An Update on the Safety and Efficacy of Corneal Collagen Cross-Linking in Pediatric Keratoconus

Hala El Rami, Elias Chelala, Ali Dirani, Ali Fadlallah, Henry Fakhoury, Carole Cherfan, George Cherfan, Elias Jarade, Hala El Rami, Elias Chelala, Ali Dirani, Ali Fadlallah, Henry Fakhoury, Carole Cherfan, George Cherfan, Elias Jarade

Abstract

Keratoconus is a degenerative disease that affects adolescents and young adults and presents with variable thinning and conical deformation of the corneal apex. The resultant irregular astigmatism can progress to levels that can significantly affect everyday activities and overall quality of life. Therefore, stopping the progression of the disease is an essential part in managing patients with keratoconus. Corneal collagen cross-linking is a minimally invasive procedure that stiffens the anterior corneal stroma by creating strong covalent bonds between collagen fibrils. Over the past decade, many studies have proved its safety and efficacy in halting keratoconus progression in adults. This review of the literature highlights the growing trend towards using this treatment in pediatric keratoconic patients. In children, keratoconus tends to be more severe and fast progression is often encountered requiring closer follow-up intervals. Standard cross-linking shows comparable results in children with a good safety-efficacy profile during follow-up periods of up to three years. Further research is needed to standardize and evaluate transepithelial and accelerated cross-linking protocols as these could be of tremendous help in a population where cooperation and compliance are major issues.

References

    1. Rabinowitz Y. S. Keratoconus. Survey of Ophthalmology. 1998;42(4):297–319. doi: 10.1016/s0039-6257(97)00119-7.
    1. Davidson A. E., Hayes S., Hardcastle A. J., Tuft S. J. The pathogenesis of keratoconus. Eye. 2014;28(2):189–195. doi: 10.1038/eye.2013.278.
    1. Malik N. S., Moss S. J., Ahmed N., Furth A. J., Wall R. S., Meek K. M. Ageing of the human corneal stroma: structural and biochemical changes. Biochimica et Biophysica Acta. 1992;1138(3):222–228. doi: 10.1016/0925-4439(92)90041-k.
    1. Daxer A., Misof K., Grabner B., Ettl A., Fratzl P. Collagen fibrils in the human corneal stroma: structure and aging. Investigative Ophthalmology and Visual Science. 1998;39(3):644–648.
    1. Smiddy W. E., Hamburg T. R., Kracher G. P., Stark W. J. Keratoconus. Contact lens or keratoplasty? Ophthalmology. 1988;95(4):487–492. doi: 10.1016/s0161-6420(88)33161-1.
    1. Tuft S. J., Moodaley L. C., Gregory W. M., Davison C. R., Buckley R. J. Prognostic factors for the progression of keratoconus. Ophthalmology. 1994;101(3):439–447. doi: 10.1016/S0161-6420(94)31313-3.
    1. Spörl E., Huhle M., Kasper M., Seiler T. Increased rigidity of the cornea caused by intrastromal cross-linking. Der Ophthalmologe: Zeitschrift der Deutschen Ophthalmologischen Gesellschaft. 1997;94(12):902–906.
    1. Wollensak G., Iomdina E. Long-term biomechanical properties of rabbit cornea after photodynamic collagen crosslinking. Acta Ophthalmologica. 2009;87(1):48–51. doi: 10.1111/j.1755-3768.2008.01190.x.
    1. Kling S., Remon L., Pérez-Escudero A., Merayo-Lloves J., Marcos S. Corneal biomechanical changes after collagen cross-linking from porcine eye inflation experiments. Investigative Ophthalmology and Visual Science. 2010;51(8):3961–3968. doi: 10.1167/iovs.09-4536.
    1. Labetoulle M. An alternative to corneal transplantation in keratoconus treatment? Journal Français d'Ophtalmologie. 2003;26(10):1097–1098.
    1. Spoerl E., Wollensak G., Seiler T. Increased resistance of crosslinked cornea against enzymatic digestion. Current Eye Research. 2004;29(1):35–40. doi: 10.1080/02713680490513182.
    1. Vinciguerra P., Albè E., Trazza S., Seiler T., Epstein D. Intraoperative and postoperative effects of corneal collagen cross-linking on progressive keratoconus. Archives of Ophthalmology. 2009;127(10):1258–1265. doi: 10.1001/archophthalmol.2009.205.
    1. Caporossi A., Mazzotta C., Baiocchi S., Caporossi T. Long-term results of riboflavin ultraviolet a corneal collagen cross-linking for keratoconus in Italy: the Siena eye cross study. American Journal of Ophthalmology. 2010;149(4):585–593. doi: 10.1016/j.ajo.2009.10.021.
    1. Kymionis G. D., Grentzelos M. A., Liakopoulos D. A., et al. Long-term follow-up of corneal collagen cross-linking for keratoconus—the cretan study. Cornea. 2014;33(10):1071–1079. doi: 10.1097/ico.0000000000000248.
    1. Theuring A., Spoerl E., Pillunat L. E., Raiskup F. Corneal collagen cross-linking with riboflavin and ultraviolet-a light in progressive keratoconus. Der Ophthalmologe. 2015;112(2):140–147. doi: 10.1007/s00347-014-3114-0.
    1. Gordon-Shaag A., Millodot M., Shneor E., Liu Y. The genetic and environmental factors for keratoconus. BioMed Research International. 2015;2015:19. doi: 10.1155/2015/795738.795738
    1. Gonzalez V., McDonnell P. J. Computer-assisted corneal topography in parents of patients with keratoconus. Archives of Ophthalmology. 1992;110(10):1412–1414. doi: 10.1001/archopht.1992.01080220074024.
    1. Rabinowitz Y. S., Garbus J., McDonnell P. J. Computer-assisted corneal topography in family members of patients with keratoconus. Archives of Ophthalmology. 1990;108(3):365–371. doi: 10.1001/archopht.1990.01070050063032.
    1. Saad A., Gatinel D. Topographic and tomographic properties of forme fruste keratoconus corneas. Investigative Ophthalmology & Visual Science. 2010;51(11):5546–5555. doi: 10.1167/iovs.10-5369.
    1. Wang Y., Rabinowitz Y. S., Rotter J. I., Yang H. Genetic epidemiological study of keratoconus: evidence for major gene determination. American Journal of Medical Genetics. 2000;93(5):403–409.
    1. Zadnik K., Barr J. T., Gordon M. O., Edrington T. B. Biomicroscopic signs and disease severity in keratoconus. Cornea. 1996;15(2):139–146. doi: 10.1097/00003226-199603000-00006.
    1. Hashemi H., Beiranvand A., Khabazkhoob M., et al. Prevalence of keratoconus in a population-based study in Shahroud. Cornea. 2013;32(11):1441–1445. doi: 10.1097/ico.0b013e3182a0d014.
    1. Ertan A., Muftuoglu O. Keratoconus clinical findings according to different age and gender groups. Cornea. 2008;27(10):1109–1113. doi: 10.1097/ICO.0b013e31817f815a.
    1. Léoni-Mesplié S., Mortemousque B., Touboul D., et al. Scalability and severity of keratoconus in children. The American Journal of Ophthalmology. 2012;154(1):56–62.e1. doi: 10.1016/j.ajo.2012.01.025.
    1. McMahon T. T., Edrington T. B., Szczotka-Flynn L., et al. Longitudinal changes in corneal curvature in keratoconus. Cornea. 2006;25(3):296–305. doi: 10.1097/01.ico.0000178728.57435.df.
    1. Al Suhaibani A. H., Al-Rajhi A. A., Al-Motowa S., Wagoner M. D., Al-Rajhi A. A. Inverse relationship between age and severity and sequelae of acute corneal hydrops associated with keratoconus. British Journal of Ophthalmology. 2007;91(7):984–985. doi: 10.1136/bjo.2005.085878.
    1. Barr J. T., Wilson B. S., Gordon M. O., et al. Estimation of the incidence and factors predictive of corneal scarring in the Collaborative Longitudinal Evaluation of Keratoconus (CLEK) study. Cornea. 2006;25(1):16–25. doi: 10.1097/01.ico.0000164831.87593.08.
    1. Reeves S. W., Stinnett S., Adelman R. A., Afshari N. A. Risk factors for progression to penetrating keratoplasty in patients with keratoconus. American Journal of Ophthalmology. 2005;140(4):607–611. doi: 10.1016/j.ajo.2005.05.029.
    1. Gordon M. O., Steger-May K., Szczotka-Flynn L., et al. Baseline factors predictive of incident penetrating keratoplasty in keratoconus. American Journal of Ophthalmology. 2006;142(6):923.e1–930.e1. doi: 10.1016/j.ajo.2006.07.026.
    1. Caporossi A., Mazzotta C., Baiocchi S., Caporossi T., Denaro R., Balestrazzi A. Riboflavin-UVA-induced corneal collagen cross-linking in pediatric patients. Cornea. 2012;31(3):227–231. doi: 10.1097/ICO.0b013e31822159f6.
    1. Caporossi A., Mazzotta C., Paradiso A. L., Baiocchi S., Marigliani D., Caporossi T. Transepithelial corneal collagen crosslinking for progressive keratoconus: 24-month clinical results. Journal of Cataract and Refractive Surgery. 2013;39(8):1157–1163. doi: 10.1016/j.jcrs.2013.03.026.
    1. Vinciguerra P., Albé E., Frueh B. E., Trazza S., Epstein D. Two-year corneal cross-linking results in patients younger than 18 years with documented progressive keratoconus. American Journal of Ophthalmology. 2012;154(3):520–526. doi: 10.1016/j.ajo.2012.03.020.
    1. Zotta P. G., Moschou K. A., Diakonis V. F., et al. Corneal collagen cross-linking for progressive keratoconus in pediatric patients: a feasibility study. Journal of Refractive Surgery. 2012;28(11):793–796. doi: 10.3928/1081597x-20121011-08.
    1. Chatzis N., Hafezi F. Progression of keratoconus and efficacy of corneal collagen cross-linking in children and adolescents. Journal of Refractive Surgery. 2012;28(11):753–758. doi: 10.3928/1081597X-20121011-01.
    1. Bakshi E., Barkana Y., Goldich Y., Avni I., Zadok D. Corneal cross-linking for progressive keratoconus in children: our experience. International Journal of Keratoconus and Ectatic Corneal Diseases. 2012;1:53–56. doi: 10.5005/jp-journals-10025-1009.
    1. Magli A., Forte R., Tortori A., Capasso L., Marsico G., Piozzi E. Epithelium-off corneal collagen cross-linking versus transepithelial cross-linking for pediatric keratoconus. Cornea. 2013;32(5):597–601. doi: 10.1097/ico.0b013e31826cf32d.
    1. Shetty R., Nagaraja H., Jayadev C., Pahuja N. K., Kurian Kummelil M., Nuijts R. M. Accelerated corneal collagen cross-linking in pediatric patients: two-year follow-up results. BioMed Research International. 2014;2014:5. doi: 10.1155/2014/894095.894095
    1. Soeters N., van der Valk R., Tahzib N. G. Corneal cross-linking for treatment of progressive keratoconus in various age groups. Journal of Refractive Surgery. 2014;30(7):454–460. doi: 10.3928/1081597x-20140527-03.
    1. Ozgurhan E. B., Kara N., Cankaya K. I., Kurt T., Demirok A. Accelerated corneal cross-linking in pediatric patients with keratoconus: 24-month outcomes. Journal of Refractive Surgery. 2014;30(12):843–849. doi: 10.3928/1081597x-20141120-01.
    1. Arora R., Gupta D., Goyal J. L., Jain P. Results of corneal collagen cross-linking in pediatric patients. Journal of Refractive Surgery. 2012;28(11):759–762. doi: 10.3928/1081597X-20121011-02.
    1. Salman A. G. Transepithelial corneal collagen crosslinking for progressive keratoconus in a pediatric age group. Journal of Cataract & Refractive Surgery. 2013;39(8):1164–1170. doi: 10.1016/j.jcrs.2013.03.017.
    1. Buzzonetti L., Petrocelli G. Transepithelial corneal cross-linking in pediatric patients: early results. Journal of Refractive Surgery. 2012;28(11):763–767. doi: 10.3928/1081597x-20121011-03.
    1. Kodavoor S. K., Arsiwala A. Z., Ramamurthy D. One-year clinical study on efficacy of corneal cross-linking in Indian children with progressive keratoconus. Cornea. 2014;33(9):919–922. doi: 10.1097/ICO.0000000000000197.
    1. Wollensak G., Spoerl E., Seiler T. Riboflavin/ultraviolet-a–induced collagen crosslinking for the treatment of keratoconus. American Journal of Ophthalmology. 2003;135(5):620–627. doi: 10.1016/s0002-9394(02)02220-1.
    1. Viswanathan D., Kumar N. L., Males J. J. Outcome of corneal collagen crosslinking for progressive keratoconus in paediatric patients. BioMed Research International. 2014;2014:5. doi: 10.1155/2014/140461.140461
    1. Sabti S., Tappeiner C., Frueh B. E. Corneal cross-linking in a 4-year-old child with keratoconus and down syndrome. Cornea. 2015;34(9):1157–1160. doi: 10.1097/ico.0000000000000491.
    1. Raiskup-Wolf F., Hoyer A., Spoerl E., Pillunat L. E. Collagen crosslinking with riboflavin and ultraviolet-A light in keratoconus: long-term results. Journal of Cataract & Refractive Surgery. 2008;34(5):796–801. doi: 10.1016/j.jcrs.2007.12.039.
    1. Ivarsen A., Hjortdal J. Collagen cross-linking for advanced progressive keratoconus. Cornea. 2013;32(7):903–906. doi: 10.1097/ico.0b013e31828321dd.
    1. Waszczykowska A., Jurowski P. Two-year accelerated corneal cross-linking outcome in patients with progressive keratoconus. BioMed Research International. 2015;2015:9. doi: 10.1155/2015/325157.325157
    1. Shetty R., Matalia H., Nuijts R., et al. Safety profile of accelerated corneal cross-linking versus conventional cross-linking: a comparative study on ex vivo-cultured limbal epithelial cells. British Journal of Ophthalmology. 2014;99(2):272–280. doi: 10.1136/bjophthalmol-2014-305495.
    1. Touboul D., Efron N., Smadja D., Praud D., Malet F., Colin J. Corneal confocal microscopy following conventional, transepithelial, and accelerated corneal collagen cross-linking procedures for keratoconus. Journal of Refractive Surgery. 2012;28(11):769–775. doi: 10.3928/1081597x-20121016-01.
    1. Ozgurhan E. B., Akcay B. I. S., Yildirim Y., Karatas G., Kurt T., Demirok A. Evaluation of corneal stromal demarcation line after two different protocols of accelerated corneal collagen cross-linking procedures using anterior segment optical coherence tomography and confocal microscopy. Journal of Ophthalmology. 2014;2014:5. doi: 10.1155/2014/981893.981893
    1. Leccisotti A., Islam T. Transepithelial corneal collagen cross-linking in keratoconus. Journal of Refractive Surgery. 2010;26(12):942–948. doi: 10.3928/1081597x-20100212-09.
    1. Scarcelli G., Kling S., Quijano E., Pineda R., Marcos S., Yun S. H. Brillouin microscopy of collagen crosslinking: noncontact depth-dependent analysis of corneal elastic modulus. Investigative Ophthalmology and Visual Science. 2013;54(2):1418–1425. doi: 10.1167/iovs.12-11387.

Source: PubMed

3
Abonneren