Short postsurgical antibiotic therapy for spinal infections: protocol of prospective, randomized, unblinded, noninferiority trials (SASI trials)

Michael Betz, Ilker Uçkay, Regula Schüpbach, Tanja Gröber, Sander M Botter, Jan Burkhard, Dominique Holy, Yvonne Achermann, Mazda Farshad, Michael Betz, Ilker Uçkay, Regula Schüpbach, Tanja Gröber, Sander M Botter, Jan Burkhard, Dominique Holy, Yvonne Achermann, Mazda Farshad

Abstract

Background: There are several open scientific questions regarding the optimal antibiotic treatment of spinal infections (SIs) with or without an implant. The duration of postsurgical antibiotic therapy is debated.

Methods: We will perform two unblinded randomized controlled trials (RCTs). We hypothesize that shorter durations of systemic antibiotic therapy after surgery for SI are noninferior (10% margin, 80% power, α = 5%) to existing (long) treatment durations. The RCTs allocate the participants to two arms of 2 × 59 episodes each: 3 vs. 6 weeks of targeted postsurgical systemic antibiotic therapy for implant-free SIs or 6 vs. 12 weeks for implant-related SIs. This equals a total of 236 adult SI episodes (randomization scheme 1:1) with a minimal follow-up of 12 months. All participants receive concomitant multidisciplinary surgical, re-educational, internist, and infectious disease care. We will perform three interim analyses that are evaluated, in a blinded analysis, by an independent study data monitoring committee. Besides the primary outcome of remission, we will also assess adverse events of antibiotic therapy, changes of the patient's nutritional status, the influence of immune suppression, total costs, functional scores, and the timely evolution of the (surgical) wounds. We define infection as the presence of local signs of inflammation (pus, wound discharge, calor, and rubor) together with microbiological evidence of the same pathogen(s) in at least two intraoperative samples, and we define remission as the absence of clinical, laboratory, and/or radiological evidence of (former or new) infection.

Discussion: Provided that there is adequate surgical debridement, both RCTs will potentially enable prescription of less antibiotics during the therapy of SI, with potentially less adverse events and reduced overall costs.

Trial registration: ClinicalTrials.gov, NCT04048304. Registered on 5 August 2019.

Protocol version: 2, 5 July 2019.

Keywords: Adverse event; Antibiotic duration; Failure; Financial cost; Osteomyelitis; Remission; Spinal infection; Spondylodesis.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Study criteria
Fig. 2
Fig. 2
Study flowchart
Fig. 3
Fig. 3
Standard Protocol Items: Recommendations for Interventional Trials (SPIRIT) chart of the enrollments and assessments during both randomized controlled trials

References

    1. Billières J, Uçkay I, Faundez A, Douissard J, Kuczma P, Suvà D, et al. Variables associated with remission in spinal SSI. J Spine Surg. 2016;2:128–134. doi: 10.21037/jss.2016.06.06.
    1. Farshad M, Bauer DE, Wechsler C, Gerber C, Aichmair A. Risk factors for perioperative morbidity in spine surgeries of different complexities: a multivariate analysis of 1,009 consecutive patients. Spine J. 2018;18:1625–1631. doi: 10.1016/j.spinee.2018.02.003.
    1. Achermann Y, Schroeder G, Tarazona D. Should prophylactic antibiotic prophylaxis be repeated during spine surgery? If so, when? Presented at Orthopaedic Research Society, Second International Consensus Meeting on Prosthetic Joint Infection, Philadelphia, PA, USA, July 2018; p. 632.
    1. Shillingford JN, Laratta JL, Reddy H, Ha A, Lehman RA, Jr, Lenke LG, et al. Postoperative surgical site infection after spine surgery: an update from the Scoliosis Research Society (SRS) morbidity and mortality database. Spine Deform. 2018;6:634–643. doi: 10.1016/j.jspd.2018.04.004.
    1. Schindler M, Bernard L, Belaieff W, Gamulin A, Racloz G, Emonet S, et al. Epidemiology of adverse events and Clostridium difficile-associated diarrhea during long-term antibiotic therapy for osteoarticular infections. J Infect. 2013;67:433–438. doi: 10.1016/j.jinf.2013.07.017.
    1. Li HK, Rombach I, Zambellas R, Walker AS, McNally MA, Atkins BL, et al. Oral versus intravenous antibiotics for bone and joint infection. N Engl J Med. 2019;380:425–436. doi: 10.1056/NEJMoa1710926.
    1. Lachin JM. A review of methods for futility stopping based on conditional power. Stat Med. 2005;24:2747–2764. doi: 10.1002/sim.2151.
    1. Snapinn S, Chen MG, Jiang Q, Koutsoukos T. Assessment of futility in clinical trials. Pharm Stat. 2006;5:273–281. doi: 10.1002/pst.216.
    1. Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data capture (REDCap)—a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform. 2009;42:377–381. doi: 10.1016/j.jbi.2008.08.010.
    1. Rod-Fleury T, Dunkel N, Assal M, Rohner P, Tahintzi P, Bernard L, et al. Duration of post-surgical antibiotic therapy for adult chronic osteomyelitis: a single-centre experience. Int Orthop. 2011;35:1725–1731. doi: 10.1007/s00264-011-1221-y.
    1. Uçkay I, Tovmirzaeva L, Garbino J, Rohner P, Tahintzi P, Suvà D, et al. Short parenteral antibiotic treatment for adult septic arthritis after successful drainage. Int J Infect Dis. 2013;17:199–205. doi: 10.1016/j.ijid.2011.12.019.
    1. Al-Mayahi M, Betz M, Müller DA, Stern R, Tahintzi P, Bernard L, et al. Remission rate of implant-related infections following revision surgery after fractures. Int Orthop. 2013;37:2253–2258. doi: 10.1007/s00264-013-2092-1.
    1. Chaussade H, Uçkay I, Vuagnat A, Druon J, Gras G, Rosset P, et al. Antibiotic therapy duration for prosthetic joint infections treated by debridement and implant retention (DAIR): similar long-term remission for 6 weeks as compared to 12 weeks. Int J Infect Dis. 2017;63:37–42. doi: 10.1016/j.ijid.2017.08.002.
    1. Dipaola CP, Saravanja DD, Boriani L, Zhang H, Boyd MC, Kwon BK, et al. Postoperative infection treatment score for the spine (PITSS): construction and validation of a predictive model to define need for single versus multiple irrigation and debridement for spinal surgical site infection. Spine J. 2012;12:218–230. doi: 10.1016/j.spinee.2012.02.004.
    1. Zimmerli W. Clinical practice. Vertebral osteomyelitis. N Engl J Med. 2010;362:1022–1029. doi: 10.1056/NEJMcp0910753.
    1. Bible JE, Biswas D, Devin CJ. Postoperative infections of the spine. Am J Orthop (Belle Mead NJ) 2011;40:264–271.
    1. Lazennec JY, Fourniols E, Lenoir T, Aubry A, Pissonnier ML, Issartel B, et al. Infections in the operated spine: update on risk management and therapeutic strategies. Orthop Traumatol Surg Res. 2011;97:107–116. doi: 10.1016/j.otsr.2011.07.002.
    1. Kuo CH, Wang ST, Yu WK, Chang MC, Liu CL, Chen TH. Postoperative spinal deep wound infection: a six-year review of 3230 selective procedures. J Chin Med Assoc. 2004;67:398–402.
    1. Gerometta A, Rodriguez Olaverri JC, Bitan F. Infections in spinal instrumentation. Int Orthop. 2012;36:457–464. doi: 10.1007/s00264-011-1426-0.
    1. Clark CE, Shufflebarger HL. Late-developing infection in instrumented idiopathic scoliosis. Spine (Phila Pa 1976) 1999;24:1909–1912. doi: 10.1097/00007632-199909150-00008.
    1. Richards BR, Emara KM. Delayed infections after posterior TSRH spinal instrumentation for idiopathic scoliosis: revisited. Spine (Phila Pa 1976) 2001;26:1990–1996. doi: 10.1097/00007632-200109150-00009.
    1. Balagué N, Uçkay I, Vostrel P, Hinrikson H, Van Aaken I, Beaulieu JY. Non-tuberculous mycobacterial infections of the hand. Chir Main. 2015;34:18–23. doi: 10.1016/j.main.2014.12.004.
    1. Uçkay I, Bouchuiguir-Wafa K, Ninet B, Emonet S, Assal M, Harbarth S, et al. Posttraumatic ankle arthritis due to a novel Nocardia species. Infection. 2010;38:407–412. doi: 10.1007/s15010-010-0027-y.
    1. Uçkay I, Jugun K, Gamulin A, Wagener J, Hoffmeyer P, Lew D. Chronic osteomyelitis. Curr Infect Dis Rep. 2012;14:566–575. doi: 10.1007/s11908-012-0286-0.
    1. Jugun K, Richard JC, Lipsky BA, Kressmann B, Pittet-Cuenod B, Suvà D, et al. Factors associated with treatment failure of infected pressure sores. Ann Surg. 2016;264:399–403. doi: 10.1097/SLA.0000000000001497.
    1. Tone A, Nguyen S, Devemy F, Topolinski H, Valette M, Cazaubiel M, et al. Six-week versus twelve-week antibiotic therapy for non-surgically treated diabetic foot osteomyelitis: a multicenter open-label controlled randomized study. Diabetes Care. 2015;38:302–307. doi: 10.2337/dc14-1514.
    1. Gariani K, Lebowitz D, von Dach E, Kressmann B, Lipsky BA, Uçkay I. Remission in diabetic foot infections: duration of antibiotic therapy and other possible associated factors. Diabetes Obes Metab. 2019;21:244–251. doi: 10.1111/dom.13507.
    1. Orthopaedic Research Society. International Consensus Meeting on Musculoskeletal Infection (ICMMI). Philadelphia, PA, USA, July 25–27, 2018. . Accessed 24 May 2019.
    1. Weichert S, Sharland M, Clarke NM, Faust SN. Acute haematogenous osteomyelitis in children: is there any evidence for how long we should treat? Curr Opin Infect Dis. 2008;21:258–262. doi: 10.1097/QCO.0b013e3283005441.
    1. Peltola H, Paakkonen M, Kallio P, Kallio MJ. Prospective, randomized trial of 10 days versus 30 days of antimicrobial treatment, including a short-term course of parenteral therapy, for childhood septic arthritis. Clin Infect Dis. 2009;48:1201–1210. doi: 10.1086/597582.
    1. Vinod MB, Matussek J, Curtis N, Graham HK, Carapetis JR. Duration of antibiotics in children with osteomyelitis and septic arthritis. J Paediatr Child Health. 2002;38:363–367. doi: 10.1046/j.1440-1754.2002.00007.x.
    1. de Graaf H, Sukhtankar P, Arch B, Ahmad N, Lees A, Bennett A, et al. Duration of intravenous antibiotic therapy for children with acute osteomyelitis or septic arthritis: a feasibility study. Health Technol Assess. 2017;21:1–164. doi: 10.3310/hta21480.
    1. Lazzarini L, Lipsky BA, Mader JT. Antibiotic treatment of osteomyelitis: what have we learned from 30 years of clinical trials? Int J Infect Dis. 2005;9:127–138. doi: 10.1016/j.ijid.2004.09.009.
    1. Zimmerli W, Trampuz A, Ochsner PE. Prosthetic-joint infections. N Engl J Med. 2004;351:1645–1654. doi: 10.1056/NEJMra040181.
    1. Trampuz A, Zimmerli W. Antimicrobial agents in orthopaedic surgery: prophylaxis and treatment. Drugs. 2006;66:1089–1105. doi: 10.2165/00003495-200666080-00005.
    1. Pulcini C, Couadau T, Bernard E, Lorthat-Jacob A, Bauer T, Cua E, et al. Adverse effects of parenteral antimicrobial therapy for chronic bone infections. Eur J Clin Microbiol Infect Dis. 2008;27:1227–1232. doi: 10.1007/s10096-008-0570-y.
    1. Mermel LA, Farr BM, Sherertz RJ, Raad II, O’Grady N, Harris JS, et al. Guidelines for the management of intravascular catheter-related infections. Infect Control Hosp Epidemiol. 2001;22:222–242. doi: 10.1086/501893.
    1. Smilack JD, Flittie WH, Williams TW., Jr Bone concentrations of antimicrobial agents after parenteral administration. Antimicrob Agents Chemother. 1976;9:169–171. doi: 10.1128/AAC.9.1.169.
    1. Darley ES, MacGowan AP. Antibiotic treatment of gram-positive bone and joint infections. J Antimicrob Chemther. 2004;53:928–935. doi: 10.1093/jac/dkh191.
    1. Sattar MA, Barrett SP, Cawley MI. Concentrations of some antibiotics in synovial fluid after oral administration, with special reference to anti-staphylococcal activity. Ann Rheum Dis. 1983;42:67–74. doi: 10.1136/ard.42.1.67.
    1. Daver NG, Shelburne SA, Atmar RL, Giordano TP, Stager CE, Reitman CA, et al. Oral step-down therapy is comparable to intravenous therapy for Staphylococcus aureus osteomyelitis. J Infect. 2007;54:539–544. doi: 10.1016/j.jinf.2006.11.011.
    1. Conterno LO, da Silva Filho CR. Antibiotics for treating chronic osteomyelitis in adults. Cochrane Database Syst Rev. 2009;3:CD004439.
    1. Glassman SD, Dimar JR, Puno RM, Johnson JR. Salvage of instrumental lumbar fusions complicated by surgical wound infection. Spine (Phila Pa 1976) 1996;21:2163–2169. doi: 10.1097/00007632-199609150-00021.
    1. Berendt AR, Peters EJ, Bakker K, Embil JM, Eneroth M, Hinchliffe RJ, et al. Specific guidelines for treatment of diabetic foot osteomyelitis. Diabetes Metab Res Rev. 2008;24:190–191. doi: 10.1002/dmrr.853.
    1. Byren I, Bejon P, Atkins BL, Angus B, Masters S, McLardy-Smith P, et al. One hundred and twelve infected arthroplasties treated with ‘DAIR’ (debridement, antibiotics and implant retention): antibiotic duration and outcome. J Antimicrob Chemother. 2009;63:1264–1271. doi: 10.1093/jac/dkp107.
    1. Zimmerli W, Widmer AF, Blatter M, Frei R, Ochsner PE. Role of rifampin for treatment of orthopedic implant-related staphylococcal infections: a randomized controlled trial. JAMA. 1998;279:1537–1541. doi: 10.1001/jama.279.19.1537.
    1. Toma MB, Smith KM, Martin CA, Rapp RP. Pharmacokinetic considerations in the treatment of methicillin-resistant Staphylococcus aureus osteomyelitis. Orthopedics. 2006;29:497–501. doi: 10.3928/01477447-20060601-11.
    1. Al-Mayahi M, Cian A, Kressmann B, de Kalbermatten B, Rohner P, Egloff M, et al. Associations of diabetes mellitus with orthopaedic infections. Infect Dis. 2016;48:70–73. doi: 10.3109/23744235.2015.1082620.
    1. Uçkay I, Harbarth S, Peter R, Lew D, Hoffmeyer P, Pittet D. Preventing surgical site infections. Expert Rev Anti-Infect Ther. 2010;8:657–670. doi: 10.1586/eri.10.41.
    1. Guanziroli N, Hannouche D, Uçkay I. Is malnutrition associated with orthopaedic infections? A single-centre pilot evaluation. J Hosp Infect. 2019;101:229–230. doi: 10.1016/j.jhin.2018.11.006.
    1. Schütz T, Valentini L, Plauth M. Nutritional screening according to the ESPEN guidelines 2002 [in German] Aktuel Ernaehr Med. 2005;30:99–103. doi: 10.1055/s-2004-834733.

Source: PubMed

3
Abonneren