Impaired nitric oxide bioavailability and L-arginine reversible endothelial dysfunction in adults with falciparum malaria

Tsin W Yeo, Daniel A Lampah, Retno Gitawati, Emiliana Tjitra, Enny Kenangalem, Yvette R McNeil, Christabelle J Darcy, Donald L Granger, J Brice Weinberg, Bert K Lopansri, Ric N Price, Stephen B Duffull, David S Celermajer, Nicholas M Anstey, Tsin W Yeo, Daniel A Lampah, Retno Gitawati, Emiliana Tjitra, Enny Kenangalem, Yvette R McNeil, Christabelle J Darcy, Donald L Granger, J Brice Weinberg, Bert K Lopansri, Ric N Price, Stephen B Duffull, David S Celermajer, Nicholas M Anstey

Abstract

Severe falciparum malaria (SM) is associated with tissue ischemia related to cytoadherence of parasitized erythrocytes to microvascular endothelium and reduced levels of NO and its precursor, l-arginine. Endothelial function has not been characterized in SM but can be improved by l-arginine in cardiovascular disease. In an observational study in Indonesia, we measured endothelial function using reactive hyperemia-peripheral arterial tonometry (RH-PAT) in 51 adults with SM, 48 patients with moderately severe falciparum malaria (MSM), and 48 controls. The mean RH-PAT index was lower in SM (1.41; 95% confidence interval [CI] = 1.33-1.47) than in MSM (1.82; 95% CI = 1.7-2.02) and controls (1.93; 95% CI = 1.8-2.06; P < 0.0001). Endothelial dysfunction was associated with elevated blood lactate and measures of hemolysis. Exhaled NO was also lower in SM relative to MSM and controls. In an ascending dose study of intravenous l-arginine in 30 more patients with MSM, l-arginine increased the RH-PAT index by 19% (95% CI = 6-34; P = 0.006) and exhaled NO by 55% (95% CI = 32-73; P < 0.0001) without important side effects. Hypoargininemia and hemolysis likely reduce NO bioavailability. Endothelial dysfunction in malaria is nearly universal in severe disease, is reversible with l-arginine, and likely contributes to its pathogenesis. Clinical trials in SM of adjunctive agents to improve endothelial NO bioavailability, including l-arginine, are warranted.

Figures

Figure 1.
Figure 1.
Study profile of patients recruited in stages 1 and 2 of the study. Stage 1 was an observational study to compare endothelial function among individuals with SM, MSM, and HC. Stage 2 was intervention study to measure the effect of l-arginine or saline infusion on RH-PAT index and exhaled NO in MSM.
Figure 2.
Figure 2.
RH-PAT index, plasma l-arginine concentrations, and exhaled NO in each study group at enrollment. (A) Comparison of RH-PAT index at enrollment among disease categories (P < 0.0001 by ANOVA). Dots and error bars indicate means and 95% CIs. Horizontal line indicates an RH-PAT index of 1.67; values below this represent impaired endothelial function (reference 23). (B) Comparison of plasma l-arginine concentrations among disease categories (P < 0.0001 by ANOVA). Dots and bars indicate means and 95% CIs. (C) Comparison of exhaled NO concentrations at enrollment among disease categories (P = 0.049 by the Kruskal-Wallis test). Central line and box indicate the median and interquartile range. Whiskers indicate range.
Figure 3.
Figure 3.
Change in RH-PAT index and exhaled NO after l-arginine infusion. (A) Change in RH-PAT index in MSM after infusion of 100 ml saline (3%; 95% CI = from −1 to 12) or l-arginine (19%; 95% CI = 8–33). p-values refer to paired comparisons before and after infusion. Dots and bars indicate means and 95% CIs. (B) Dose-related change in RH-PAT index after intravenous l-arginine infusion in the a priori–defined subset of patients with MSM who had baseline endothelial dysfunction (RH-PAT index <1.67; n = 14; P = 0.03). Lines show RH-PAT index before and after intravenous l-arginine at doses of 3, 6, and 12 g. In the 16 patients without baseline impairment of endothelial function (RH-PAT index >1.67), there was no significant change in RH-PAT after l-arginine infusion. (C) Change in exhaled NO concentration in MSM after infusion of 100 ml saline (18%; 95% CI = from −2 to 28) or l-arginine (55%; 95% CI = 39–71). p-values refer to paired comparisons before and after infusion. Dots and bars indicate means and 95% CIs.

References

    1. The SEAQUAMAT Trial Group. 2005. Artesunate versus quinine for treatment of severe falciparum malaria: a randomised trial. Lancet. 366:717–725.
    1. Pasvol, G. 2005. Management of severe malaria: interventions and controversies. Infect. Dis. Clin. North Am. 19:211–240.
    1. Marchiafava, E., and A. Bignami. 1894. On Summer-Autumnal Fever. London: New Sydenham Society.
    1. MacPherson, G.G., M.J. Warrell, N.J. White, S. Looareesuwan, and D.A. Warrell. 1985. Human cerebral malaria. A quantitative ultrastructural analysis of parasitized erythrocyte sequestration. Am. J. Pathol. 119:385–401.
    1. Turner, G.D., H. Morrison, M. Jones, T.M. Davis, S. Looareesuwan, I.D. Buley, K.C. Gatter, C.I. Newbold, S. Pukritayakamee, B. Nagachinta, et al. 1994. An immunohistochemical study of the pathology of fatal malaria. Evidence for widespread endothelial activation and a potential role for intercellular adhesion molecule-1 in cerebral sequestration. Am. J. Pathol. 145:1057–1069.
    1. Taylor, T.E., W.J. Fu, R.A. Carr, R.O. Whitten, J.S. Mueller, N.G. Fosiko, S. Lewallen, N.G. Liomba, and M.E. Molyneux. 2004. Differentiating the pathologies of cerebral malaria by postmortem parasite counts. Nat. Med. 10:143–145.
    1. Turner, G.D., V.C. Ly, T.H. Nguyen, T.H. Tran, H.P. Nguyen, D. Bethell, S. Wyllie, K. Louwrier, S.B. Fox, K.C. Gatter, et al. 1998. Systemic endothelial activation occurs in both mild and severe malaria. Correlating dermal microvascular endothelial cell phenotype and soluble cell adhesion molecules with disease severity. Am. J. Pathol. 152:1477–1487.
    1. Pongponratn, E., G.D. Turner, N.P. Day, N.H. Phu, J.A. Simpson, K. Stepniewska, N.T. Mai, P. Viriyavejakul, S. Looareesuwan, T.T. Hien, et al. 2003. An ultrastructural study of the brain in fatal Plasmodium falciparum malaria. Am. J. Trop. Med. Hyg. 69:345–359.
    1. Anstey, N.M., J.B. Weinberg, M.Y. Hassanali, E.D. Mwaikambo, D. Manyenga, M.A. Misukonis, D.R. Arnelle, D. Hollis, M.I. McDonald, and D.L. Granger. 1996. Nitric oxide in Tanzanian children with malaria: inverse relationship between malaria severity and nitric oxide production/nitric oxide synthase type 2 expression. J. Exp. Med. 184:557–567.
    1. Lopansri, B.K., N.M. Anstey, J.B. Weinberg, G.J. Stoddard, M.R. Hobbs, M.C. Levesque, E.D. Mwaikambo, and D.L. Granger. 2003. Low plasma arginine concentrations in children with cerebral malaria and decreased nitric oxide production. Lancet. 361:676–678.
    1. Gramaglia, I., P. Sobolewski, D. Meays, R. Contreras, J.P. Nolan, J.A. Frangos, M. Intaglietta, and H.C. van der Heyde. 2006. Low nitric oxide bioavailability contributes to the genesis of experimental cerebral malaria. Nat. Med. 12:1417–1422.
    1. De Caterina, R., P. Libby, H.B. Peng, V.J. Thannickal, T.B. Rajavashisth, M.A. Gimbrone Jr., W.S. Shin, and J.K. Liao. 1995. Nitric oxide decreases cytokine-induced endothelial activation. Nitric oxide selectively reduces endothelial expression of adhesion molecules and proinflammatory cytokines. J. Clin. Invest. 96:60–68.
    1. Serirom, S., W.H. Raharjo, K. Chotivanich, S. Loareesuwan, P. Kubes, and M. Ho. 2003. Anti-adhesive effect of nitric oxide on Plasmodium falciparum cytoadherence under flow. Am. J. Pathol. 162:1651–1660.
    1. Rother, R.P., L. Bell, P. Hillmen, and M.T. Gladwin. 2005. The clinical sequelae of intravascular hemolysis and extracellular plasma hemoglobin: a novel mechanism of human disease. JAMA. 293:1653–1662.
    1. Morris, C.R., S.M. Morris Jr., W. Hagar, J. Van Warmerdam, S. Claster, D. Kepka-Lenhart, L. Machado, F.A. Kuypers, and E.P. Vichinsky. 2003. Arginine therapy: a new treatment for pulmonary hypertension in sickle cell disease? Am. J. Respir. Crit. Care Med. 168:63–69.
    1. Morris, C.R., G.J. Kato, M. Poljakovic, X. Wang, W.C. Blackwelder, V. Sachdev, S.L. Hazen, E.P. Vichinsky, S.M. Morris Jr., and M.T. Gladwin. 2005. Dysregulated arginine metabolism, hemolysis-associated pulmonary hypertension, and mortality in sickle cell disease. JAMA. 294:81–90.
    1. Reiter, C.D., X. Wang, J.E. Tanus-Santos, N. Hogg, R.O. Cannon III, A.N. Schechter, and M.T. Gladwin. 2002. Cell-free hemoglobin limits nitric oxide bioavailability in sickle-cell disease. Nat. Med. 8:1383–1389.
    1. Kato, G.J., V. McGowan, R.F. Machado, J.A. Little, J. Taylor VI, C.R. Morris, J.S. Nichols, X. Wang, M. Poljakovic, S.M. Morris Jr., and M.T. Gladwin. 2006. Lactate dehydrogenase as a biomarker of hemolysis-associated nitric oxide resistance, priapism, leg ulceration, pulmonary hypertension, and death in patients with sickle cell disease. Blood. 107:2279–2285.
    1. Deanfield, J.E., J.P. Halcox, and T.J. Rabelink. 2007. Endothelial function and dysfunction: testing and clinical relevance. Circulation. 115:1285–1295.
    1. Kamada, Y., H. Nagaretani, S. Tamura, T. Ohama, T. Maruyama, H. Hiraoka, S. Yamashita, A. Yamada, S. Kiso, Y. Inui, et al. 2001. Vascular endothelial dysfunction resulting from L-arginine deficiency in a patient with lysinuric protein intolerance. J. Clin. Invest. 108:717–724.
    1. Creager, M.A., S.J. Gallagher, X.J. Girerd, S.M. Coleman, V.J. Dzau, and J.P. Cooke. 1992. L-arginine improves endothelium-dependent vasodilation in hypercholesterolemic humans. J. Clin. Invest. 90:1248–1253.
    1. Tran, T.H., N.P. Day, H.P. Nguyen, T.H. Nguyen, P.L. Pham, X.S. Dinh, V.C. Ly, V. Ha, D. Waller, T.E. Peto, and N.J. White. 1996. A controlled trial of artemether or quinine in Vietnamese adults with severe falciparum malaria. N. Engl. J. Med. 335:76–83.
    1. Yinon, D., L. Lowenstein, S. Suraya, R. Beloosesky, O. Zmora, A. Malhotra, and G. Pillar. 2006. Pre-eclampsia is associated with sleep-disordered breathing and endothelial dysfunction. Eur. Respir. J. 27:328–333.
    1. Nohria, A., M. Gerhard-Herman, M.A. Creager, S. Hurley, D. Mitra, and P. Ganz. 2006. Role of nitric oxide in the regulation of digital pulse volume amplitude in humans. J. Appl. Physiol. 101:545–548.
    1. Vallbracht, K.B., P.L. Schwimmbeck, B. Seeberg, U. Kuhl, and H.P. Schultheiss. 2002. Endothelial dysfunction of peripheral arteries in patients with immunohistologically confirmed myocardial inflammation correlates with endothelial expression of human leukocyte antigens and adhesion molecules in myocardial biopsies. J. Am. Coll. Cardiol. 40:515–520.
    1. Day, N.P., N.H. Phu, N.T. Mai, T.T. Chau, P.P. Loc, L.V. Chuong, D.X. Sinh, P. Holloway, T.T. Hien, and N.J. White. 2000. The pathophysiologic and prognostic significance of acidosis in severe adult malaria. Crit. Care Med. 28:1833–1840.
    1. Hunt, N.H., J. Golenser, T. Chan-Ling, S. Parekh, C. Rae, S. Potter, I.M. Medana, J. Miu, and H.J. Ball. 2006. Immunopathogenesis of cerebral malaria. Int. J. Parasitol. 36:569–582.
    1. Spronk, P.E., C. Ince, M.J. Gardien, K.R. Mathura, H.M. Oudemans-van Straaten, and D.F. Zandstra. 2002. Nitroglycerin in septic shock after intravascular volume resuscitation. Lancet. 360:1395–1396.
    1. Wu, G., and S.M. Morris Jr. 1998. Arginine metabolism: nitric oxide and beyond. Biochem. J. 336:1–17.
    1. Xia, Y., V.L. Dawson, T.M. Dawson, S.H. Snyder, and J.L. Zweier. 1996. Nitric oxide synthase generates superoxide and nitric oxide in arginine-depleted cells leading to peroxynitrite-mediated cellular injury. Proc. Natl. Acad. Sci. USA. 93:6770–6774.
    1. Stuehr, D., S. Pou, and G.M. Rosen. 2001. Oxygen reduction by nitric-oxide synthases. J. Biol. Chem. 276:14533–14536.
    1. Clark, I.A., M.M. Awburn, R.O. Whitten, C.G. Harper, N.G. Liomba, M.E. Molyneux, and T.E. Taylor. 2003. Tissue distribution of migration inhibitory factor and inducible nitric oxide synthase in falciparum malaria and sepsis in African children. Malar. J. 2:6.
    1. Argaman, Z., V.R. Young, N. Noviski, L. Castillo-Rosas, X.M. Lu, D. Zurakowski, M. Cooper, C. Davison, J.F. Tharakan, A. Ajami, and L. Castillo. 2003. Arginine and nitric oxide metabolism in critically ill septic pediatric patients. Crit. Care Med. 31:591–597.
    1. Bachetti, T., L. Comini, G. Francolini, D. Bastianon, B. Valetti, M. Cadei, P. Grigolato, H. Suzuki, D. Finazzi, A. Albertini, et al. 2004. Arginase pathway in human endothelial cells in pathophysiological conditions. J. Mol. Cell. Cardiol. 37:515–523.
    1. Hesse, M., M. Modolell, A.C. La Flamme, M. Schito, J.M. Fuentes, A.W. Cheever, E.J. Pearce, and T.A. Wynn. 2001. Differential regulation of nitric oxide synthase-2 and arginase-1 by type 1/type 2 cytokines in vivo: granulomatous pathology is shaped by the pattern of L-arginine metabolism. J. Immunol. 167:6533–6544.
    1. Freedman, J.E., and J. Loscalzo. 2003. Nitric oxide and its relationship to thrombotic disorders. J. Thromb. Haemost. 1:1183–1188.
    1. Grau, G.E., C.D. Mackenzie, R.A. Carr, M. Redard, G. Pizzolato, C. Allasia, C. Cataldo, T.E. Taylor, and M.E. Molyneux. 2003. Platelet accumulation in brain microvessels in fatal pediatric cerebral malaria. J. Infect. Dis. 187:461–466.
    1. Pain, A., D.J. Ferguson, O. Kai, B.C. Urban, B. Lowe, K. Marsh, and D.J. Roberts. 2001. Platelet-mediated clumping of Plasmodium falciparum-infected erythrocytes is a common adhesive phenotype and is associated with severe malaria. Proc. Natl. Acad. Sci. USA. 98:1805–1810.
    1. Bor-Kucukatay, M., R.B. Wenby, H.J. Meiselman, and O.K. Baskurt. 2003. Effects of nitric oxide on red blood cell deformability. Am. J. Physiol. Heart Circ. Physiol. 284:H1577–H1584.
    1. Dondorp, A.M., E. Pongponratn, and N.J. White. 2004. Reduced microcirculatory flow in severe falciparum malaria: pathophysiology and electron-microscopic pathology. Acta Trop. 89:309–317.
    1. Anstey, N.M., D.L. Granger, and J.B. Weinberg. 1997. Nitrate levels in malaria. Trans. R. Soc. Trop. Med. Hyg. 91:238–240.
    1. Granger, D.L., N.M. Anstey, W.C. Miller, and J.B. Weinberg. 1999. Measuring nitric oxide production in human clinical studies. Methods Enzymol. 301:49–61.
    1. Maguire, G.P., T. Handojo, M.C. Pain, E. Kenangalem, R.N. Price, E. Tjitra, and N.M. Anstey. 2005. Lung injury in uncomplicated and severe falciparum malaria: a longitudinal study in papua, Indonesia. J. Infect. Dis. 192:1966–1974.
    1. Brett, S.J., and T.W. Evans. 1998. Measurement of endogenous nitric oxide in the lungs of patients with the acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 157:993–997.
    1. McClintock, D.E., L.B. Ware, M.D. Eisner, N. Wickersham, B.T. Thompson, and M.A. Matthay. 2007. Higher urine nitric oxide is associated with improved outcomes in patients with acute lung injury. Am. J. Respir. Crit. Care Med. 175:256–262.
    1. Rothenberg, M.E., M.P. Doepker, I.P. Lewkowich, M.G. Chiaramonte, K.F. Stringer, F.D. Finkelman, C.L. MacLeod, L.G. Ellies, and N. Zimmermann. 2006. Cationic amino acid transporter 2 regulates inflammatory homeostasis in the lung. Proc. Natl. Acad. Sci. USA. 103:14895–14900.
    1. World Health Organization. 2000. Severe falciparum malaria. Trans. R. Soc. Trop. Med. Hyg. 94(Suppl. 1):S1–90.
    1. Sartori, C., M. Lepori, T. Busch, H. Duplain, W. Hildebrandt, P. Bartsch, P. Nicod, K.J. Falke, and U. Scherrer. 1999. Exhaled nitric oxide does not provide a marker of vascular endothelial function in healthy humans. Am. J. Respir. Crit. Care Med. 160:879–882.
    1. Pietropaoli, A.P., P.T. Perkins, I.B. Perillo, and R.W. Hyde. 2000. Exhaled nitric oxide does not provide a marker of vascular endothelial function in healthy humans. Am. J. Respir. Crit. Care Med. 161:2113–2114.
    1. Garba, I.H., and G.A. Ubom. 2005. Total serum lactate dehydrogenase activity in acute Plasmodium falciparum malaria infection. Singapore Med. J. 46:632–634.
    1. Jarvisalo, M.J., L. Jartti, J. Marniemi, T. Ronnemaa, J.S. Viikari, T. Lehtimaki, and O.T. Raitakari. 2006. Determinants of short-term variation in arterial flow-mediated dilatation in healthy young men. Clin. Sci. (Lond.). 110:475–482.
    1. Ratcliff, A., H. Siswantoro, E. Kenangalem, R. Maristela, R.M. Wuwung, F. Laihad, E.P. Ebsworth, N.M. Anstey, E. Tjitra, and R.N. Price. 2007. Two fixed-dose artemisinin combinations for drug-resistant falciparum and vivax malaria in Papua, Indonesia: an open-label randomised comparison. Lancet. 369:757–765.
    1. Tjitra, E., S. Suprianto, B.J. Currie, P.S. Morris, J.R. Saunders, and N.M. Anstey. 2001. Therapy of uncomplicated falciparum malaria: a randomized trial comparing artesunate plus sulfadoxine-pyrimethamine versus sulfadoxine-pyrimethamine alone in Irian Jaya, Indonesia. Am. J. Trop. Med. Hyg. 65:309–317.
    1. Davis, T.M., H.L. Phuong, K.F. Ilett, N.C. Hung, K.T. Batty, V.D. Phuong, S.M. Powell, H.V. Thien, and T.Q. Binh. 2001. Pharmacokinetics and pharmacodynamics of intravenous artesunate in severe falciparum malaria. Antimicrob. Agents Chemother. 45:181–186.
    1. van Wandelen, C., and S.A. Cohen. 1997. Using quaternary high-performance liquid chromatography eluent systems for separating 6-aminoquinolyl-N-hydroxysuccinimidylcarbamate-derivatized amino acid mixtures. J. Chromatogr. A. 763:11–22.
    1. Dondorp, A.M., V. Desakorn, W. Pongtavornpinyo, D. Sahassananda, K. Silamut, K. Chotivanich, P.N. Newton, P. Pitisuttithum, A.M. Smithyman, N.J. White, and N.P. Day. 2005. Estimation of the total parasite biomass in acute falciparum malaria from plasma PfHRP2. PLoS Med. 2:e204.
    1. Kuvin, J.T., A.R. Patel, K.A. Sliney, N.G. Pandian, J. Sheffy, R.P. Schnall, R.H. Karas, and J.E. Udelson. 2003. Assessment of peripheral vascular endothelial function with finger arterial pulse wave amplitude. Am. Heart J. 146:168–174.
    1. Bland, J.M., and D.G. Altman. 1986. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1:307–310.
    1. Bonetti, P.O., G.W. Barsness, P.C. Keelan, T.I. Schnell, G.M. Pumper, J.T. Kuvin, R.P. Schnall, D.R. Holmes, S.T. Higano, and A. Lerman. 2003. Enhanced external counterpulsation improves endothelial function in patients with symptomatic coronary artery disease. J. Am. Coll. Cardiol. 41:1761–1768.
    1. American Thoracic Society and European Respiratory Society. 2005. ATS/ERS recommendations for standardized procedures for the online and offline measurement of exhaled lower respiratory nitric oxide and nasal nitric oxide, 2005. Am. J. Respir. Crit. Care Med. 171:912–930.

Source: PubMed

3
Abonneren