HyperFoods: Machine intelligent mapping of cancer-beating molecules in foods

Kirill Veselkov, Guadalupe Gonzalez, Shahad Aljifri, Dieter Galea, Reza Mirnezami, Jozef Youssef, Michael Bronstein, Ivan Laponogov, Kirill Veselkov, Guadalupe Gonzalez, Shahad Aljifri, Dieter Galea, Reza Mirnezami, Jozef Youssef, Michael Bronstein, Ivan Laponogov

Abstract

Recent data indicate that up-to 30-40% of cancers can be prevented by dietary and lifestyle measures alone. Herein, we introduce a unique network-based machine learning platform to identify putative food-based cancer-beating molecules. These have been identified through their molecular biological network commonality with clinically approved anti-cancer therapies. A machine-learning algorithm of random walks on graphs (operating within the supercomputing DreamLab platform) was used to simulate drug actions on human interactome networks to obtain genome-wide activity profiles of 1962 approved drugs (199 of which were classified as "anti-cancer" with their primary indications). A supervised approach was employed to predict cancer-beating molecules using these 'learned' interactome activity profiles. The validated model performance predicted anti-cancer therapeutics with classification accuracy of 84-90%. A comprehensive database of 7962 bioactive molecules within foods was fed into the model, which predicted 110 cancer-beating molecules (defined by anti-cancer drug likeness threshold of >70%) with expected capacity comparable to clinically approved anti-cancer drugs from a variety of chemical classes including flavonoids, terpenoids, and polyphenols. This in turn was used to construct a 'food map' with anti-cancer potential of each ingredient defined by the number of cancer-beating molecules found therein. Our analysis underpins the design of next-generation cancer preventative and therapeutic nutrition strategies.

Conflict of interest statement

The authors declare no competing interests.

Figures

Figure 1
Figure 1
Schematic diagram of the overall workflow.
Figure 2
Figure 2
Relevant genes and pathways derived from machine learning models for prediction of anti-cancer therapeutics tested in human trials. Individual node size corresponds to the relative discriminating capacity of a given gene-encoded protein and node color illustrates shared biological pathway functionality.
Figure 3
Figure 3
Hierarchical classification of the top 110 predicted cancer-beating molecules in food with anti-cancer drug likeness of >0.7.
Figure 4
Figure 4
The contained profiles of compounds within selective foods, which were highly likely to be effective in fighting cancer. Each node in the figure denotes a particular food item and node size in each case is proportional to the number of CBMs. The link between nodes reflects the pairwise correlation profile of CBMs in foods, thus the clusters of foods illustrate molecular commonality between them.

References

    1. Prince MJ, et al. The burden of disease in older people and implications for health policy and practice. Lancet. 2015;385:549–562. doi: 10.1016/S0140-6736(14)61347-7.
    1. Shi Y, Hu FB. The global implications of diabetes and cancer. Lancet. 2014;383:1947–1948. doi: 10.1016/S0140-6736(14)60886-2.
    1. Drewnowski A, Popkin BM. The nutrition transition: new trends in the global diet. Nutr. Rev. 1997;55:31–43. doi: 10.1111/j.1753-4887.1997.tb01593.x.
    1. Tilman D, Clark M. Global diets link environmental sustainability and human health. Nature. 2014;515:518–522. doi: 10.1038/nature13959.
    1. Dewar SL, Porter J. The Effect of Evidence-Based Nutrition Clinical Care Pathways on Nutrition Outcomes in Adult Patients Receiving Non-Surgical Cancer Treatment: A Systematic Review. Nutr. Cancer. 2018;70:404–412. doi: 10.1080/01635581.2018.1445768.
    1. Donaldson MS. Nutrition and cancer: a review of the evidence for an anti-cancer diet. Nutr. J. 2004;3:19. doi: 10.1186/1475-2891-3-19.
    1. Kotecha R, Takami A, Espinoza JL. Dietary phytochemicals and cancer chemoprevention: a review of the clinical evidence. Oncotarget. 2016;7:52517–52529. doi: 10.18632/oncotarget.9593.
    1. Baena Ruiz R, Salinas Hernandez P. Cancer chemoprevention by dietary phytochemicals: Epidemiological evidence. Maturitas. 2016;94:13–19. doi: 10.1016/j.maturitas.2016.08.004.
    1. Li W, et al. Dietary Phytochemicals and Cancer Chemoprevention: A Perspective on Oxidative Stress, Inflammation, and Epigenetics. Chem. Res. Toxicol. 2016;29:2071–2095. doi: 10.1021/acs.chemrestox.6b00413.
    1. Singh AK, Sharma N, Ghosh M, Park YH, Jeong DK. Emerging importance of dietary phytochemicals in fight against cancer: Role in targeting cancer stem cells. Crit. Rev. Food Sci. Nutr. 2017;57:3449–3463. doi: 10.1080/10408398.2015.1129310.
    1. Weaver CM. Bioactive foods and ingredients for health. Adv. Nutr. 2014;5:306S–311S. doi: 10.3945/an.113.005124.
    1. Obrist, M. et al. The future of computing and food manifesto, (2018).
    1. De Angelis M, et al. The food-gut human axis: the effects of diet on gut microbiota and metabolome. Curr. Med. Chem. 2017 doi: 10.2174/0929867324666170428103848.
    1. Scalbert A, et al. The food metabolome: a window over dietary exposure. Am. J. Clin. Nutr. 2014;99:1286–1308. doi: 10.3945/ajcn.113.076133.
    1. Garg N, et al. FlavorDB: a database of flavor molecules. Nucleic Acids Res. 2018;46:D1210–D1216. doi: 10.1093/nar/gkx957.
    1. Ni, Y., Jensen, K., Kouskoumvekaki, I. & Panagiotou, G. NutriChem 2.0: exploring the effect of plant-based foods on human health and drug efficacy. Database (Oxford)2017, 10.1093/database/bax044 (2017).
    1. Zheng T, Ni Y, Li J, Chow BKC, Panagiotou G. Designing Dietary Recommendations Using System Level Interactomics Analysis and Network-Based Inference. Front. Physiol. 2017;8:753. doi: 10.3389/fphys.2017.00753.
    1. Jensen K, Panagiotou G, Kouskoumvekaki I. NutriChem: a systems chemical biology resource to explore the medicinal value of plant-based foods. Nucleic Acids Res. 2015;43:D940–945. doi: 10.1093/nar/gku724.
    1. Galea D, Laponogov I, Veselkov K. Exploiting and assessing multi-source data for supervised biomedical named entity recognition. Bioinformatics. 2018;34:2474–2482. doi: 10.1093/bioinformatics/bty152.
    1. Barabasi AL, Gulbahce N, Loscalzo J. Network medicine: a network-based approach to human disease. Nat. Rev. Genet. 2011;12:56–68. doi: 10.1038/nrg2918.
    1. Goh KI, et al. The human disease network. Proc. Natl. Acad. Sci. USA. 2007;104:8685–8690. doi: 10.1073/pnas.0701361104.
    1. Zhang W, Chien J, Yong J, Kuang R. Network-based machine learning and graph theory algorithms for precision oncology. NPJ Precis. Oncol. 2017;1:25. doi: 10.1038/s41698-017-0029-7.
    1. Yildirim MA, Goh KI, Cusick ME, Barabasi AL, Vidal M. Drug-target network. Nat. Biotechnol. 2007;25:1119–1126. doi: 10.1038/nbt1338.
    1. Hofree M, Shen JP, Carter H, Gross A, Ideker T. Network-based stratification of tumor mutations. Nat. Methods. 2013;10:1108–1115. doi: 10.1038/nmeth.2651.
    1. Luo Y, et al. A network integration approach for drug-target interaction prediction and computational drug repositioning from heterogeneous information. Nat. Commun. 2017;8:573. doi: 10.1038/s41467-017-00680-8.
    1. Xue H, Li J, Xie H, Wang Y. Review of Drug Repositioning Approaches and Resources. Int. J. Biol. Sci. 2018;14:1232–1244. doi: 10.7150/ijbs.24612.
    1. Pushpakom Sudeep, Iorio Francesco, Eyers Patrick A., Escott K. Jane, Hopper Shirley, Wells Andrew, Doig Andrew, Guilliams Tim, Latimer Joanna, McNamee Christine, Norris Alan, Sanseau Philippe, Cavalla David, Pirmohamed Munir. Drug repurposing: progress, challenges and recommendations. Nature Reviews Drug Discovery. 2018;18(1):41–58. doi: 10.1038/nrd.2018.168.
    1. Veselkov KA, et al. Chemo-informatic strategy for imaging mass spectrometry-based hyperspectral profiling of lipid signatures in colorectal cancer. Proc. Natl. Acad. Sci. USA. 2014;111:1216–1221. doi: 10.1073/pnas.1310524111.
    1. Cortes C, Vapnik V. Support-Vector Networks. Mach. Learn. 1995;20:273–297. doi: 10.1007/Bf00994018.
    1. Diaz-Moralli S, Tarrado-Castellarnau M, Miranda A, Cascante M. Targeting cell cycle regulation in cancer therapy. Pharmacol. Ther. 2013;138:255–271. doi: 10.1016/j.pharmthera.2013.01.011.
    1. Villicana C, Cruz G, Zurita M. The basal transcription machinery as a target for cancer therapy. Cancer Cell Int. 2014;14:18. doi: 10.1186/1475-2867-14-18.
    1. Torgovnick A, Schumacher B. DNA repair mechanisms in cancer development and therapy. Front. Genet. 2015;6:157. doi: 10.3389/fgene.2015.00157.
    1. Bisacchi GS, Hale MR. A “Double-Edged” Scaffold: Antitumor Power within the Antibacterial Quinolone. Curr. Med. Chem. 2016;23:520–577. doi: 10.2174/0929867323666151223095839.
    1. Ding WQ, Liu B, Vaught JL, Yamauchi H, Lind SE. Anticancer activity of the antibiotic clioquinol. Cancer Res. 2005;65:3389–3395. doi: 10.1158/0008-5472.CAN-04-3577.
    1. Jiang H, et al. Nitroxoline (8-hydroxy-5-nitroquinoline) is more a potent anti-cancer agent than clioquinol (5-chloro-7-iodo-8-quinoline) Cancer Lett. 2011;312:11–17. doi: 10.1016/j.canlet.2011.06.032.
    1. Wang H, Kruszewski A, Brautigan DL. Cellular chromium enhances activation of insulin receptor kinase. Biochemistry. 2005;44:8167–8175. doi: 10.1021/bi0473152.
    1. Chan AT. Metformin for cancer prevention: a reason for optimism. Lancet Oncol. 2016;17:407–409. doi: 10.1016/S1470-2045(16)00006-1.
    1. Nickens KP, Patierno SR, Ceryak S. Chromium genotoxicity: A double-edged sword. Chem. Biol. Interact. 2010;188:276–288. doi: 10.1016/j.cbi.2010.04.018.
    1. Newman DJ, Cragg GM. Natural Products as Sources of New Drugs from 1981 to 2014. J. Nat. Prod. 2016;79:629–661. doi: 10.1021/acs.jnatprod.5b01055.
    1. Gonzalez-Vallinas M, Gonzalez-Castejon M, Rodriguez-Casado A, Ramirez de Molina A. Dietary phytochemicals in cancer prevention and therapy: a complementary approach with promising perspectives. Nutr. Rev. 2013;71:585–599. doi: 10.1111/nure.12051.
    1. Liu RH. Potential synergy of phytochemicals in cancer prevention: mechanism of action. J. Nutr. 2004;134:3479S–3485S. doi: 10.1093/jn/134.12.3479S.
    1. Eberhardt MV, Lee CY, Liu RH. Antioxidant activity of fresh apples. Nature. 2000;405:903–904. doi: 10.1038/35016151.
    1. Gianfredi Vincenza, Nucci Daniele, Abalsamo Angela, Acito Mattia, Villarini Milena, Moretti Massimo, Realdon Stefano. Green Tea Consumption and Risk of Breast Cancer and Recurrence—A Systematic Review and Meta-Analysis of Observational Studies. Nutrients. 2018;10(12):1886. doi: 10.3390/nu10121886.
    1. Guo Y, et al. Green tea and the risk of prostate cancer: A systematic review and meta-analysis. Medicine (Baltimore) 2017;96:e6426. doi: 10.1097/MD.0000000000006426.
    1. Cirmi S, et al. Anticancer Potential of Citrus Juices and Their Extracts: A Systematic Review of Both Preclinical and Clinical Studies. Front. Pharmacol. 2017;8:420. doi: 10.3389/fphar.2017.00420.
    1. Wishart DS, et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 2018;46:D1074–D1082. doi: 10.1093/nar/gkx1037.
    1. Ursu Oleg, Holmes Jayme, Bologa Cristian G, Yang Jeremy J, Mathias Stephen L, Stathias Vasileios, Nguyen Dac-Trung, Schürer Stephan, Oprea Tudor. DrugCentral 2018: an update. Nucleic Acids Research. 2018;47(D1):D963–D970. doi: 10.1093/nar/gky963.
    1. Ursu O, et al. DrugCentral: online drug compendium. Nucleic Acids Res. 2017;45:D932–D939. doi: 10.1093/nar/gkw993.
    1. Brown AS, Patel CJ. A standard database for drug repositioning. Sci. Data. 2017;4:170029. doi: 10.1038/sdata.2017.29.
    1. Kuhn M, et al. STITCH 2: an interaction network database for small molecules and proteins. Nucleic Acids Res. 2010;38:D552–556. doi: 10.1093/nar/gkp937.
    1. Scalbert A, et al. Databases on food phytochemicals and their health-promoting effects. J. Agric. Food Chem. 2011;59:4331–4348. doi: 10.1021/jf200591d.
    1. Lim E, et al. T3DB: a comprehensively annotated database of common toxins and their targets. Nucleic Acids Res. 2010;38:D781–786. doi: 10.1093/nar/gkp934.
    1. Szklarczyk Damian, Gable Annika L, Lyon David, Junge Alexander, Wyder Stefan, Huerta-Cepas Jaime, Simonovic Milan, Doncheva Nadezhda T, Morris John H, Bork Peer, Jensen Lars J, Mering Christian von. STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Research. 2018;47(D1):D607–D613. doi: 10.1093/nar/gky1131.
    1. UniProt, C. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res., 10.1093/nar/gky1049 (2018).
    1. Tate John G, Bamford Sally, Jubb Harry C, Sondka Zbyslaw, Beare David M, Bindal Nidhi, Boutselakis Harry, Cole Charlotte G, Creatore Celestino, Dawson Elisabeth, Fish Peter, Harsha Bhavana, Hathaway Charlie, Jupe Steve C, Kok Chai Yin, Noble Kate, Ponting Laura, Ramshaw Christopher C, Rye Claire E, Speedy Helen E, Stefancsik Ray, Thompson Sam L, Wang Shicai, Ward Sari, Campbell Peter J, Forbes Simon A. COSMIC: the Catalogue Of Somatic Mutations In Cancer. Nucleic Acids Research. 2018;47(D1):D941–D947. doi: 10.1093/nar/gky1015.
    1. Brown GR, et al. Gene: a gene-centered information resource at NCBI. Nucleic Acids Res. 2015;43:D36–42. doi: 10.1093/nar/gku1055.
    1. Huttlin EL, et al. The BioPlex Network: A Systematic Exploration of the Human Interactome. Cell. 2015;162:425–440. doi: 10.1016/j.cell.2015.06.043.
    1. Vanunu O, Magger O, Ruppin E, Shlomi T, Sharan R. Associating genes and protein complexes with disease via network propagation. PLoS Comput. Biol. 2010;6:e1000641. doi: 10.1371/journal.pcbi.1000641.
    1. Zou J, et al. A primer on deep learning in genomics. Nat. Genet. 2019;51:12–18. doi: 10.1038/s41588-018-0295-5.
    1. Waldmann P, Meszaros G, Gredler B, Fuerst C, Solkner J. Evaluation of the lasso and the elastic net in genome-wide association studies. Front. Genet. 2013;4:270. doi: 10.3389/fgene.2013.00270.
    1. Subramanian A, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA. 2005;102:15545–15550. doi: 10.1073/pnas.0506580102.

Source: PubMed

3
Abonneren