharmacother. 2009;43:2064–2074. doi: 10.1345/aph.1M310.
    1. Kauppila T, Kemppainen P, Tanila H, Pertovaara A. Effect of systemic medetomidine, an alpha 2 adrenoceptor agonist, on experimental pain in humans. Anesthesiology. 1991;74:3–8. doi: 10.1097/00000542-199101000-00002.
    1. Talke P, Lobo E, Brown R. Systemically administered alpha2-agonist-induced peripheral vasoconstriction in humans. Anesthesiology. 2003;99:65–70. doi: 10.1097/00000542-200307000-00014.
    1. Figueroa XF, Poblete MI, Boric MP, et al. Clonidine-induced nitric oxide-dependent vasorelaxation mediated by endothelial alpha(2)-adrenoceptor activation. Br J Pharmacol. 2001;134:957–968. doi: 10.1038/sj.bjp.0704320.
    1. Lee SH, Choi YS, Hong GR, Oh YJ. Echocardiographic evaluation of the effects of dexmedetomidine on cardiac function during total intravenous anaesthesia. Anaesthesia. 2015;70:1052–1059. doi: 10.1111/anae.13084.
    1. Hsu Y-W, Cortinez LI, Robertson KM, et al. Dexmedetomidine pharmacodynamics: part I: crossover comparison of the respiratory effects of dexmedetomidine and remifentanil in healthy volunteers. Anesthesiology. 2004;101:1066–1076. doi: 10.1097/00000542-200411000-00005.
    1. Lodenius Å, Ebberyd A, Hårdemark Cedborg A, et al. Sedation with dexmedetomidine or propofol impairs hypoxic control of breathing in healthy male volunteers: a nonblinded, randomized crossover study. Anesthesiology. 2016;125:700–715. doi: 10.1097/ALN.0000000000001236.
    1. Kronenberg RS, Drage CW. Attenuation of the ventilatory and heart rate responses to hypoxia and hypercapnia with aging in normal men. J Clin Invest. 1973;52:1812–1819. doi: 10.1172/JCI107363.
    1. Ho AM-H. Central apnoea after balanced general anaesthesia that included dexmedetomidine. Br J Anaesth. 2005;95:773–775. doi: 10.1093/bja/aei263.
    1. Stiehl SR, Squires JE, Bucuvalas JC, Hemmelgarn TS. Tacrolimus interaction with dexmedetomidine—a case report. Pediatr Transpl. 2016;20:155–157. doi: 10.1111/petr.12618.
    1. Flexman AM, Wong H, Riggs KW, et al. Enzyme-inducing anticonvulsants increase plasma clearance of dexmedetomidine: a pharmacokinetic and pharmacodynamic study. Anesthesiology. 2014;120:1118–1125. doi: 10.1097/ALN.0000000000000141.
    1. Smithburger PL, Smith RB, Kane-Gill SL, Empey PE. Patient predictors of dexmedetomidine effectiveness for sedation in intensive care units. Am J Crit Care. 2014;23:160–165. doi: 10.4037/ajcc2014678.
    1. Lawrence CJ, De Lange S. Effects of a single pre-operative dexmedetomidine dose on isoflurane requirements and peri-operative haemodynamic stability. Anaesthesia. 1997;52:736–744. doi: 10.1111/j.1365-2044.1997.169-az0303.x.
    1. Aho M, Lehtinen AM, Erkola O, et al. The effect of intravenously administered dexmedetomidine on perioperative hemodynamics and isoflurane requirements in patients undergoing abdominal hysterectomy. Anesthesiology. 1991;74:997–1002. doi: 10.1097/00000542-199106000-00005.
    1. Aantaa R, Jaakola ML, Kallio A, Kanto J. Reduction of the minimum alveolar concentration of isoflurane by dexmedetomidine. Anesthesiology. 1997;86:1055–1060. doi: 10.1097/00000542-199705000-00008.
    1. Savla JR, Ghai B, Bansal D, Wig J. Effect of intranasal dexmedetomidine or oral midazolam premedication on sevoflurane EC50 for successful laryngeal mask airway placement in children: a randomized, double-blind, placebo-controlled trial. Paediatr Anaesth. 2014;24:433–439. doi: 10.1111/pan.12358.
    1. Harsoor SS, Rani D, Roopa MN, et al. Anesthetic sparing effect of intraoperative lignocaine or dexmedetomidine infusion on sevoflurane during general anesthesia. Middle East J Anaesthesiol. 2015;23:301–307.
    1. Peden CJ, Cloote AH, Stratford N, Prys-Roberts C. The effect of intravenous dexmedetomidine premedication on the dose requirement of propofol to induce loss of consciousness in patients receiving alfentanil. Anaesthesia. 2001;56:408–413. doi: 10.1046/j.1365-2044.2001.01553.x.
    1. Dutta S, Karol MD, Cohen T, et al. Effect of dexmedetomidine on propofol requirements in healthy subjects. J Pharm Sci. 2001;90:172–181. doi: 10.1002/1520-6017(200102)90:2<172::AID-JPS8>;2-J.
    1. Jang Y-E, Kim Y-C, Yoon H-K, et al. A randomized controlled trial of the effect of preoperative dexmedetomidine on the half maximal effective concentration of propofol for successful i-gel insertion without muscle relaxants. J Anesth. 2015;29:338–345. doi: 10.1007/s00540-014-1949-9.
    1. Aantaa R, Kanto J, Scheinin M. Intramuscular dexmedetomidine, a novel alpha 2-adrenoceptor agonist, as premedication for minor gynaecological surgery. Acta Anaesthesiol Scand. 1991;35:283–288. doi: 10.1111/j.1399-6576.1991.tb03290.x.
    1. Aantaa R, Jaakola ML, Kallio A, et al. A comparison of dexmedetomidine, and alpha 2-adrenoceptor agonist, and midazolam as i.m. premedication for minor gynaecological surgery. Br J Anaesth. 1991;67:402–409. doi: 10.1093/bja/67.4.402.
    1. Jaakola ML, Kanto J, Scheinin H, Kallio A. Intramuscular dexmedetomidine premedication: an alternative to midazolam-fentanyl-combination in elective hysterectomy? Acta Anaesthesiol Scand. 1994;38:238–243. doi: 10.1111/j.1399-6576.1994.tb03881.x.
    1. Bührer M, Mappes A, Lauber R, et al. Dexmedetomidine decreases thiopental dose requirement and alters distribution pharmacokinetics. Anesthesiology. 1994;80:1216–1227. doi: 10.1097/00000542-199406000-00008.
    1. Scheinin H, Jaakola ML, Sjövall S, et al. Intramuscular dexmedetomidine as premedication for general anesthesia: a comparative multicenter study. Anesthesiology. 1993;78:1065–1075. doi: 10.1097/00000542-199306000-00008.
    1. Song J, Ji Q, Sun Q, et al. The opioid-sparing effect of intraoperative dexmedetomidine infusion after craniotomy. J Neurosurg Anesthesiol. 2016;28:14–20. doi: 10.1097/ANA.0000000000000190.
    1. Peng K, Jin X, Liu S, Ji F. Effect of intraoperative dexmedetomidine on post-craniotomy pain. Clin Ther. 2015;37:1114–1121. doi: 10.1016/j.clinthera.2015.02.011.
    1. Unlugenc H, Gunduz M, Guler T, et al. The effect of pre-anaesthetic administration of intravenous dexmedetomidine on postoperative pain in patients receiving patient-controlled morphine. Eur J Anaesthesiol. 2005;22:386–391. doi: 10.1017/S0265021505000669.
    1. Blaudszun G, Lysakowski C, Elia N, Tramèr MR. Effect of perioperative systemic α2 agonists on postoperative morphine consumption and pain intensity. Anesthesiology. 2012;116:1312–1322. doi: 10.1097/ALN.0b013e31825681cb.
    1. Lundorf LJ, Nedergaard HK, Møller AM. Perioperative dexmedetomidine for acute pain after abdominal surgery in adults. Cochrane Database Syst Rev. 2016;2:CD010358.
    1. Cunningham FE, Baughman VL, Tonkovich L, et al. Pharmacokinetics of dexmedetomidine (DEX) in patients with hepatic failure (HF) Clin Pharmacol Ther. 1999;65:128. doi: 10.1016/S0009-9236(99)80045-9.
    1. European Medicines Agency. Dexdor H-C-2268-II-0003: EPAR, assessment report-variation. 2013. Available from: . Accessed 28 Nov 2016.
    1. Mason KP, Robinson F, Fontaine P, Prescilla R. Dexmedetomidine offers an option for safe and effective sedation for nuclear medicine imaging in children. Radiology. 2013;267:911–917. doi: 10.1148/radiol.13121232.
    1. de Wildt SN, Kearns GL, Leeder JS, van den Anker JN. Glucuronidation in humans. Pharmacogenetic and developmental aspects. Clin Pharmacokinet. 1999;36:439–452. doi: 10.2165/00003088-199936060-00005.
    1. Strassburg CP, Strassburg A, Kneip S, et al. Developmental aspects of human hepatic drug glucuronidation in young children and adults. Gut. 2002;50:259–265. doi: 10.1136/gut.50.2.259.
    1. Kaivosaari S, Toivonen P, Aitio O, et al. Regio- and stereospecific N-glucuronidation of medetomidine: the differences between UDP glucuronosyltransferase (UGT) 1A4 and UGT2B10 account for the complex kinetics of human liver microsomes. Drug Metab Dispos. 2008;36:1529–1537. doi: 10.1124/dmd.108.021709.
    1. Kearns GL, Abdel-Rahman SM, Alander SW, et al. Developmental pharmacology: drug disposition, action, and therapy in infants and children. N Engl J Med. 2003;349:1157–1167. doi: 10.1056/NEJMra035092.
    1. Chrysostomou C, Schulman SR, Herrera Castellanos M, et al. A phase II/III, multicenter, safety, efficacy, and pharmacokinetic study of dexmedetomidine in preterm and term neonates. J Pediatr. 2014;164(276–82):e1–e3.
    1. Finkel JC, Quezado ZMN. Hypothermia-induced bradycardia in a neonate receiving dexmedetomidine. J Clin Anesth. 2007;19:290–292. doi: 10.1016/j.jclinane.2006.08.011.
    1. Dawkins MJ, Scopes JW. Non-shivering thermogenesis and brown adipose tissue in the human new-born infant. Nature. 1965;206:201–202. doi: 10.1038/206201b0.
    1. Talke P, Tayefeh F, Sessler DI, et al. Dexmedetomidine does not alter the sweating threshold, but comparably and linearly decreases the vasoconstriction and shivering thresholds. Anesthesiology. 1997;87:835–841. doi: 10.1097/00000542-199710000-00017.
    1. Dyck JB, Maze M, Haack C, et al. Computer-controlled infusion of intravenous dexmedetomidine hydrochloride in adult human volunteers. Anesthesiology. 1993;78:821–828. doi: 10.1097/00000542-199305000-00003.
    1. Kim J, Kim W, Kim H-B, Kil H. Adequate sedation with single-dose dexmedetomidine in patients undergoing transurethral resection of the prostate with spinal anaesthesia: a dose–response study by age group. BMC Anesthesiol. 2015;15:17. doi: 10.1186/1471-2253-15-17.
    1. Park SH, Shin YD, Yu HJ, et al. Comparison of two dosing schedules of intravenous dexmedetomidine in elderly patients during spinal anesthesia. Korean J Anesthesiol. 2014;66:371. doi: 10.4097/kjae.2014.66.5.371.
    1. Ko K-H, Jun I-J, Lee S, et al. Effective dose of dexmedetomidine to induce adequate sedation in elderly patients under spinal anesthesia. Korean J Anesthesiol. 2015;68:575. doi: 10.4097/kjae.2015.68.6.575.
    1. Bakhamees HS, El-Halafawy YM, El-Kerdawy HM, et al. Effects of dexmedetomidine in morbidly obese patients undergoing laparoscopic gastric bypass. Middle East J Anaesthesiol. 2007;19:537–551.
    1. Tufanogullari B, White PF, Peixoto MP, et al. Dexmedetomidine infusion during laparoscopic bariatric surgery: the effect on recovery outcome variables. Anesth Analg. 2008;106:1741–1748. doi: 10.1213/ane.0b013e318172c47c.
    1. Feld JM, Hoffman WE, Stechert MM, et al. Fentanyl or dexmedetomidine combined with desflurane for bariatric surgery. J Clin Anesth. 2006;18:24–28. doi: 10.1016/j.jclinane.2005.05.009.
    1. Dholakia C, Beverstein G, Garren M, et al. The impact of perioperative dexmedetomidine infusion on postoperative narcotic use and duration of stay after laparoscopic bariatric surgery. J Gastrointest Surg. 2007;11:1556–1559. doi: 10.1007/s11605-007-0290-0.
    1. Ni J, Wei J, Yao Y, et al. Effect of dexmedetomidine on preventing postoperative agitation in children: a meta-analysis. PLoS One. 2015;10(5):e0128450. doi: 10.1371/journal.pone.0128450.
    1. Kim DJ, Kim SH, So KY, Jung KT. Effects of dexmedetomidine on smooth emergence from anaesthesia in elderly patients undergoing orthopaedic surgery. BMC Anesthesiol. 2015;15:139. doi: 10.1186/s12871-015-0127-4.
    1. Mekitarian Filho E, Robinson F, de Carvalho WB, et al. Intranasal dexmedetomidine for sedation for pediatric computed tomography imaging. J Pediatr. 2015;166(1313–15):e1.
    1. Surendar MN, Pandey RK, Saksena AK, et al. A comparative evaluation of intranasal dexmedetomidine, midazolam and ketamine for their sedative and analgesic properties: a triple blind randomized study. J Clin Pediatr Dent. 2014;38:255–261. doi: 10.17796/jcpd.38.3.l828585807482966.
    1. Sheta SA, Al-Sarheed MA, Abdelhalim AA. Intranasal dexmedetomidine vs midazolam for premedication in children undergoing complete dental rehabilitation: a double-blinded randomized controlled trial. Paediatr Anaesth. 2014;24:181–189. doi: 10.1111/pan.12287.
    1. Yuen VM, Hui TW, Irwin MG, et al. A randomised comparison of two intranasal dexmedetomidine doses for premedication in children. Anaesthesia. 2012;67:1210–1216. doi: 10.1111/j.1365-2044.2012.07309.x.
    1. Tug A, Hanci A, Turk HS, et al. Comparison of two different intranasal doses of dexmedetomidine in children for magnetic resonance imaging sedation. Paediatr Drugs. 2015;17:479–485. doi: 10.1007/s40272-015-0145-1.
    1. Nooh N, Sheta SA, Abdullah WA, Abdelhalim AA. Intranasal atomized dexmedetomidine for sedation during third molar extraction. Int J Oral Maxillofac Surg. 2013;42:857–862. doi: 10.1016/j.ijom.2013.02.003.
    1. Wang S-S, Zhang M-Z, Sun Y, et al. The sedative effects and the attenuation of cardiovascular and arousal responses during anesthesia induction and intubation in pediatric patients: a randomized comparison between two different doses of preoperative intranasal dexmedetomidine. Paediatr Anaesth. 2014;24:275–281. doi: 10.1111/pan.12284.
    1. Yao Y, Qian B, Chen Y, et al. Intranasal dexmedetomidine premedication reduces the minimum alveolar concentration of sevoflurane for tracheal intubation in children: a randomized trial. J Clin Anesth. 2014;26:309–314. doi: 10.1016/j.jclinane.2013.12.012.
    1. Yao Y, Qian B, Lin Y, et al. Intranasal dexmedetomidine premedication reduces minimum alveolar concentration of sevoflurane for laryngeal mask airway insertion and emergence delirium in children: a prospective, randomized, double-blind, placebo-controlled trial. Paediatr Anaesth. 2015;25:492–498. doi: 10.1111/pan.12574.
    1. Zhang X, Bai X, Zhang Q, et al. The safety and efficacy of intranasal dexmedetomidine during electrochemotherapy for facial vascular malformation: a double-blind, randomized clinical trial. J Oral Maxillofac Surg. 2013;71:1835–1842. doi: 10.1016/j.joms.2013.06.202.
    1. Peng K, Liu H-Y, Wu S-R, et al. Effects of combining dexmedetomidine and opioids for postoperative intravenous patient-controlled analgesia: a systematic review and meta-analysis. Clin J Pain. 2015;31:1097–1104. doi: 10.1097/AJP.0000000000000219.
    1. Abdallah FW, Dwyer T, Chan VWS, et al. IV and perineural dexmedetomidine similarly prolong the duration of analgesia after interscalene brachial plexus block. Anesthesiology. 2016;124:683–695. doi: 10.1097/ALN.0000000000000983.
    1. Rutkowska K, Knapik P, Misiolek H. The effect of dexmedetomidine sedation on brachial plexus block in patients with end-stage renal disease. Eur J Anaesthesiol. 2009;26:851–855. doi: 10.1097/EJA.0b013e32832a2244.
    1. Abdallah FW, Abrishami A, Brull R. The facilitatory effects of intravenous dexmedetomidine on the duration of spinal anesthesia. Anesth Analg. 2013;117:271–278. doi: 10.1213/ANE.0b013e318290c566.
    1. Wu H-H, Wang H-T, Jin J-J, et al. Does dexmedetomidine as a neuraxial adjuvant facilitate better anesthesia and analgesia? A systematic review and meta-analysis. PLoS One. 2014;9:e93114. doi: 10.1371/journal.pone.0093114.
    1. Gu J, Sun P, Zhao H, et al. Dexmedetomidine provides renoprotection against ischemia-reperfusion injury in mice. Crit Care. 2011;15:R153. doi: 10.1186/cc10283.
    1. Lempiäinen J, Finckenberg P, Mervaala EE, et al. Dexmedetomidine preconditioning ameliorates kidney ischemia-reperfusion injury. Pharmacol Res Perspect. 2014;2:e00045. doi: 10.1002/prp2.45.
    1. Dahmani S, Paris A, Jannier V, et al. Dexmedetomidine increases hippocampal phosphorylated extracellular signal-regulated protein kinase 1 and 2 content by an α2-adrenoceptor-independent mechanism. Anesthesiology. 2008;108:457–466. doi: 10.1097/ALN.0b013e318164ca81.
    1. Zhu Y-M, Wang C-C, Chen L, et al. Both PI3K/Akt and ERK1/2 pathways participate in the protection by dexmedetomidine against transient focal cerebral ischemia/reperfusion injury in rats. Brain Res. 2013;1494:1–8. doi: 10.1016/j.brainres.2012.11.047.
    1. Riquelme JA, Westermeier F, Hall AR, et al. Dexmedetomidine protects the heart against ischemia-reperfusion injury by an endothelial eNOS/NO dependent mechanism. Pharmacol Res. 2016;103:318–327. doi: 10.1016/j.phrs.2015.11.004.
    1. Sanders RD, Maze M. Alpha2-adrenoceptor agonists. Curr Opin Investig Drugs. 2007;8:25–33.
    1. Sanders RD, Xu J, Shu Y, et al. Dexmedetomidine attenuates isoflurane-induced neurocognitive impairment in neonatal rats. Anesthesiology. 2009;110:1077–1085. doi: 10.1097/ALN.0b013e31819daedd.
    1. Sanders RD, Xu J, Shu Y, et al. General anesthetics induce apoptotic neurodegeneration in the neonatal rat spinal cord. Anesth Analg. 2008;106:1708–1711. doi: 10.1213/ane.0b013e3181733fdb.
    1. Engelhard K, Werner C, Eberspächer E, et al. The effect of the alpha 2-agonist dexmedetomidine and the N-methyl-d-aspartate antagonist S(+)-ketamine on the expression of apoptosis-regulating proteins after incomplete cerebral ischemia and reperfusion in rats. Anesth Analg. 2003;96:524–531. doi: 10.1213/00000539-200302000-00041.
    1. Talke P, Bickler PE. Effects of dexmedetomidine on hypoxia-evoked glutamate release and glutamate receptor activity in hippocampal slices. Anesthesiology. 1996;85:551–557. doi: 10.1097/00000542-199609000-00014.
    1. Scheinin H, Aantaa R, Anttila M, et al. Reversal of the sedative and sympatholytic effects of dexmedetomidine with a specific alpha2-adrenoceptor antagonist atipamezole: a pharmacodynamic and kinetic study in healthy volunteers. Anesthesiology. 1998;89:574–584. doi: 10.1097/00000542-199809000-00005.
    1. Karhuvaara S, Kallio A, Scheinin M, et al. Pharmacological effects and pharmacokinetics of atipamezole, a novel alpha 2-adrenoceptor antagonist: a randomized, double-blind cross-over study in healthy male volunteers. Br J Clin Pharmacol. 1990;30:97–106. doi: 10.1111/j.1365-2125.1990.tb03748.x.
    1. Karhuvaara S, Kallio A, Salonen M, et al. Rapid reversal of alpha 2-adrenoceptor agonist effects by atipamezole in human volunteers. Br J Clin Pharmacol. 1991;31:160–165. doi: 10.1111/j.1365-2125.1991.tb05505.x.

Source: PubMed

3
Abonneren