Vitrectomized versus non-vitrectomized eyes in diabetic macular edema response to ranibizumab-retinal layers thickness as prognostic biomarkers

Bernardete Pessoa, João Leite, João Heitor, João Coelho, Sérgio Monteiro, Constança Coelho, João Figueira, Angelina Meireles, João Nuno Melo-Beirão, Bernardete Pessoa, João Leite, João Heitor, João Coelho, Sérgio Monteiro, Constança Coelho, João Figueira, Angelina Meireles, João Nuno Melo-Beirão

Abstract

To evaluate the role of the vitreous in the management of diabetic macular edema with ranibizumab intravitreal injections in a pro re nata regimen. Prospective study of 50 consecutive eyes with diabetic macular edema treated with ranibizumab and 12 months of follow-up. Primary endpoint: to assess differences between non-vitrectomized and vitrectomized eyes in the number injections needed to control the edema. Secondary endpoints: comparison of groups regarding best corrected visual acuity, central foveal thickness and thickness of seven retinal layers. 46 eyes from 38 patients, 10 vitrectomized and 36 non-vitrectomized, completed the follow-up. At month 12, the two groups achieved an equivalent anatomical outcome and needed a similar number of ranibizumab intravitreal injections. In vitrectomized eyes final visual acuity was worse when baseline retinal nerve fiber layers in the central foveal subfield were thicker, showing a strong correlation (r = - 0.942, p < 0.001). A similar, albeit moderate correlation was observed in non-vitrectomized eyes (r = - 0.504, p = 0.002). A decrease of retinal nerve fiber layers inner ring thickness was correlated with a better final visual acuity only in vitrectomized eyes (r = 0.734, p = 0.016). The effect of diabetic macular edema seems to be worse in vitrectomized eyes, with a thinner inner retina reservoir.Clinicaltrials.govNCT04387604.

Conflict of interest statement

The authors declare no competing interests.

© 2021. The Author(s).

Figures

Figure 1
Figure 1
BCVA evolution from baseline to the end of follow-up. Mean ± 95% CI. p = ns at each time point using the Mann–Whitney U test.
Figure 2
Figure 2
CFT evolution from baseline to the end of follow-up. Mean ± 95% CI. p = ns at each time point using the Mann–Whitney U test.
Figure 3
Figure 3
Retinal layers were identified by automatic segmentation in SD-OCT—retinal nerve fibre layer (RNFL), ganglion cell layer (GCL), inner plexiform layer (IPL), inner nuclear layer (INL), outer plexiform layer (OPL), outer nuclear layer (ONL) and outer retinal layer (ORL)—between the external limiting membrane and the bruch membrane (top panel). The mean thickness of each individual retinal layer was analysed in: (1) the nine individual ETDRS subfields (A); the fovea (or central circle with a diameter of 1 mm) (B); the inner ring ETDRS subfields (C); the outer ring ETDRS subfields (D); and globally (I). For RNFL and GCL the mean layer thicknesses of the outer and inner temporal (E), nasal (F), superior (G) and inferior (H) (bottom panel). Bottom panel adapted from Won et al..

References

    1. Ding J, Wong TY. Current epidemiology of diabetic retinopathy and diabetic macular edema. Curr. Diab. Rep. 2012;12:346–354. doi: 10.1007/s11892-012-0283-6.
    1. Schmidt-Erfurth U, et al. Guidelines for the management of diabetic macular edema by the european society of retina specialists (EURETINA) Ophthalmologica. 2017;237:185–222. doi: 10.1159/000458539.
    1. Souied EH, et al. Severe ocular inflammation following ranibizumab or aflibercept injections for age-related macular degeneration: A retrospective claims database analysis. Ophthalmic Epidemiol. 2016;23:71–79. doi: 10.3109/09286586.2015.1090004.
    1. Khanani AM, Cohen GL, Zawadzki R. A prospective masked clinical assessment of inflammation after intravitreal injection of ranibizumab or aflibercept. J Ocul Pharmacol Ther. 2016;32:216–218. doi: 10.1089/jop.2015.0152.
    1. Elman MJ, et al. Intravitreal Ranibizumab for diabetic macular edema with prompt versus deferred laser treatment: 5-year randomized trial results. Ophthalmology. 2015;122:375–381. doi: 10.1016/j.ophtha.2014.08.047.
    1. Wykoff CC, et al. Long-term outcomes with as-needed aflibercept in diabetic macular oedema: 2-year outcomes of the ENDURANCE extension study. Br. J. Ophthalmol. 2018;102:631–636. doi: 10.1136/bjophthalmol-2017-310941.
    1. Ashraf M, Souka AA, ElKayal H. Short-term effects of early switching to ranibizumab or aflibercept in diabetic macular edema cases with non-response to bevacizumab. Ophthalmic Surg. Lasers Imaging Retina. 2017;48:230–236. doi: 10.3928/23258160-20170301-06.
    1. Wells JA, et al. Aflibercept, bevacizumab, or ranibizumab for diabetic macular edema: Two-year results from a comparative effectiveness randomized clinical trial. Ophthalmology. 2016;123:1351–1359. doi: 10.1016/j.ophtha.2016.02.022.
    1. Hikichi T, et al. Association between the short-term natural history of diabetic macular edema and the vitreomacular relationship in type II diabetes mellitus. Ophthalmology. 1997;104:473–478. doi: 10.1016/S0161-6420(97)30289-9.
    1. Mojana F, et al. The role of abnormal vitreomacular adhesion in age-related macular degeneration: Spectral optical coherence tomography and surgical results. Am J Ophthalmol. 2008;146:218–227. doi: 10.1016/j.ajo.2008.04.027.
    1. Haller JA, et al. Vitrectomy outcomes in eyes with diabetic macular edema and vitreomacular traction. Ophthalmology. 2010;117:1087–1093. doi: 10.1016/j.ophtha.2010.03.032.
    1. Pessoa B, et al. Enzymatic vitreolysis for the treatment of tractional diabetic macular edema. Ther. Adv. Ophthalmol. 2019;11:1–10.
    1. Lewis H, Abrams GW, Blumenkranz MS, Campo RV. Vitrectomy for diabetic macular traction and edema associated with posterior hyaloidal traction. Ophthalmology. 1992;99:753–759. doi: 10.1016/S0161-6420(92)31901-3.
    1. Iglicki M, et al. Biomarkers and predictors for functional and anatomic outcomes for small gauge pars plana vitrectomy and peeling of the internal limiting membrane in naïve diabetic macular edema: The VITAL Study. PLoS ONE. 2018;13:e0200365. doi: 10.1371/journal.pone.0200365.
    1. Pessoa B, et al. Vitrectomy outcomes in eyes with tractional diabetic macular edema. Ophthalmic Res. 2019;61:94–99. doi: 10.1159/000489459.
    1. Funatsu H, et al. Vitreous levels of vascular endothelial growth factor and intercellular adhesion molecule 1 are related to diabetic macular edema. Ophthalmology. 2005;112:806–816. doi: 10.1016/j.ophtha.2004.11.045.
    1. Chin HS, Park TS, Moon YS, Oh JH. Difference in clearance of intravitreal triamcinolone acetonide between vitrectomized and nonvitrectomized eyes. Retina. 2005;25:556–560. doi: 10.1097/00006982-200507000-00002.
    1. Christoforidis JB, et al. Anatomic and pharmacokinetic properties of intravitreal bevacizumab and ranibizumab after vitrectomy and lensectomy. Retina. 2013;33:946–952. doi: 10.1097/IAE.0b013e3182753b12.
    1. Ahn SJ, et al. Intraocular pharmacokinetics of ranibizumab in vitrectomized versus nonvitrectomized eyes. Investig. Ophthalmol. Vis. Sci. 2014;55:567–573. doi: 10.1167/iovs.13-13054.
    1. Chen YY, Chen PY, Chen FT, Chen YJ, Wang JK. Comparison of efficacy of intravitreal ranibizumab between non-vitrectomized and vitrectomized eyes with diabetic macular edema. Int. Ophthalmol. 2018;38:293–299. doi: 10.1007/s10792-017-0702-4.
    1. Bressler SB, et al. Ranibizumab plus prompt or deferred laser for diabetic macular edema in eyes with vitrectomy before anti-vascular endothelial growth factor therapy. Retina. 2015;35:2516–2528. doi: 10.1097/IAE.0000000000000617.
    1. Murakami T, et al. Segmentational analysis of retinal thickness after vitrectomy in diabetic macular edema. Investig. Ophthalmol. Vis. Sci. 2012;53:6668–6674. doi: 10.1167/iovs.12-9934.
    1. Simó R, Stitt AW, Gardner TW. Neurodegeneration in diabetic retinopathy: Does it really matter? Diabetologia. 2018;61:1902–1912. doi: 10.1007/s00125-018-4692-1.
    1. Terashima H, Okamoto F, Hasebe H, Matsuoka N, Fukuchi T. Vitrectomy for epiretinal membranes: Ganglion cell features correlate with visual function outcomes. Ophthalmol Retina. 2018;2:1152–1162. doi: 10.1016/j.oret.2018.04.020.
    1. Prager SG, et al. Analysis of retinal layer thickness in diabetic macular oedema treated with ranibizumab or triamcinolone. Acta Ophthalmol. 2018;96:e195–e200. doi: 10.1111/aos.13520.
    1. Stefánsson E. Physiology of vitreous surgery. Graefes Arch. Clin. Exp. Ophthalmol. 2009;247:147–163. doi: 10.1007/s00417-008-0980-7.
    1. Laugesen CS, et al. Intravitreal ranibizumab for diabetic macular oedema in previously vitrectomized eyes. Acta Ophthalmol. 2017;95:28–32. doi: 10.1111/aos.13160.
    1. Koyanagi Y, et al. Comparison of the effectiveness of intravitreal ranibizumab for diabetic macular edema in vitrectomized and nonvitrectomized eyes. Ophthalmologica. 2016;236:67–73. doi: 10.1159/000446992.
    1. Yanyali A, Aytug B, Horozoglu F, Nohutcu AF. Bevacizumab (Avastin) for diabetic macular edema in previously vitrectomized eyes. Am. J. Ophthalmol. 2007;144:124–126. doi: 10.1016/j.ajo.2007.02.048.
    1. Vader MJC, et al. Comparing the efficacy of bevacizumab and ranibizumab in patients with diabetic macular edema (BRDME): The brdme study, a randomized trial. Ophthalmol. Retina. 2020;4:777–788. doi: 10.1016/j.oret.2020.02.008.
    1. Kondo M, Ito Y, Terasaki H. Intravitreal bevacizumab (avastin) for treatment of persistent macular edema in vitrectomized eyes: Limited effect and early recurrence. Retin. Cases Brief Rep. 2007;1:195–197. doi: 10.1097/ICB.0b013e318154b734.
    1. Won JY, Kim M, Park YH. Postoperative changes in the retinal thickness and volume after vitrectomy for epiretinal membrane and internal limiting membrane peeling. Medicine (Baltimore) 2017;96:e6709. doi: 10.1097/MD.0000000000006709.
    1. Guber J, Pereni I, Scholl HPN, Guber I, Haynes RJ. Outcomes after epiretinal membrane surgery with or without internal limiting membrane peeling. Ophthalmol. Ther. 2019;8:297–303. doi: 10.1007/s40123-019-0185-7.
    1. Sivalingam A, et al. Visual prognosis correlated with the presence of internal-limiting membrane in histopathologic specimens obtained from epiretinal membrane surgery. Ophthalmology. 1990;97:1549–1552. doi: 10.1016/S0161-6420(90)32378-3.
    1. Pinilla I, et al. Changes in total and inner retinal thicknesses in type 1 diabetes with no retinopathy after 8 years of follow-up. Retina. 2020;40:1379–1386. doi: 10.1097/IAE.0000000000002576.
    1. Coscas G, Lupidi M, Coscas F. Atlas of Oct-Angiography in Diabetic Maculopathy. Créteil: Societe Française de retine; 2016.
    1. Hasegawa N, Nozaki M, Takase N, Yoshida M, Ogura Y. New insights into microaneurysms in the deep capillary plexus detected by optical coherence tomography angiography in diabetic macular edema. Investig. Ophthalmol. Vis. Sci. 2016;57:348–355. doi: 10.1167/iovs.15-18782.
    1. Moore J, Bagley S, Ireland G, McLeod D, Boulton ME. Three dimensional analysis of microaneurysms in the human diabetic retina. J. Anat. 1999;194:89–100. doi: 10.1046/j.1469-7580.1999.19410089.x.
    1. Lee J, Moon BG, Cho AR, Yoon YH. Optical coherence tomography angiography of DME and its association with anti-VEGF treatment response. Ophthalmology. 2016;123:2368–2375. doi: 10.1016/j.ophtha.2016.07.010.
    1. Yoshitake T, et al. Predictor of early remission of diabetic macular edema under as-needed intravitreal ranibizumab. Sci. Rep. 2019;9:7599. doi: 10.1038/s41598-019-44078-6.

Source: PubMed

3
Abonneren