A phase Ib study of camrelizumab in combination with apatinib and fuzuloparib in patients with recurrent or metastatic triple-negative breast cancer

Qingyuan Zhang, Bin Shao, Zhongsheng Tong, Quchang Ouyang, Yuting Wang, Guoying Xu, Shaorong Li, Huiping Li, Qingyuan Zhang, Bin Shao, Zhongsheng Tong, Quchang Ouyang, Yuting Wang, Guoying Xu, Shaorong Li, Huiping Li

Abstract

Background: Strategies to improve activity of immune checkpoint inhibitors for triple-negative breast cancer (TNBC) are needed. Preclinical studies showed that antiangiogenic agents and poly (ADP-ribose) polymerase (PARP) inhibitors might sensitize tumors to immunotherapy. Here, we investigated the tolerability, safety, and preliminary antitumor activity of camrelizumab, an anti-PD-1 antibody, in combination with apatinib, a vascular endothelial growth factor receptor-2 inhibitor, and fuzuloparib, a PARP inhibitor, in patients with recurrent or metastatic TNBC.

Methods: This phase Ib study included a dose-finding part and a dose-expansion part. In the dose-finding part, a 3 + 3 dose escalation scheme was introduced. Patients were given camrelizumab (200 mg every 2 weeks) plus apatinib (375 mg or 500 mg once daily) and fuzuloparib (starting dose 100 mg twice daily) every 28-day cycle. After evaluation of the tolerability and safety of the dosing regimens, a clinical recommended dose was determined for the dose-expansion part. The primary endpoint was dose-limiting toxicity (DLT).

Results: A total of 32 patients were enrolled. Three patients received camrelizumab 200 mg + apatinib 375 mg + fuzuloparib 100 mg, and 29 received camrelizumab 200 mg + apatinib 500 mg + fuzuloparib 100 mg (clinical recommended dose). No DLTs were observed in either group. The most common grade ≥ 3 treatment-related adverse events were decreased white blood cell count (20.7%), hypertension (13.8%), decreased neutrophil count (10.3%), and increased aspartate aminotransferase (10.3%). Two patients discontinued study treatment due to immune-mediated hepatitis (n = 1) and anemia, decreased platelet count, decreased white blood cell count, increased alanine aminotransferase, increased aspartate aminotransferase, and increased γ-glutamyltransferase (n = 1). One patient died of unknown cause. Two (6.9% [95% CI, 0.9-22.8]) of 29 patients with camrelizumab 200 mg + apatinib 500 mg + fuzuloparib 100 mg had objective response. The disease control rate was 62.1% (95% CI, 42.3-79.3). The median progression-free survival was 5.2 months (95% CI, 3.6-7.3), and the 12-month overall survival rate was 64.2% (95% CI, 19.0-88.8).

Conclusions: Combination of camrelizumab plus apatinib and fuzuloparib showed manageable safety profile and preliminary antitumor activity in patients with recurrent or metastatic TNBC.

Trial registration: ClinicalTrials.gov NCT03945604 (May 10, 2019).

Keywords: Apatinib; Camrelizumab; Fuzuloparib; Immunotherapy; PARP; PD-1; TNBC; Triple-negative breast cancer; VEGFR.

Conflict of interest statement

YW, GX, and SL are employees of Jiangsu Hengrui Pharmaceuticals. Other authors have no potential conflict of interest to declare.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
Tumor response. A Best percentage change in sum of diameters of the target lesion from baseline in individual patients. B Treatment duration and tumor response. Asterisk (*) symbol represents patients with a partial response
Fig. 2
Fig. 2
Kaplan–Meier curve for progression-free survival in patients with camrelizumab plus apatinib 500 mg and fuzuloparib

References

    1. Denkert C, Liedtke C, Tutt A, von Minckwitz G. Molecular alterations in triple-negative breast cancer—the road to new treatment strategies. Lancet. 2017;389(10087):2430–2442. doi: 10.1016/S0140-6736(16)32454-0.
    1. Dent R, Trudeau M, Pritchard KI, Hanna WM, Kahn HK, Sawka CA, et al. Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res. 2007;13(15):4429–4434. doi: 10.1158/1078-0432.CCR-06-3045.
    1. Gradishar WJ, Moran MS, Abraham J, Aft R, Agnese D, Allison KH, et al. NCCN Clinical Practice Guidelines in Oncology: Breast Cancer, version 1.2022. National Comprehensive Cancer Network. 2021. . Accessed 5 Dec 2021.
    1. Yardley D, Coleman R, Conte P, Cortes J, Brufsky A, Shtivelband M, et al. nab-Paclitaxel plus carboplatin or gemcitabine versus gemcitabine plus carboplatin as first-line treatment of patients with triple-negative metastatic breast cancer: results from the tnAcity trial. Ann Oncol. 2018;29(8):1763–1770. doi: 10.1093/annonc/mdy201.
    1. Markham MJ, Wachter K, Agarwal N, Bertagnolli MM, Chang SM, Dale W, et al. Clinical cancer advances 2020: annual report on progress against cancer from the American society of clinical oncology. J Clin Oncol. 2020;38(10):1081. doi: 10.1200/JCO.19.03141.
    1. Winer EP, Lipatov O, Im S-A, Goncalves A, Muñoz-Couselo E, Lee KS, et al. Pembrolizumab versus investigator-choice chemotherapy for metastatic triple-negative breast cancer (KEYNOTE-119): a randomised, open-label, phase 3 trial. Lancet Oncol. 2021;22(4):499–511. doi: 10.1016/S1470-2045(20)30754-3.
    1. Yi M, Jiao D, Qin S, Chu Q, Wu K, Li A. Synergistic effect of immune checkpoint blockade and anti-angiogenesis in cancer treatment. Mol Cancer. 2019;18(1):60. doi: 10.1186/s12943-019-0974-6.
    1. Lanitis E, Irving M, Coukos G. Targeting the tumor vasculature to enhance T cell activity. Curr Opinion Immunol. 2015;33:55–63. doi: 10.1016/j.coi.2015.01.011.
    1. Gabrilovich DI, Chen HL, Girgis KR, Cunningham HT, Meny GM, Nadaf S, et al. Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat Med. 1996;2(10):1096–1103. doi: 10.1038/nm1096-1096.
    1. Facciabene A, Peng X, Hagemann IS, Balint K, Barchetti A, Wang L-P, et al. Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and T reg cells. Nature. 2011;475(7355):226–230. doi: 10.1038/nature10169.
    1. Li Q, Wang Y, Jia W, Deng H, Li G, Deng W, et al. Low-dose anti-angiogenic therapy sensitizes breast cancer to PD-1 blockade. Clin Cancer Res. 2020;26(7):1712–1724. doi: 10.1158/1078-0432.CCR-19-2179.
    1. Huang Y, Yuan J, Righi E, Kamoun WS, Ancukiewicz M, Nezivar J, et al. Vascular normalizing doses of antiangiogenic treatment reprogram the immunosuppressive tumor microenvironment and enhance immunotherapy. Proc Natl Acad Sci. 2012;109(43):17561–17566. doi: 10.1073/pnas.1215397109.
    1. Liu J, Liu Q, Li Y, Li Q, Su F, Yao H, et al. Efficacy and safety of camrelizumab combined with apatinib in advanced triple-negative breast cancer: an open-label phase II trial. J Immunother Cancer. 2020;8(1):e000696. doi: 10.1136/jitc-2020-000696.
    1. Pommier Y, O’Connor MJ, De Bono J. Laying a trap to kill cancer cells: PARP inhibitors and their mechanisms of action. Sci Transl Med. 2016;8(362):362ps317. doi: 10.1126/scitranslmed.aaf9246.
    1. Robson M, Im S-A, Senkus E, Xu B, Domchek SM, Masuda N, et al. Olaparib for metastatic breast cancer in patients with a germline BRCA mutation. N Eng J Med. 2017;377(6):523–533. doi: 10.1056/NEJMoa1706450.
    1. Tutt A, Robson M, Garber JE, Domchek SM, Audeh MW, Weitzel JN, et al. Oral poly (ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and advanced breast cancer: a proof-of-concept trial. Lancet. 2010;376(9737):235–244. doi: 10.1016/S0140-6736(10)60892-6.
    1. Li H, Liu R, Shao B, Ran R, Song G, Wang K, et al. Phase I dose-escalation and expansion study of PARP inhibitor, fluzoparib (SHR3162), in patients with advanced solid tumors. Chin J Cancer Res. 2020;32(3):370–382. doi: 10.21147/j.issn.1000-9604.2020.03.08.
    1. Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A, et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci. 2003;100(14):8418–8423. doi: 10.1073/pnas.0932692100.
    1. Turner N, Tutt A, Ashworth A. Hallmarks of ‘BRCAness’ in sporadic cancers. Nat Rev Cancer. 2004;4(10):814–819. doi: 10.1038/nrc1457.
    1. Alli E, Sharma VB, Sunderesakumar P, Ford JM. Defective repair of oxidative dna damage in triple-negative breast cancer confers sensitivity to inhibition of poly(ADP-ribose) polymerase. Cancer Res. 2009;69(8):3589–3596. doi: 10.1158/0008-5472.CAN-08-4016.
    1. Gelmon KA, Tischkowitz M, Mackay H, Swenerton K, Robidoux A, Tonkin K, et al. Olaparib in patients with recurrent high-grade serous or poorly differentiated ovarian carcinoma or triple-negative breast cancer: a phase 2, multicentre, open-label, non-randomised study. Lancet Oncol. 2011;12(9):852–861. doi: 10.1016/S1470-2045(11)70214-5.
    1. Adams S, Schmid P, Rugo H, Winer E, Loirat D, Awada A, et al. Pembrolizumab monotherapy for previously treated metastatic triple-negative breast cancer: cohort A of the phase II KEYNOTE-086 study. Ann Oncol. 2019;30(3):397–404. doi: 10.1093/annonc/mdy517.
    1. Stewart RA, Pilié PG, Yap TA. Development of PARP and immune-checkpoint inhibitor combinations. Cancer Res. 2018;78(24):6717–6725. doi: 10.1158/0008-5472.CAN-18-2652.
    1. Jiao S, Xia W, Yamaguchi H, Wei Y, Chen M-K, Hsu J-M, et al. PARP inhibitor upregulates PD-L1 expression and enhances cancer-associated immunosuppression. Clin Cancer Res. 2017;23(14):3711–3720. doi: 10.1158/1078-0432.CCR-16-3215.
    1. Domchek SM, Postel-Vinay S, Im S-A, Park YH, Delord J-P, Italiano A, et al. Olaparib and durvalumab in patients with germline BRCA-mutated metastatic breast cancer (MEDIOLA): an open-label, multicentre, phase 1/2, basket study. Lancet Oncol. 2020;21(9):1155–1164. doi: 10.1016/S1470-2045(20)30324-7.
    1. Vinayak S, Tolaney SM, Schwartzberg L, Mita M, McCann G, Tan AR, et al. Open-label clinical trial of niraparib combined with pembrolizumab for treatment of advanced or metastatic triple-negative breast cancer. JAMA Oncol. 2019;5(8):1132–1140. doi: 10.1001/jamaoncol.2019.1029.
    1. Heist RS, Duda DG, Sahani DV, Ancukiewicz M, Fidias P, Sequist LV, et al. Improved tumor vascularization after anti-VEGF therapy with carboplatin and nab-paclitaxel associates with survival in lung cancer. Pro Natl Acad Sci. 2015;112(5):1547–1552. doi: 10.1073/pnas.1424024112.
    1. Fukumura D, Kloepper J, Amoozgar Z, Duda DG, Jain RK. Enhancing cancer immunotherapy using antiangiogenics: opportunities and challenges. Nat Rev Clin Oncol. 2018;15(5):325–340. doi: 10.1038/nrclinonc.2018.29.
    1. Yu M, Gao Z, Dai X, Gong H, Zhang L, Chen X, et al. Population pharmacokinetic and covariate analysis of apatinib, an oral tyrosine kinase inhibitor, in healthy volunteers and patients with solid tumors. Clin Pharmacokinet. 2017;56(1):65–76. doi: 10.1007/s40262-016-0427-y.
    1. Wu S-Y, Xu Y, Chen L, Fan L, Ma X-Y, Zhao S, et al. Combined angiogenesis and PD-1 inhibition for immunomodulatory TNBC: concept exploration and biomarker analysis in the FUTURE-C-Plus trial. Mol Cancer. 2022;21(1):84. doi: 10.1186/s12943-022-01536-6.
    1. Makker V, Rasco D, Vogelzang NJ, Brose MS, Cohn AL, Mier J, et al. Lenvatinib plus pembrolizumab in patients with advanced endometrial cancer: an interim analysis of a multicentre, open-label, single-arm, phase 2 trial. Lancet Oncol. 2019;20(5):711–718. doi: 10.1016/S1470-2045(19)30020-8.
    1. Motzer R, Alekseev B, Rha S-Y, Porta C, Eto M, Powles T, et al. Lenvatinib plus pembrolizumab or everolimus for advanced renal cell carcinoma. N Eng J Med. 2021;384(14):1289–1300. doi: 10.1056/NEJMoa2035716.
    1. Socinski MA, Jotte RM, Cappuzzo F, Orlandi F, Stroyakovskiy D, Nogami N, et al. Atezolizumab for first-line treatment of metastatic nonsquamous NSCLC. N Eng J Med. 2018;378(24):2288–2301. doi: 10.1056/NEJMoa1716948.

Source: PubMed

3
Abonneren