Action video gaming and the brain: fMRI effects without behavioral effects in visual and verbal cognitive tasks

Fabio Richlan, Juliane Schubert, Rebecca Mayer, Florian Hutzler, Martin Kronbichler, Fabio Richlan, Juliane Schubert, Rebecca Mayer, Florian Hutzler, Martin Kronbichler

Abstract

Introduction: In this functional magnetic resonance imaging (fMRI) study, we compared task performance together with brain activation in a visuospatial task (VST) and a letter detection task (LDT) between longtime action video gamers (N =14) and nongamers (N =14) in order to investigate possible effects of gaming on cognitive and brain abilities.

Methods: Based on previous research, we expected advantages in performance for experienced action video gamers accompanied by less activation (due to higher efficiency) as measured by fMRI in the frontoparietal attention network.

Results: Contrary to these expectations, we did not find differences in overall task performance, nor in brain activation during the VST. We identified, however, a significantly different increase in the BOLD signal from a baseline task to the LDT in action video gamers compared with nongamers. This increased activation was evident in a number of frontoparietal regions including the left middle paracingulate cortex, the left superior frontal sulcus, the opercular part of the left inferior frontal gyrus, and the left and right posterior parietal cortex. Furthermore, we found increased activation in the triangular part of the left inferior frontal gyrus in gamers relative to nongamers when activation during the LDT was compared with activation during the VST.

Conclusions: In sum, the expected positive relation between action video game experience and cognitive performance could not be confirmed. Despite their comparable task performance, however, gamers and nongamers exhibited clear-cut differences in brain activation patterns presumably reflecting differences in neural engagement, especially during verbal cognitive tasks.

Keywords: cognition; cognitive neuroscience; functional neuroimaging; magnetic resonance imaging; video games.

Figures

Figure 1
Figure 1
Schematic illustration of (a) the experimental procedure and (b) a task block. (c) Example of a stimulus in the left visual field containing the letter “A,” with a red letter on the second position (left) and an example of a stimulus in the right visual field not containing the letter “A,” with a red letter on the third position (right). BAS, baseline task; LDT, letter detection task; VST, visuospatial task
Figure 2
Figure 2
(a) Activation for the letter detection task (LDT, red) and the visuospatial task (VST, green) compared with the baseline task (BAS, overlapping regions are shown in yellow). (b) Activation for the letter detection task compared with the visuospatial task (red) and vice versa (green). (c) Activation for video gamers (VGP) compared with nonvideo gamers (NVGP) for the letter detection task compared with the baseline task (violet) and compared with the visuospatial task (blue). (d) BOLD signal change estimates for all tasks in regions with significant group differences
Figure 3
Figure 3
Activation for responses with the left (L) hand relative to responses with the right (R) hand in gamers (VGP) compared with nongamers (NVGP). BAS, baseline task; LDT, letter detection task; VST, visuospatial task

References

    1. Achenbach, T. M. , & Rescorla, L. A. (2003). Manual for the ASEBA adult forms & profiles. Burlington, VT: Research Center for Children, Youth, & Families, University of Vermont.
    1. Bavelier, D. , Achtman, R. L. , Mani, M. , & Föcker, J. (2012). Neural bases of selective attention in action video game players. Vision Research, 61, 132–143.
    1. Binder, J. R. (2012). Task‐induced deactivation and the “resting” state. NeuroImage, 62, 1086–1091.
    1. Blacker, K. J. , Curby, K. M. , Klobusicky, E. , & Chein, J. M. (2014). Effects of action video game training on visual working memory. Journal of Experimental Psychology: Human Perception and Performance, 40, 1992–2004.
    1. Boot, W. R. , Kramer, A. F. , Simons, D. J. , Fabiani, M. , & Gratton, G. (2008). The effects of video game playing on attention, memory, and executive control. Acta Psychologica, 129, 387–398.
    1. Buckner, R. L. (2012). The serendipitous discovery of the brain's default network. NeuroImage, 62, 1137–1145.
    1. Burton, M. W. (2001). The role of inferior frontal cortex in phonological processing. Cognitive Science, 25, 695–709.
    1. Bush, G. , Luu, P. , & Posner, M. I. (2000). Cognitive and emotional influences in anterior cingulate cortex. Trends in Cognitive Sciences, 4, 215–222.
    1. Cabeza, R. , Ciaramelli, E. , Olson, I. R. , & Moscovitch, M. (2008). The parietal cortex and episodic memory: An attentional account. Nature Reviews Neuroscience, 9, 613–625.
    1. Cardoso‐Leite, P. , Kludt, R. , Vignola, G. , Ma, W. J. , Green, C. S. , & Bavelier, D. (2016). Technology consumption and cognitive control: Contrasting action video game experience with media multitasking. Attention, Perception & Psychophysics, 78, 218–241.
    1. Chisholm, J. D. , & Kingstone, A. (2015). Action video games and improved attentional control: Disentangling selection‐and response‐based processes. Psychonomic Bulletin & Review, 22, 1430–1436.
    1. Collins, E. , & Freeman, J. (2014). Video game use and cognitive performance: Does it vary with the presence of problematic video game use? Cyberpsychology, Behavior and Social Networking, 17, 153–159.
    1. Corbetta, M. , & Shulman, G. L. (2002). Control of goal‐directed and stimulus‐driven attention in the brain. Nature Reviews Neuroscience, 3, 201–215.
    1. Courtney, S. M. , Petit, L. , Maisog, J. M. , Ungerleider, L. G. , & Haxby, J. V. (1998). An area specialized for spatial working memory in human frontal cortex. Science, 279, 1347–1351.
    1. Du Boisgueheneuc, F. , Levy, R. , Volle, E. , Seassau, M. , Duffau, H. , Kinkingnehun, S. , … Dubois, B. (2006). Functions of the left superior frontal gyrus in humans: A lesion study. Brain, 129, 3315–3328.
    1. Faul, F. , Erdfelder, E. , Lang, A.‐G. , & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39, 175–191.
    1. Franceschini, S. , Gori, S. , Ruffino, M. , Viola, S. , Molteni, M. , & Facoetti, A. (2013). Action video games make dyslexic children read better. Current Biology, 23, 462–466.
    1. Friston, K. J. , Glaser, D. E. , Henson, R. N. , Kiebel, S. , Phillips, C. , & Ashburner, J. (2002). Classical and Bayesian inference in neuroimaging: Applications. NeuroImage, 16, 484–512.
    1. Gong, D. , He, H. , Liu, D. , Ma, W. , Dong, L. , Luo, C. , & Yao, D. (2015). Enhanced functional connectivity and increased gray matter volume of insula related to action video game playing. Scientific Reports, 5, 9763
    1. Green, C. S. , & Bavelier, D. (2006). Enumeration versus multiple object tracking: The case of action video game players. Cognition, 101, 217–245.
    1. Green, C. S. , & Bavelier, D. (2007). Action‐video‐game experience alters the spatial resolution of vision. Psychological Science, 18, 88–94.
    1. Green, C. S. , & Bavelier, D. (2012). Learning, attentional control, and action video games. Current Biology, 22, R197–R206.
    1. Han, D. H. , Kim, S. M. , Bae, S. , Renshaw, P. F. , & Anderson, J. S. (2015). Brain connectivity and psychiatric comorbidity in adolescents with internet gaming disorder. Addiction Biology, 22, 802–812.
    1. Hartanto, A. , Toh, W. X. , & Yang, H. (2016). Age matters: The effect of onset age of video game play on task‐switching abilities. Attention, Perception & Psychophysics, 78, 1125–1136.
    1. Henson, R. N. A. (2004). Analysis of fMRI time series: Linear time‐invariant models, event‐related fMRI and optimal experimental design In Frackowiak R. S. J., Friston K. J., Frith C., Dolan R., Price C. J., Zeki S., Ashburner J. T., & Penny W. D. (Eds.), Human brain function, 2nd edn (pp. 793–822). London: Academic Press.
    1. Hubert‐Wallander, B. , Green, C. S. , & Bavelier, D. (2011). Stretching the limits of visual attention: The case of action video games. Wiley Interdisciplinary Reviews. Cognitive Science, 2, 222–230.
    1. Krishnan, L. , Kang, A. , Sperling, G. , & Srinivasan, R. (2013). Neural strategies for selective attention distinguish fast‐action video game players. Brain Topography, 26, 83–97.
    1. Kühn, S. , & Gallinat, J. (2014). Amount of lifetime video gaming is positively associated with entorhinal, hippocampal and occipital volume. Molecular Psychiatry, 19, 842–847.
    1. Kühn, S. , Lorenz, R. , Banaschewski, T. , Barker, G. J. , Büchel, C. , Conrod, P. J. , … Gallinat, J. (2014). Positive association of video game playing with left frontal cortical thickness in adolescents. PLoS ONE, 9, e91506
    1. Kühn, S. , Romanowski, A. , Schilling, C. , Lorenz, R. , Mörsen, C. , Seiferth, N. , … Gallinat, J. (2011). The neural basis of video gaming. Translational psychiatry, 1, e53.
    1. McGuire, P. K. , Silbersweig, D. A. , Murray, R. M. , David, A. S. , Frackowiak, R. S. J. , & Frith, C. D. (1996). Functional anatomy of inner speech and auditory verbal imagery. Psychological Medicine, 26, 29–38.
    1. Mishra, J. , Zinni, M. , Bavelier, D. , & Hillyard, S. A. (2011). Neural basis of superior performance of action videogame players in an attention‐demanding task. Journal of Neuroscience, 31, 992–998.
    1. Oei, A. C. , & Patterson, M. D. (2014). Are videogame training gains specific or general? Frontiers in Systems Neuroscience, 8, 54.
    1. Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9, 97–113.
    1. Palaus, M. , Marron, E. M. , Viejo‐Sobera, R. , & Redolar‐Ripoll, D. (2017). Neural basis of video gaming: A systematic review. Frontiers in Human Neuroscience, 11, 248
    1. Perfetti, C. A. , & Bell, L. (1991). Phonemic activation during the first 40 ms of word identification: Evidence from backward masking and priming. Journal of Memory and Language, 30, 473–485.
    1. Poldrack, R. A. , Wagner, A. D. , Prull, M. W. , Desmond, J. E. , Glover, G. H. , & Gabrieli, J. D. (1999). Functional specialization for semantic and phonological processing in the left inferior prefrontal cortex. NeuroImage, 10, 15–35.
    1. Powers, K. L. , Brooks, P. J. , Aldrich, N. J. , Palladino, M. A. , & Alfieri, L. (2013). Effects of video‐game play on information processing: A meta‐analytic investigation. Psychonomic Bulletin & Review, 20, 1055–1079.
    1. Raichle, M. E. , MacLeod, A. M. , Snyder, A. Z. , Powers, W. J. , Gusnard, D. A. , & Shulman, G. L. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences, 98, 676–682.
    1. Schurz, M. , Wimmer, H. , Richlan, F. , Ludersdorfer, P. , Klackl, J. , & Kronbichler, M. (2015). Resting‐state and task‐based functional brain connectivity in developmental dyslexia. Cerebral Cortex, 25, 3502–3514.
    1. Stephan, K. E. , Marshall, J. C. , Friston, K. J. , Rowe, J. B. , Ritzl, A. , Zilles, K. , & Fink, G. R. (2003). Lateralized cognitive processes and lateralized task control in the human brain. Science, 301, 384–386.
    1. Tanaka, S. , Ikeda, H. , Kasahara, K. , Kato, R. , Tsubomi, H. , Sugawara, S. K. , … Watanabe, K. (2013). Larger right posterior parietal volume in action video game experts: A behavioral and voxel‐based morphometry (VBM) study. PLoS ONE, 8, e66998
    1. Tewes, U. (1991). Hamburg‐Wechsler Intelligenztest für Erwachsene: HAWIE‐R. Bern, CH: Verlag Hans Huber.
    1. Unsworth, N. , Heitz, R. P. , Schrock, J. C. , & Engle, R. W. (2005). An automated version of the operation span task. Behavior Research Methods, 37, 498–505.
    1. Van Ravenzwaaij, D. , Boekel, W. , Forstmann, B. U. , Ratcliff, R. , & Wagenmakers, E. J. (2014). Action video games do not improve the speed of information processing in simple perceptual tasks. Journal of Experimental Psychology: General, 143, 1794
    1. Wu, S. , Cheng, C. K. , Feng, J. , D'Angelo, L. , Alain, C. , & Spence, I. (2012). Playing a first‐person shooter video game induces neuroplastic change. Journal of Cognitive Neuroscience, 24, 1286–1293.

Source: PubMed

3
Abonneren