Therapeutic potential of colchicine in cardiovascular medicine: a pharmacological review

Fan-Shun Zhang, Qing-Ze He, Chengxue Helena Qin, Peter J Little, Jian-Ping Weng, Suo-Wen Xu, Fan-Shun Zhang, Qing-Ze He, Chengxue Helena Qin, Peter J Little, Jian-Ping Weng, Suo-Wen Xu

Abstract

Colchicine is an ancient herbal drug derived from Colchicum autumnale. It was first used to treat familial Mediterranean fever and gout. Based on its unique efficacy as an anti-inflammatory agent, colchicine has been used in the therapy of cardiovascular diseases including coronary artery disease, atherosclerosis, recurrent pericarditis, vascular restenosis, heart failure, and myocardial infarction. More recently, colchicine has also shown therapeutic efficacy in alleviating cardiovascular complications of COVID-19. COLCOT and LoDoCo2 are two milestone clinical trials that confirm the curative effect of long-term administration of colchicine in reducing the incidence of cardiovascular events in patients with coronary artery disease. There is growing interest in studying the anti-inflammatory mechanisms of colchicine. The anti-inflammatory action of colchicine is mediated mainly through inhibiting the assembly of microtubules. At the cellular level, colchicine inhibits the following: (1) endothelial cell dysfunction and inflammation; (2) smooth muscle cell proliferation and migration; (3) macrophage chemotaxis, migration, and adhesion; (4) platelet activation. At the molecular level, colchicine reduces proinflammatory cytokine release and inhibits NF-κB signaling and NLRP3 inflammasome activation. In this review, we summarize the current clinical trials with proven curative effect of colchicine in treating cardiovascular diseases. We also systematically discuss the mechanisms of colchicine action in cardiovascular therapeutics. Altogether, colchicine, a bioactive constituent from an ancient medicinal herb, exerts unique anti-inflammatory effects and prominent cardiovascular actions, and will charter a new page in cardiovascular medicine.

Keywords: NF-κB; NLRP3 inflammasome; anti-inflammatory drug; atherosclerosis; cardiovascular complications of COVID-19; cardiovascular diseases; colchicine; coronary artery disease; heart failure; microtubules; myocardial infarction; recurrent pericarditis; restenosis.

Conflict of interest statement

The authors declare no competing interests.

© 2021. The Author(s), under exclusive licence to CPS and SIMM.

Figures

Fig. 1. Timeline and milestone of colchicine…
Fig. 1. Timeline and milestone of colchicine in medicinal history.
The use of colchicine dates back to Ebers papyrus. Until 1833, the legendary drug was named as “Colchicine”. From 1971 to 1979, many preclinical studies demonstrated the efficacy of colchicine in the treatment of inflammatory diseases. At the end of the 20th century, mounting evidences proved that colchicine is beneficial to cardiovascular diseases, such as atherosclerosis, pericarditis, atrial fibrillation. Until 2005, the structure of colchicine was first reported, and then clinical trials involving colchicine for cardiovascular disease were actively pursued.
Fig. 2. Usage of colchicine in various…
Fig. 2. Usage of colchicine in various diseases.
As an ancient anti-inflammatory drug, colchicine was effective for some liver diseases, lung diseases, and infectious diseases (such as COVID-19), cancer, and cardiovascular diseases (including atherosclerosis, recurrent pericarditis, restenosis, heart failure, or myocardial infarction). Colchicine has some side effects such as injury to the liver and kidney function and toxicity.
Fig. 3. The mechanisms of action of…
Fig. 3. The mechanisms of action of colchicine in cardiovascular disease protection.
This figure shows the pathogenesis of atherosclerosis and multiple cells interaction in this progress. Colchicine inhibits: (1) endothelial dysfunction; (2) the release of proinflammatory cytokines; (3) macrophage migration, chemotaxis, and adhesion; (4) platelets and immune cells activation.
Fig. 4. Molecular targets of colchicine in…
Fig. 4. Molecular targets of colchicine in cardiovascular protection.
a Mechanism of colchicine blocking β-tubulin and then disrupting the assembly of microtubules; b mechanism of colchicine targeting NF-κB and then inhibiting many important processes in atherosclerosis; c mechanism of colchicine inhibiting NLRP3 inflammasome activation.

References

    1. Libby P. Inflammation in atherosclerosis. Arterioscler Thromb Vasc Biol. 2012;32:2045–51. doi: 10.1161/atvbaha.108.179705..
    1. Asako H, Kubes P, Baethge BA, Wolf RE, Granger DN. Colchicine and methotrexate reduce leukocyte adherence and emigration in rat mesenteric venules. Inflammation. 1992;16:45–56. doi: 10.1007/bf00917514..
    1. Roth GA, Mensah GA, Johnson CO, Addolorato G, Ammirati E, Baddour LM, et al. Global burden of cardiovascular diseases and risk factors, 1990−2019: update from the GBD 2019 study. J Am Coll Cardiol. 2020;76:2982–3021. doi: 10.1016/j.jacc.2020.11.010..
    1. Zhao D. Epidemiological features of cardiovascular disease in Asia. JACC: Asia. 2021;1:1–13. doi: 10.1016/j.jacasi.2021.04.007..
    1. Ridker PM, Everett BM, Thuren T, MacFadyen JG, Chang WH, Ballantyne C, et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med. 2017;377:1119–31. doi: 10.1056/NEJMoa1707914..
    1. Tardif JC, Kouz S, Waters DD, Bertrand OF, Diaz R, Maggioni AP, et al. Efficacy and safety of low-dose colchicine after myocardial infarction. N Engl J Med. 2019;381:2497–505. doi: 10.1056/NEJMoa1912388..
    1. Chaldakov GN. Colchicine, a microtubule-disassembling drug, in the therapy of cardiovascular diseases. Cell Biol Int. 2018;42:1079–84. doi: 10.1002/cbin.10988..
    1. GRAHAM W, ROBERTS JB. Intravenous colchicine in the management of gouty arthritis. Ann Rheum Dis. 1953;12:16–9. doi: 10.1136/ard.12.1.16..
    1. HARTUNG EF. History of the use of colchicum and related medicaments in gout; with suggestions for further research. Ann Rheum Dis. 1954;13:190–200. doi: 10.1136/ard.13.3.190..
    1. Mayer TU, Marx A. Five molecules we would take to a remote island. Chem Biol. 2010;17:556–60. doi: 10.1016/j.chembiol.2010.06.002..
    1. Huang Q, Wu X, Zheng X, Luo S, Xu S, Weng J. Targeting inflammation and cytokine storm in COVID-19. Pharmacol Res. 2020;159:105051. doi: 10.1016/j.phrs.2020.105051..
    1. Nidorf SM, Eikelboom JW, Budgeon CA, Thompson PL. Low-dose colchicine for secondary prevention of cardiovascular disease. J Am Coll Cardiol. 2013;61:404–10. doi: 10.1016/j.jacc.2012.10.027..
    1. Nidorf SM, Fiolet A, Eikelboom JW, Schut A, Opstal T, Bax WA, et al. The effect of low-dose colchicine in patients with stable coronary artery disease: the LoDoCo2 trial rationale, design, and baseline characteristics. Am Heart J. 2019;218:46–56. doi: 10.1016/j.ahj.2019.09.011..
    1. Klingenberg R, Nitschmann S. Colchicine treatment after myocardial infarction: Colchicine Cardiovascular Outcomes Trial (COLCOT) Internist. 2020;61:766–9. doi: 10.1007/s00108-020-00768-2..
    1. Nigro J, Osman N, Dart AM, Little PJ. Insulin resistance and atherosclerosis. Endocr Rev. 2006;27:242–59. doi: 10.1210/er.2005-0007..
    1. Little PJ, Ballinger ML, Burch ML, Osmana N. Biosynthesis of natural and hyperelongated chondroitin sulfate. Open Biochem J. 2008;2:135–42. doi: 10.2174/1874091X00802010135.
    1. Little PJ, Osman N, O’Brien KD. Hyperelongated biglycan: the surreptitious initiator of atherosclerosis. Curr Opin Lipido. 2008;19:448–54. doi: 10.1097/MOL.0b013e32830dd7c4..
    1. Davignon J, Ganz P. Role of endothelial dysfunction in atherosclerosis. Circulation. 2004;109:III27–32. doi: 10.1161/01.CIR.0000131515.03336.f8..
    1. Wang D, Yang Y, Lei Y, Tzvetkov NT, Liu X, Yeung AWK, et al. Targeting foam cell formation in atherosclerosis: therapeutic potential of natural products. Pharmacol Rev. 2019;71:596–670. doi: 10.1124/pr.118.017178..
    1. Vergallo R, Jarcho JA, Crea F. Atherosclerotic plaque healing. N Engl J Med. 2020;383:846–57. doi: 10.1056/NEJMra2000317..
    1. Cochain C, Zernecke A. Macrophages and immune cells in atherosclerosis: recent advances and novel concepts. Basic Res Cardiol. 2015;110:34. doi: 10.1007/s00395-015-0491-8..
    1. Cavallero C, Turolla E, Ricevuti G. Cell proliferation in the atherosclerotic plaques of cholesterol-fed rabbits. 1. Colchicine (3H)thymidine studies. Atherosclerosis. 1971;13:9–20. doi: 10.1016/0021-9150(71)90003-7.
    1. Lee WM, Morrison ES, Scott RF, Lee KT, Kroms M. Effects of methyl prednisolone and colchicine on the development of aortic atherosclerosis in swine. Atherosclerosis. 1976;25:213–24. doi: 10.1016/0021-9150(76)90028-9..
    1. Hollander W, Paddock J, Nagraj S, Colombo M, Kirkpatrick B. Effects of anticalcifying and antifibrobrotic drugs on pre-established atherosclerosis in the rabbit. Atherosclerosis. 1979;33:111–23. doi: 10.1016/0021-9150(79)90202-8..
    1. Lagrue G, Wegrowski J, Rhabar K, Meyer-Heine A, Balanger S, Robert AM, et al. Effect of colchicine on atherosclerosis. I. Clinical and biological studies. Clin Physiol Biochem. 1985;3:221–5.
    1. Guindo J, Rodriguez DLSA, Ramio J, de Miguel DM, Subirana MT, Perez AM, et al. Recurrent pericarditis. Relief with colchicine. Circulation. 1990;82:1117–20. doi: 10.1161/01.cir.82.4.1117.
    1. Imazio M, Bobbio M, Cecchi E, Demarie D, Pomari F, Moratti M, et al. Colchicine as first-choice therapy for recurrent pericarditis: results of the CORE (COlchicine for REcurrent pericarditis) trial. Arch Intern Med. 2005;165:1987–91. doi: 10.1001/archinte.165.17.1987..
    1. Imazio M, Brucato A, Cemin R, Ferrua S, Belli R, Maestroni S, et al. Colchicine for recurrent pericarditis (CORP): a randomized trial. Ann Intern Med. 2011;155:409–14. doi: 10.7326/0003-4819-155-7-201110040-00359..
    1. Papageorgiou N, Briasoulis A, Lazaros G, Imazio M, Tousoulis D. Colchicine for prevention and treatment of cardiac diseases: a meta-analysis. Cardiovasc Ther. 2017;35:10–8. doi: 10.1111/1755-5922.12226..
    1. Bauters C, Isner JM. The biology of restenosis. Prog Cardiovasc Dis. 1997;40:107–16. doi: 10.1016/s0033-0620(97)80003-5..
    1. Welt FG, Rogers C. Inflammation and restenosis in the stent era. Arterioscler Thromb Vasc Biol. 2002;22:1769–76. doi: 10.1161/01.atv.0000037100.44766.5b..
    1. Cowley MJ, Dorros G, Kelsey SF, Van Raden M, Detre KM. Acute coronary events associated with percutaneous transluminal coronary angioplasty. Am J Cardiol. 1984;53:12C–6C. doi: 10.1016/0002-9149(84)90738-0..
    1. Landau C, Lange RA, Hillis LD. Percutaneous transluminal coronary angioplasty. N Engl J Med. 1994;330:981–93. doi: 10.1056/NEJM199404073301407..
    1. Hao H, Gabbiani G, Bochaton-Piallat ML. Arterial smooth muscle cell heterogeneity: implications for atherosclerosis and restenosis development. Arterioscler Thromb Vasc Biol. 2003;23:1510–20. doi: 10.1161/01.ATV.0000090130.85752.ED..
    1. O’Keefe JJ, McCallister BD, Bateman TM, Kuhnlein DL, Ligon RW, Hartzler GO. Ineffectiveness of colchicine for the prevention of restenosis after coronary angioplasty. J Am Coll Cardiol. 1992;19:1597–600. doi: 10.1016/0735-1097(92)90624-v..
    1. March KL, Mohanraj S, Ho PP, Wilensky RL, Hathaway DR. Biodegradable microspheres containing a colchicine analogue inhibit DNA synthesis in vascular smooth muscle cells. Circulation. 1994;89:1929–33. doi: 10.1161/01.cir.89.5.1929..
    1. Freed M, Safian RD, O’Neill WW, Safian M, Jones D, Grines CL. Combination of lovastatin, enalapril, and colchicine does not prevent restenosis after percutaneous transluminal coronary angioplasty. Am J Cardiol. 1995;76:1185–8. doi: 10.1016/s0002-9149(99)80334-8..
    1. Carrozza JP, Jr., Kuntz RE, Fishman RF, Baim DS. Restenosis after arterial injury caused by coronary stenting in patients with diabetes mellitus. Ann Intern Med. 1993;118:344–9. doi: 10.7326/0003-4819-118-5-199303010-00004..
    1. Sobel BE. Acceleration of restenosis by diabetes: pathogenetic implications. Circulation. 2001;103:1185–7. doi: 10.1161/01.cir.103.9.1185..
    1. Deftereos S, Giannopoulos G, Raisakis K, Kossyvakis C, Kaoukis A, Panagopoulou V, et al. Colchicine treatment for the prevention of bare-metal stent restenosis in diabetic patients. J Am Coll Cardiol. 2013;61:1679–85. doi: 10.1016/j.jacc.2013.01.055..
    1. Kong J, Deng Y, Dong Q, Liu W, Lu Y. Colchicine reduces restenosis after balloon angioplasty treatment for in-stent restenosis. Arch Med Res. 2015;46:101–6. doi: 10.1016/j.arcmed.2015.01.004..
    1. Cole J, Lew R, Quinn S, Htun N, Freilich M, Layland J. 806 COlchicine to prevent PeriprocEdural Myocardial injury in percutaneous coronary intervention (COPE-PCI Trial) Heart, Lung, Circulation. 2020;29:S400. doi: 10.1016/j.hlc.2020.09.813..
    1. Rodriguez-Granillo AM, Swieszkowski S, Correa-Sadouet C, Curotto MV, Gallardo C, Fernandez-Pereira C, et al. Efficacy and outcomes of colchicine for reduction of adverse outcomes in patients undergoing Pci with Bms. The Orca Registry. J Am Coll Cardiol. 2021. 10.1016/s0735-1097(21)02545-6.
    1. Hemkens LG, Ewald H, Gloy VL, Arpagaus A, Olu KK, Nidorf M, et al. Cardiovascular effects and safety of long-term colchicine treatment: Cochrane review and meta-analysis. Heart. 2016;102:590–6. doi: 10.1136/heartjnl-2015-308542..
    1. Deftereos S, Giannopoulos G, Angelidis C, Alexopoulos N, Filippatos G, Papoutsidakis N, et al. Anti-inflammatory treatment with colchicine in acute myocardial infarction: a pilot study. Circulation. 2015;132:1395–403. doi: 10.1161/CIRCULATIONAHA.115.017611..
    1. Lim GB. Anti-inflammatory therapy for secondary prevention after MI. Nat Rev Cardiol. 2020;17:70–1. doi: 10.1038/s41569-019-0323-x..
    1. Xia M, Yang X, Qian C. Meta-analysis evaluating the utility of colchicine in secondary prevention of coronary artery disease. Am J Cardiol. 2021;140:33–8. doi: 10.1016/j.amjcard.2020.10.043..
    1. Abrantes AM, Nogueira-Garcia B, Alves M, Teixeira Passos D, Brito D, Pinto FJ, et al. Low-dose colchicine in coronary artery disease—systematic review and meta-analysis. Circ Rep. 2021;3:457–64. doi: 10.1253/-21-0065..
    1. Narula S, Yusuf S, Chong M, Ramasundarahettige C, Rangarajan S, Bangdiwala SI, et al. Plasma ACE2 and risk of death or cardiometabolic diseases: a case-cohort analysis. Lancet. 2020;396:968–76. doi: 10.1016/S0140-6736(20)31964-4..
    1. Chen L, Li X, Chen M, Feng Y, Xiong C. The ACE2 expression in human heart indicates new potential mechanism of heart injury among patients infected with SARS-CoV-2. Cardiovasc Res. 2020;116:1097–100. doi: 10.1093/cvr/cvaa078.
    1. Deftereos SG, Giannopoulos G, Vrachatis DA, Siasos GD, Giotaki SG, Gargalianos P, et al. Effect of colchicine vs standard care on cardiac and inflammatory biomarkers and clinical outcomes in patients hospitalized with coronavirus disease 2019: the GRECCO-19 randomized clinical trial. JAMA Netw Open. 2020;3:e2013136. doi: 10.1001/jamanetworkopen.2020.13136..
    1. Papadopoulos C, Patoulias D, Teperikidis E, Mouselimis D, Tsarouchas A, Toumpourleka M, et al. Colchicine as a potential therapeutic agent against cardiovascular complications of COVID-19: an exploratory review. SN Compr Clin Med. 2020:1–11. 10.1007/s42399-020-00421-x.
    1. Anton-Vazquez V, Byrne L, Anderson L, Hamzah L. COVID-19 cardiac injury and the use of colchicine. BMJ Case Rep. 2021. 10.1136/bcr-2020-241047.
    1. Tardif JC, Bouabdallaoui N, L’Allier PL, Gaudet D, Shah B, Pillinger MH, et al. Colchicine for community-treated patients with COVID-19 (COLCORONA): a phase 3, randomised, double-blinded, adaptive, placebo-controlled, multicentre trial. Lancet Respir Med. 2021;9:924–32. doi: 10.1016/S2213-2600(21)00222-8..
    1. Cochain C, Zernecke A. Macrophages in vascular inflammation and atherosclerosis. Pflug Arch. 2017;469:485–99. doi: 10.1007/s00424-017-1941-y..
    1. Gomez D, Owens GK. Smooth muscle cell phenotypic switching in atherosclerosis. Cardiovasc Res. 2012;95:156–64. doi: 10.1093/cvr/cvs115..
    1. Rubanyi GM. The role of endothelium in cardiovascular homeostasis and diseases. J Cardiovasc Pharmacol. 1993;22:S1–14. doi: 10.1097/00005344-199322004-00002..
    1. Leung YY, Yao HL, Kraus VB. Colchicine—Update on mechanisms of action and therapeutic uses. Semin Arthritis Rheum. 2015;45:341–50. doi: 10.1016/j.semarthrit.2015.06.013..
    1. Martinez GJ, Celermajer DS, Patel S. The NLRP3 inflammasome and the emerging role of colchicine to inhibit atherosclerosis-associated inflammation. Atherosclerosis. 2018;269:262–71. doi: 10.1016/j.atherosclerosis.2017.12.027..
    1. Kinlay S, Libby P, Ganz P. Endothelial function and coronary artery disease. Curr Opin Lipidol. 2001;12:383–9. doi: 10.1097/00041433-200108000-00003.
    1. Helmut Drexler M. Factors involved in the maintenance of endothelial function. Am J Cardiol. 1998. 10.1016/S0002-9149(98)00667-5.
    1. Thomas F. Lüscher M.D., Matthias Barton M.D. Biology of the Endothelium. Clinical Cardiology. 1997;20:ii-3–ii-10. 10.1002/j.1932-8737.1997.tb00006.x.
    1. Leo F, Suvorava T, Heuser SK, Li J, LoBue A, Barbarino F, et al. Red blood cell and endothelial eNOS independently regulate circulating nitric oxide metabolites and blood pressure. Circulation. 2021 doi: 10.1161/circulationaha.120.049606..
    1. Rubbo H, Trostchansky A, Botti H, Batthyány C. Interact nitric oxide peroxynitrite low-density lipoprotein. Biol Chem. 2002;383:547–52. doi: 10.1515/BC.2002.055.
    1. Schunk SJ, Triem S, Schmit D, Zewinger S, Sarakpi T, Becker E, et al. Interleukin-1alpha (IL-1alpha) is a central regulator of leukocyte-endothelial adhesion in myocardial infarction and in chronic kidney disease. Circulation. 2021 doi: 10.1161/circulationaha.121.053547..
    1. Akhmedov A, Sawamura T, Chen CH, Kraler S, Vdovenko D, Luscher TF. Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1): a crucial driver of atherosclerotic cardiovascular disease. Eur Heart J. 2021;42:1797–807. doi: 10.1093/eurheartj/ehaa770..
    1. Schachinger V, Britten MB, Elsner M, Walter DH, Scharrer I, Zeiher AM. A positive family history of premature coronary artery disease is associated with impaired endothelium-dependent coronary blood flow regulation. Circulation. 1999;100:1502–8. doi: 10.1161/01.cir.100.14.1502..
    1. Vita JA, Treasure CB, Nabel EG, McLenachan JM, Fish RD, Yeung AC, et al. Coronary vasomotor response to acetylcholine relates to risk factors for coronary artery disease. Circulation. 1990;81:491–7. doi: 10.1161/01.cir.81.2.491..
    1. Ludmer PL, Selwyn AP, Shook TL, Wayne RR, Mudge GH, Alexander RW, et al. Paradoxical vasoconstriction induced by acetylcholine in atherosclerotic coronary arteries. N Engl J Med. 1986;315:1046–51. doi: 10.1056/nejm198610233151702..
    1. Ganguly A, Yang H, Zhang H, Cabral F, Patel KD. Microtubule dynamics control tail retraction in migrating vascular endothelial cells. Mol Cancer Ther. 2013;12:2837–46. doi: 10.1158/1535-7163.MCT-13-0401..
    1. Pamuk BO, Sari I, Selcuk S, Gokce G, Kozaci DL. Evaluation of circulating endothelial biomarkers in familial Mediterranean fever. Rheumatol Int. 2013;33:1967–72. doi: 10.1007/s00296-013-2681-8..
    1. Cimmino G, Conte S, Morello A, Pellegrino G, Marra L, Cali G, et al. Colchicine inhibits the prothrombotic effects of oxLDL in human endothelial cells. Vasc Pharmacol. 2021;137:106822. doi: 10.1016/j.vph.2020.106822..
    1. Jacobsen K, Lund MB, Shim J, Gunnersen S, Fuchtbauer EM, Kjolby M, et al. Diverse cellular architecture of atherosclerotic plaque derives from clonal expansion of a few medial SMCs. JCI Insight. 2017;2:e95890. 10.1172/jci.insight.95890.
    1. Chen Z, Ichetovkin M, Kurtz M, Zycband E, Kawka D, Woods J, et al. Cholesterol in human atherosclerotic plaque is a marker for underlying disease state and plaque vulnerability. Lipids Health Dis. 2010;9:61. doi: 10.1186/1476-511x-9-61..
    1. Okura Y, Brink M, Itabe H, Scheidegger KJ, Kalangos A, Delafontaine P. Oxidized low-density lipoprotein is associated with apoptosis of vascular smooth muscle cells in human atherosclerotic plaques. Circulation. 2000;102:2680–6. doi: 10.1161/01.cir.102.22.2680..
    1. Yu H, Stoneman V, Clarke M, Figg N, Xin HB, Kotlikoff M, et al. Bone marrow-derived smooth muscle-like cells are infrequent in advanced primary atherosclerotic plaques but promote atherosclerosis. Arterioscler Thromb Vasc Biol. 2011;31:1291–9. doi: 10.1161/atvbaha.110.218578..
    1. Clarke MC, Talib S, Figg NL, Bennett MR. Vascular smooth muscle cell apoptosis induces interleukin-1-directed inflammation: effects of hyperlipidemia-mediated inhibition of phagocytosis. Circ Res. 2010;106:363–72. doi: 10.1161/circresaha.109.208389.
    1. Bauriedel G, Heimerl J, Beinert T, Welsch U, Hofling B. Colchicine antagonizes the activity of human smooth muscle cells cultivated from arteriosclerotic lesions after atherectomy. Coron Artery Dis. 1994;5:531–9.
    1. Bauriedel G, Ganesh S, Uberfuhr P, Welsch U, Hofling B. Growth-inhibiting effect of colchicine on cultured vascular wall myocytes from arteriosclerotic lesions. Z Kardiol. 1992;81:92–8.
    1. Mehta UM, Kaul D. Effect of trifluoperazine and colchicine on smooth muscle cellular proliferative and secretory activity induced by hypercholesterolemic medium in vitro. Biochem Int. 1990;21:107–16.
    1. Tabas I, Williams KJ, Boren J. Subendothelial lipoprotein retention as the initiating process in atherosclerosis: update and therapeutic implications. Circulation. 2007;116:1832–44. doi: 10.1161/circulationaha.106.676890..
    1. Swirski FK, Nahrendorf M, Etzrodt M, Wildgruber M, Cortez-Retamozo V, Panizzi P, et al. Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science. 2009;325:612–6. doi: 10.1126/science.1175202..
    1. Yvan-Charvet L, Wang N, Tall AR. Role of HDL, ABCA1, and ABCG1 transporters in cholesterol efflux and immune responses. Arterioscler Thromb Vasc Biol. 2010;30:139–43. doi: 10.1161/atvbaha.108.179283..
    1. Duewell P, Kono H, Rayner KJ, Sirois CM, Vladimer G, Bauernfeind FG, et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature. 2010;464:1357–61. doi: 10.1038/nature08938..
    1. Altaf A, Qu P, Zhao Y, Wang H, Lou D, Niu N. NLRP3 inflammasome in peripheral blood monocytes of acute coronary syndrome patients and its relationship with statins. Coron Artery Dis. 2015;26:409–21. doi: 10.1097/mca.0000000000000255..
    1. Martinez FO, Gordon S. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep. 2014;6:13. doi: 10.12703/p6-13..
    1. McLaren JE, Michael DR, Salter RC, Ashlin TG, Calder CJ, Miller AM, et al. IL-33 reduces macrophage foam cell formation. J Immunol. 2010;185:1222–9. doi: 10.4049/jimmunol.1000520..
    1. Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW, Goerdt S, et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity. 2014;41:14–20. doi: 10.1016/j.immuni.2014.06.008..
    1. Rong JX, Shapiro M, Trogan E, Fisher EA. Transdifferentiation of mouse aortic smooth muscle cells to a macrophage-like state after cholesterol loading. Proc Natl Acad Sci USA. 2003;100:13531–6. doi: 10.1073/pnas.1735526100..
    1. Chung EY, Kim SJ, Ma XJ. Regulation of cytokine production during phagocytosis of apoptotic cells. Cell Res. 2006;16:154–61. doi: 10.1038/sj.cr.7310021.
    1. Hirata Y, Tabata M, Kurobe H, Motoki T, Akaike M, Nishio C, et al. Coronary atherosclerosis is associated with macrophage polarization in epicardial adipose tissue. J Am Coll Cardiol. 2011;58:248–55. doi: 10.1016/j.jacc.2011.01.048..
    1. Babaev VR, Ding L, Zhang Y, May JM, Lin PC, Fazio S, et al. Macrophage IKKalpha deficiency suppresses Akt phosphorylation, reduces cell survival, and decreases early atherosclerosis. Arterioscler Thromb Vasc Biol. 2016;36:598–607. doi: 10.1161/ATVBAHA.115.306931..
    1. Perico N, Ostermann D, Bontempeill M, Morigi M, Amuchastegui CS, Zoja C, et al. Colchicine interferes with L-selectin and leukocyte function-associated antigen-1 expression on human T lymphocytes and inhibits T cell activation. J Am Soc Nephrol. 1996;7:594–601. doi: 10.1681/asn.V74594..
    1. Gagne V, Marois L, Levesque JM, Galarneau H, Lahoud MH, Caminschi I, et al. Modulation of monosodium urate crystal-induced responses in neutrophils by the myeloid inhibitory C-type lectin-like receptor: potential therapeutic implications. Arthritis Res Ther. 2013;15:R73. doi: 10.1186/ar4250..
    1. Cronstein BN, Molad Y, Reibman J, Balakhane E, Levin RI, Weissmann G. Colchicine alters the quantitative and qualitative display of selectins on endothelial cells and neutrophils. J Clin Invest. 1995;96:994–1002. doi: 10.1172/jci118147..
    1. Sukeishi A, Isami K, Hiyama H, Imai S, Nagayasu K, Shirakawa H, et al. Colchicine alleviates acute postoperative pain but delays wound repair in mice: roles of neutrophils and macrophages. Mol Pain. 2017;13:1744806917743680. doi: 10.1177/1744806917743680..
    1. Wang L, Peng Y, Song L, Xia D, Li C, Li Z, et al. Colchicine-containing nanoparticles attenuates acute myocardial infarction injury by inhibiting inflammation. Cardiovasc Drugs Ther. 2021. 10.1007/s10557-021-07239-2.
    1. Li Y, Che J, Chang L, Guo M, Bao X, Mu D, et al. CD47 and integrin alpha4/beta1 Co-modified macrophage membrane-coated nanoparticles enable delivery of colchicine to atherosclerotic plaque. Adv Healthc Mater. 2021:e2101788. 10.1002/adhm.202101788.
    1. Vaidya K, Tucker B, Kurup R, Khandkar C, Pandzic E, Barraclough J, et al. Colchicine inhibits neutrophil extracellular trap formation in patients with acute coronary syndrome after percutaneous coronary intervention. J Am Heart Assoc. 2021;10:e018993. doi: 10.1161/jaha.120.018993..
    1. Korporaal SJ, Van Eck M, Adelmeijer J, Ijsseldijk M, Out R, Lisman T, et al. Platelet activation by oxidized low density lipoprotein is mediated by CD36 and scavenger receptor-A. Arterioscler Thromb Vasc Biol. 2007;27:2476–83. doi: 10.1161/atvbaha.107.150698..
    1. Rother E, Brandl R, Baker DL, Goyal P, Gebhard H, Tigyi G, et al. Subtype-selective antagonists of lysophosphatidic Acid receptors inhibit platelet activation triggered by the lipid core of atherosclerotic plaques. Circulation. 2003;108:741–7. doi: 10.1161/01.Cir.0000083715.37658.C4..
    1. Fox JE. Cytoskeletal proteins and platelet signaling. Thromb Haemost. 2001;86:198–213. doi: 10.1055/s-0037-1616218.
    1. Menche D, Israel A, Karpatkin S. Platelets and microtubules. Effect of colchicine and D2O on platelet aggregation and release induced by calcium ionophore A23187. J Clin Invest. 1980;66:284–91. doi: 10.1172/jci109855..
    1. Cimmino G, Tarallo R, Conte S, Morello A, Pellegrino G, Loffredo FS, et al. Colchicine reduces platelet aggregation by modulating cytoskeleton rearrangement via inhibition of cofilin and LIM domain kinase 1. Vasc Pharmacol. 2018;111:62–70. doi: 10.1016/j.vph.2018.09.004..
    1. Muranyi A, MacDonald JA, Deng JT, Wilson DP, Haystead TA, Walsh MP, et al. Phosphorylation of the myosin phosphatase target subunit by integrin-linked kinase. Biochem J. 2002;366:211–6. doi: 10.1042/bj20020401..
    1. D’Andrea G, Cananzi AR, Toldo M, Ferro-Milone F. Platelet activity in cluster headache. Cephalalgia. 1986;6:163–7. doi: 10.1046/j.1468-2982.1986.0603163.x..
    1. Abanonu GB, Daskin A, Akdogan MF, Uyar S, Demirtunc R. Mean platelet volume and beta-thromboglobulin levels in familial Mediterranean fever: effect of colchicine use? Eur J Intern Med. 2012;23:661–4. doi: 10.1016/j.ejim.2012.04.007..
    1. Ribbi-Jaffe A, Apitz-Castro R. The effect of colchicine on human blood platelets under conditions of short-term incubation. Biochem J. 1979;178:449–54. doi: 10.1042/bj1780449..
    1. Soppitt GD, Mitchell JR. The effect of colchicine on human platelet behaviour. J Atheroscler Res. 1969;10:247–52. doi: 10.1016/s0368-1319(69)80012-8..
    1. Korkmaz S, Erturan I, Naziroglu M, Uguz AC, Cig B, Ovey IS. Colchicine modulates oxidative stress in serum and neutrophil of patients with Behcet disease through regulation of Ca2+ release and antioxidant system. J Membr Biol. 2011;244:113–20. doi: 10.1007/s00232-011-9404-4..
    1. Terekeci HM, Oktenli C, Ozgurtas T, Nalbant S, Top C, Celik S, et al. Increased asymmetric dimethylarginine levels in young men with familial Mediterranean fever (FMF): is it early evidence of interaction between inflammation and endothelial dysfunction in FMF? J Rheumatol. 2008;35:2024–9.
    1. Pennings GJ, Reddel CJ, Traini M, Campbell H, Chen V, Kritharides L. Colchicine inhibits ROS generation in response to glycoprotein VI stimulation. Sci Rep. 2021;11:11965.. doi: 10.1038/s41598-021-91409-7..
    1. Beaulieu LM, Lin E, Mick E, Koupenova M, Weinberg EO, Kramer CD, et al. Interleukin 1 receptor 1 and interleukin 1beta regulate megakaryocyte maturation, platelet activation, and transcript profile during inflammation in mice and humans. Arterioscler Thromb Vasc Biol. 2014;34:552–64. doi: 10.1161/atvbaha.113.302700..
    1. Downing H, EvaNogales K. Tubulin and microtubule structure. Curr Opin Cell Biol. 1998;10:16–22. doi: 10.1016/S0955-0674(98)80082-3..
    1. Stephens RE, Edds KT. Microtubules: structure, chemistry, and function. Physiol Rev. 1976;56:709–77. doi: 10.1152/physrev.1976.56.4.709..
    1. Ouyang C, Mu J, Lu Q, Li J, Zhu H, Wang Q, et al. Autophagic degradation of KAT2A/GCN5 promotes directional migration of vascular smooth muscle cells by reducing TUBA/alpha-tubulin acetylation. Autophagy. 2020;16:1753–70. doi: 10.1080/15548627.2019.1707488..
    1. Gao W, Yang J, Liu W, Wang Y, Shao F. Site-specific phosphorylation and microtubule dynamics control Pyrin inflammasome activation. Proc Natl Acad Sci USA. 2016;113:E4857–66. doi: 10.1073/pnas.1601700113..
    1. Misawa T, Takahama M, Kozaki T, Lee H, Zou J, Saitoh T, et al. Microtubule-driven spatial arrangement of mitochondria promotes activation of the NLRP3 inflammasome. Nat Immunol. 2013;14:454–60. doi: 10.1038/ni.2550..
    1. Bhattacharyya B, Panda D, Gupta S, Banerjee M. Anti-mitotic activity of colchicine and the structural basis for its interaction with tubulin. Med Res Rev. 2008;28:155–83. doi: 10.1002/med.20097..
    1. Sen R, Baltimore D. Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell. 1986;46:705–16.
    1. Sarkar FH, Li Y, Wang Z, Kong D. NF-kappaB signaling pathway and its therapeutic implications in human diseases. Int Rev Immunol. 2008;27:293–319. doi: 10.1080/08830180802276179..
    1. Taniguchi K, Karin M. NF-kappaB, inflammation, immunity and cancer: coming of age. Nat Rev Immunol. 2018;18:309–24. doi: 10.1038/nri.2017.142.
    1. Gul A. Behcet’s disease: an update on the pathogenesis. Clin Exp Rheumatol. 2001;19:S6–12.
    1. Steinhubl SR, Badimon JJ, Bhatt DL, Herbert JM, Luscher TF. Clinical evidence for anti-inflammatory effects of antiplatelet therapy in patients with atherothrombotic disease. Vasc Med. 2007;12:113–22. doi: 10.1177/1358863x07077462..
    1. Oeth P, Parry GC, Mackman N. Regulation of the tissue factor gene in human monocytic cells. Role of AP-1, NF-kappa B/Rel, and Sp1 proteins in uninduced and lipopolysaccharide-induced expression. Arterioscler Thromb Vasc Biol. 1997;17:365–74. doi: 10.1161/01.atv.17.2.365..
    1. Simmonds RE, Foxwell BM. Signalling, inflammation, and arthritis: NF-kappaB and its relevance to arthritis and inflammation. Rheumatology. 2008;47:584–90. doi: 10.1093/rheumatology/kem298..
    1. Hajra L, Evans AI, Chen M, Hyduk SJ, Collins T, Cybulsky MI. The NF-kappa B signal transduction pathway in aortic endothelial cells is primed for activation in regions predisposed to atherosclerotic lesion formation. Proc Natl Acad Sci USA. 2000;97:9052–7. doi: 10.1073/pnas.97.16.9052.
    1. Brown MA, Jones WK. NF-kappaB action in sepsis: the innate immune system and the heart. Front Biosci. 2004;9:1201–17. doi: 10.2741/1304.
    1. Mackenzie GG, Keen CL, Oteiza PI. Microtubules are required for NF-kappaB nuclear translocation in neuroblastoma IMR-32 cells: modulation by zinc. J Neurochem. 2006;99:402–15. doi: 10.1111/j.1471-4159.2006.04005.x..
    1. Jackman RW, Rhoads MG, Cornwell E, Kandarian SC. Microtubule-mediated NF-kappaB activation in the TNF-alpha signaling pathway. Exp Cell Res. 2009;315:3242–9. doi: 10.1016/j.yexcr.2009.08.020..
    1. Ben-David H, Livneh A, Lidar M, Feld O, Haj YS, Grossman C, et al. Toll-like receptor 2 is overexpressed in Familial Mediterranean fever patients and is inhibited by colchicine treatment. Best Pr Res Clin Rheumatol. 2018;32:651–61. doi: 10.1016/j.berh.2019.01.012..
    1. Martinon F, Mayor A, Tschopp J. The inflammasomes: guardians of the body. Annu Rev Immunol. 2009;27:229–65. doi: 10.1146/annurev.immunol.021908.132715..
    1. Centola M, Wood G, Frucht DM, Galon J, Aringer M, Farrell C, et al. The gene for familial Mediterranean fever, MEFV, is expressed in early leukocyte development and is regulated in response to inflammatory mediators. Blood. 2000;95:3223–31. doi: 10.1182/blood.V95.10.3223.
    1. Stutz A, Golenbock DT, Latz E. Inflammasomes: too big to miss. J Clin Invest. 2009;119:3502–11. doi: 10.1172/jci40599..
    1. Vandanmagsar B, Youm YH, Ravussin A, Galgani JE, Stadler K, Mynatt RL, et al. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat Med. 2011;17:179–88. doi: 10.1038/nm.2279..
    1. Martinon F, Petrilli V, Mayor A, Tardivel A, Tschopp J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature. 2006;440:237–41. doi: 10.1038/nature04516..
    1. Van Gorp H, Saavedra PH, de Vasconcelos NM, Van Opdenbosch N, Vande WL, Matusiak M, et al. Familial Mediterranean fever mutations lift the obligatory requirement for microtubules in Pyrin inflammasome activation. Proc Natl Acad Sci USA. 2016;113:14384–9. doi: 10.1073/pnas.1613156113..
    1. Park YH, Wood G, Kastner DL, Chae JJ. Pyrin inflammasome activation and RhoA signaling in the autoinflammatory diseases FMF and HIDS. Nat Immunol. 2016;17:914–21. doi: 10.1038/ni.3457..
    1. Fernando S, Schwarz N, Williamson A, Toledo D, Zareh J, Di Bartolo B, et al. Anti-inflammatory effects of colchicine on oxidised low-density lipoproteins and cholesterol crystal-induced macrophage activation in vitro. Heart, Lung, Circulation. 2017;26:S69–S70. doi: 10.1016/j.hlc.2017.06.060..
    1. Pelegrin P. Many ways to dilate the P2X7 receptor pore. Br J Pharmacol. 2011;163:908–11. doi: 10.1111/j.1476-5381.2011.01325.x..
    1. Nidorf SM, Eikelboom JW, Thompson PL. Targeting cholesterol crystal-induced inflammation for the secondary prevention of cardiovascular disease. J Cardiovasc Pharmacol Ther. 2014;19:45–52. doi: 10.1177/1074248413499972..
    1. Robertson S, Martinez GJ, Payet CA, Barraclough JY, Celermajer DS, Bursill C, et al. Colchicine therapy in acute coronary syndrome patients acts on caspase-1 to suppress NLRP3 inflammasome monocyte activation. Clin Sci. 2016;130:1237–46. doi: 10.1042/CS20160090..
    1. Silvis MJM, Fiolet ATL, Opstal TSJ, Dekker M, Suquilanda D, Zivkovic M, et al. Colchicine reduces extracellular vesicle NLRP3 inflammasome protein levels in chronic coronary disease: a LoDoCo2 biomarker substudy. Atherosclerosis. 2021;334:93–100. doi: 10.1016/j.atherosclerosis.2021.08.005..
    1. Guan T, Gao B, Chen G, Chen X, Janssen M, Uttarwar L, et al. Colchicine attenuates renal injury in a model of hypertensive chronic kidney disease. Am J Physiol Ren Physiol. 2013;305:F1466–76. doi: 10.1152/ajprenal.00057.2013..
    1. Shu JC, He YJ, Lv X, Ye GR, Wang LX. Curcumin prevents liver fibrosis by inducing apoptosis and suppressing activation of hepatic stellate cells. J Nat Med. 2009;63:415–20. doi: 10.1007/s11418-009-0347-3..
    1. Bozkurt D, Bicak S, Sipahi S, Taskin H, Hur E, Ertilav M, et al. The effects of colchicine on the progression and regression of encapsulating peritoneal sclerosis. Perit Dial Int. 2008;28:S53–7. doi: 10.1177/089686080802805S11.
    1. Atta HM, El-Rehany MA, Abdel RS, Fouad R, Galal AM. Colchicine inhibits intimal hyperplasia and leukocyte VEGF expression in dogs. J Surg Res. 2008;146:184–9. doi: 10.1016/j.jss.2007.04.029..
    1. Sandbo N, Ngam C, Torr E, Kregel S, Kach J, Dulin N. Control of myofibroblast differentiation by microtubule dynamics through a regulated localization of mDia2. J Biol Chem. 2013;288:15466–73. doi: 10.1074/jbc.M113.464461..
    1. Entzian P, Schlaak M, Seitzer U, Bufe A, Acil Y, Zabel P. Antiinflammatory and antifibrotic properties of colchicine: implications for idiopathic pulmonary fibrosis. Lung. 1997;175:41–51. doi: 10.1007/pl00007555..
    1. Wu Q, Liu H, Liao J, Zhao N, Tse G, Han B, et al. Colchicine prevents atrial fibrillation promotion by inhibiting IL-1beta-induced IL-6 release and atrial fibrosis in the rat sterile pericarditis model. Biomed Pharmacother. 2020;129:110384. doi: 10.1016/j.biopha.2020.110384..
    1. Paya M, Terencio MC, Ferrandiz ML, Alcaraz MJ. Involvement of secretory phospholipase A2 activity in the zymosan rat air pouch model of inflammation. Br J Pharmacol. 1996;117:1773–9. doi: 10.1111/j.1476-5381.1996.tb15353.x..
    1. Zurier RB, Hoffstein S, Weissmann G. Mechanisms of lysosomal enzyme release from human leukocytes. I. Effect of cyclic nucleotides and colchicine. J Cell Biol. 1973;58:27–41. doi: 10.1083/jcb.58.1.27..
    1. Roberge CJ, Gaudry M, de Medicis R, Lussier A, Poubelle PE, Naccache PH. Crystal-induced neutrophil activation. IV. Specific inhibition of tyrosine phosphorylation by colchicine. J Clin Invest. 1993;92:1722–9. doi: 10.1172/jci116759..
    1. Roberge CJ, Gaudry M, Gilbert C, Malawista SE, de Medicis R, Lussier A, et al. Paradoxical effects of colchicine on the activation of human neutrophilis by chemotactic factors and inflammatory microcrystal. J Leukoc Biol. 1996;59:864–71. doi: 10.1002/jlb.59.6.864..
    1. Gaudry M, Roberge CJ, de Medicis R, Lussier A, Poubelle PE, Naccache PH. Crystal-induced neutrophil activation. III. Inflammatory microcrystals induce a distinct pattern of tyrosine phosphorylation in human neutrophils. J Clin Invest. 1993;91:1649–55. doi: 10.1172/JCI116373..
    1. Ben-Chetrit E, Bergmann S, Sood R. Mechanism of the anti-inflammatory effect of colchicine in rheumatic diseases: a possible new outlook through microarray analysis. Rheumatology. 2006;45:274–82. doi: 10.1093/rheumatology/kei140..
    1. Rochdi M, Sabouraud A, Baud FJ, Bismuth C, Scherrmann. JM. Toxicokinetics of colchicine in humans: analysis of tissue, plasma and urine data in ten cases. Hum Exp Toxicol. 1992;11:510–6. doi: 10.1177/096032719201100612..
    1. Folpini A, Furfori P. Colchicine toxicity—clinical features and treatment. Massive overdose case report. J Toxicol Clin Toxicol. 1995;33:71–7. doi: 10.3109/15563659509020219..
    1. Ferron GM, Rochdi M, Jusko WJ, Scherrmann JM. Oral absorption characteristics and pharmacokinetics of colchicine in healthy volunteers after single and multiple doses. J Clin Pharmacol. 1996;36:874–83. doi: 10.1002/j.1552-4604.1996.tb04753.x..
    1. Chappey ON, Niel E, Wautier JL, Hung PP, Dervichian M, Cattan D, et al. Colchicine disposition in human leukocytes after single and multiple oral administration. Clin Pharmacol Ther. 1993;54:360–7. doi: 10.1038/clpt.1993.161..
    1. Emmerson BT. The management of gout. N Engl J Med. 1996;334:445–51. doi: 10.1056/nejm199602153340707..
    1. Rochdi M, Sabouraud A, Girre C, Venet R, Scherrmann JM. Pharmacokinetics and absolute bioavailability of colchicine after i.v. and oral administration in healthy human volunteers and elderly subjects. Eur J Clin Pharmacol. 1994;46:351–4. doi: 10.1007/bf00194404.
    1. Terkeltaub RA. Colchicine update: 2008. Semin Arthritis Rheum. 2009;38:411–9. doi: 10.1016/j.semarthrit.2008.08.006.
    1. Finkelstein Y, Aks SE, Hutson JR, Juurlink DN, Nguyen P, Dubnov-Raz G, et al. Colchicine poisoning: the dark side of an ancient drug. Clin Toxicol (Philos) 2010;48:407–14. doi: 10.3109/15563650.2010.495348.
    1. Tateishi T, Soucek P, Caraco Y, Guengerich FP, Wood AJ. Colchicine biotransformation by human liver microsomes. Identification of CYP3A4 as the major isoform responsible for colchicine demethylation. Biochem Pharmacol. 1997;53:111–6. doi: 10.1016/s0006-2952(96)00693-4.
    1. Decleves X, Niel E, Debray M, Scherrmann JM. Is P-glycoprotein (ABCB1) a phase 0 or a phase 3 colchicine transporter depending on colchicine exposure conditions? Toxicol Appl Pharmacol. 2006;217:153–60. doi: 10.1016/j.taap.2006.08.004.
    1. Dogukan A, Oymak FS, Taskapan H, Guven M, Tokgoz B, Utas C. Acute fatal colchicine intoxication in a patient on continuous ambulatory peritoneal dialysis (CAPD). Possible role of clarithromycin administration. Clin Nephrol. 2001;55:181–2.
    1. ACR releases new guidelines for gout. Pharmacoecon. Outcomes News 2012;666:2. 10.2165/00151234-201206660-00002.
    1. Adler Y, Charron P, Imazio M, Badano L, Barón-Esquivias G, Bogaert J, et al.. 2015 ESC Guidelines for the diagnosis and management of pericardial diseases. Eur Heart J. 2015;68:1126. 10.1016/j.rec.2015.10.008.
    1. Nidorf SM, Fiolet A, Mosterd A, Eikelboom JW, Schut A, Opstal T, et al. Colchicine in patients with chronic coronary disease. N Engl J Med. 2020;383:1838–47. doi: 10.1056/NEJMoa2021372..
    1. Raju NC, Yi Q, Nidorf M, Fagel ND, Hiralal R, Eikelboom JW. Effect of colchicine compared with placebo on high sensitivity C-reactive protein in patients with acute coronary syndrome or acute stroke: a pilot randomized controlled trial. J Thromb Thrombolysis. 2012;33:88–94. doi: 10.1007/s11239-011-0637-y..
    1. Martinez GJ, Robertson S, Barraclough J, Xia Q, Mallat Z, Bursill C, et al. Colchicine acutely suppresses local cardiac production of inflammatory cytokines in patients with an acute coronary syndrome. J Am Heart Assoc. 2015;4:e002128. doi: 10.1161/JAHA.115.002128..
    1. Vaidya K, Arnott C, Martinez GJ, Ng B, McCormack S, Sullivan DR, et al. Colchicine therapy and plaque stabilization in patients with acute coronary syndrome: a CT coronary angiography study. JACC Cardiovasc Imaging. 2018;11:305–16. doi: 10.1016/j.jcmg.2017.08.013..
    1. Shah B, Pillinger M, Zhong H, Cronstein B, Xia Y, Lorin JD, et al. Effects of acute colchicine administration prior to percutaneous coronary intervention: COLCHICINE-PCI randomized trial. Circ Cardiovasc Inter. 2020;13:e008717. doi: 10.1161/circinterventions.119.008717..
    1. Imazio M, Bobbio M, Cecchi E, Demarie D, Demichelis B, Pomari F, et al. Colchicine in addition to conventional therapy for acute pericarditis: results of the COlchicine for acute PEricarditis (COPE) trial. Circulation. 2005;112:2012–6. doi: 10.1161/circulationaha.105.542738..
    1. Imazio M, Brucato A, Cemin R, Ferrua S, Maggiolini S, Beqaraj F, et al. A randomized trial of colchicine for acute pericarditis. N Engl J Med. 2013;369:1522–8. doi: 10.1056/NEJMoa1208536..
    1. Deftereos S, Giannopoulos G, Panagopoulou V, Bouras G, Raisakis K, Kossyvakis C, et al. Anti-inflammatory treatment with colchicine in stable chronic heart failure: a prospective, randomized study. JACC Heart Fail. 2014;2:131–7. doi: 10.1016/j.jchf.2013.11.006..

Source: PubMed

3
Abonneren