Randomised study to assess the efficacy and safety of once-daily etravirine-based regimen as a switching strategy in HIV-infected patients receiving a protease inhibitor-containing regimen. Etraswitch study

Patricia Echeverría, Anna Bonjoch, Jordi Puig, José Moltó, Roger Paredes, Guillem Sirera, Arelly Ornelas, Nuria Pérez-Álvarez, Bonaventura Clotet, Eugènia Negredo, Patricia Echeverría, Anna Bonjoch, Jordi Puig, José Moltó, Roger Paredes, Guillem Sirera, Arelly Ornelas, Nuria Pérez-Álvarez, Bonaventura Clotet, Eugènia Negredo

Abstract

Background: Etravirine (ETR) was approved for patients with virological failure and antiretroviral resistance mutations. It has also shown antiviral efficacy in antiretroviral-naïve patients. However, data on the switching from protease inhibitors (PI) to ETR are lacking.

Methods: HIV-1-infected patients with suppressed viral load (VL) during a PI-containing regimen (>12 months) and no previous virological failure were randomized to switch from the PI to ETR (400 mg/day, dissolved in water) (ETR group, n = 22) or to continue with the same regimen (control group, n = 21). Percentage of patients with VL ≤ 50 copies/mL were assessed at week 48, as well as changes in CD4 T-cell counts and metabolic profile.

Results: We included 43 patients [72.9% male, 46.3 (42.2; 50.6) years]. Two patients receiving ETR (grade-1 diarrhea and voluntary discontinuation) and another in the control group (simplification) discontinued therapy early. No patients presented virological failure (two consecutive VL>50 copies/mL); treatment was successful in 95.2% of the control group and 90.9% of the ETR group (intention-to-treat analysis, missing = failure) (p = 0.58). CD4+ T-cell counts did not significantly vary [+49 cells/µL in the ETR group (p = 0.25) and -4 cells/µL in the control group (p = 0.71)]. The ETR group showed significant reductions in cholesterol (p<0.001), triglycerides (p = <0.001), and glycemia (p = 0.03) and higher satisfaction (0-10 scale) (p = 0.04). Trough plasma concentrations of ETR were similar to observed in studies using ETR twice daily.

Conclusion: Switch from a PI-based regimen to a once-daily combination based on ETR maintained undetectable VL during 48 weeks in virologically suppressed HIV-infected patients while lipid profile and patient satisfaction improved significantly.

Trial registration: ClinicalTrials.gov NCT01034917.

Conflict of interest statement

Competing Interests: I have read the journal’s policy and have the following conflicts: (Transparency declarations) AB has received lecture fees from Bristol Myers Squibb. BC has been a consultant on advisory boards or participated in speakers bureaus or conducted clinical trials with Boehringer-Ingelheim, Abbott, GlaxoSmithKline, Gilead, Janssen, Merck, Shionogi and ViiV Healthcare. EN has received research funding, consultancy fees, or lecture sponsorships from Gilead, Roche, Bristol Myers Squibb, GlaxoSmithKline, Tibotec, Abbott, Merck and Boehringer-Ingelheim. RP has received research funding, consultancy fees, or lecture sponsorships from Gilead, Pfizer, ViiV Healthcare, Roche Diagnostics, Siemens, Merck and Boehringer-Ingelheim. JM has been a consultant on advisory boards with Abbott, Jansen Cilag, Bristol Myers Squibb, ViiV, Gilead and MSD and consultancy from Jansen and Abbott, PE, JP, NPA, GS and AO declared that no competing interests exist. Preliminary results of this study were presented in poster form at the 51st Interscience Conference on Antimicrobial Agents and Chemotherapy, 17–21 September, 2011 (Chicago, USA).]. This does not alter our adherence to all the PLOS ONE policies on sharing data and materials.

References

    1. Thompson M, Aberg J, Hoy J, Telenti A, Benson C, et al. (2012) Antiretroviral treatment of adult HIV infection. 2012 recommendations of the International AIDS Society-USA panel. JAMA 308: 387–402.
    1. US Department for Health and Social Security (2011) Guidelines for the use of antiretroviral agents in HIV-1 infected adults and adolescents, January 10th 2011.. Accessed March 2011.
    1. European AIDS Clinical Society (EACS) (2011) Guidelines for the clinical management of HIV infected adults in Europe. Last accessed: May 2011.
    1. Madruga JV, Cahn P, Grinsztejn B, Haubrich R, Lalezari J, et al. (2007) Efficacy and safety of TMC125 (etravirine) in treatment-experienced HIV-1-infected patients in DUET-1: 24-week results from a randomised, double-blind, placebo-controlled trial. Lancet 370(9581): 29–38.
    1. Lazzarin A, Campbell T, Clotet B, Johnson M, Katlama C, et al. (2007) Efficacy and safety of TMC125 (etravirine) in treatment-experienced HIV-1-infected patients in DUET-2: 24-week results from a randomised, double-blind, placebo-controlled trial. Lancet 370(9581): 39–48.
    1. Martinez E, Nelson M (2010) Simplification of antiretroviral therapy with etravirine. AIDS Rev 12 (1): 52–9.
    1. Ruxrungtham K, Pedro RJ, Latiff GH, Conradie F, Domingo P, et al. (2008) Impact of reverse transcriptase resistance on the efficacy of TMC125 (etravirine) with two nucleoside reverse transcriptase inhibitors in protease inhibitor-naïve, nonnucleoside reverse transcriptase inhibitor-experienced patients: study TMC125-C227. HIV Med 9(10): 883–96.
    1. Schöller-Gyüre M, Kakuda TN, Raoof A, De Smedt G, Hoetelmans RM (2009) Clinical pharmacokinetics and pharmacodynamics of etravirine. Clin Pharmacokinet 48 (9): 561–74.
    1. Andries K, Azijn H, Thielemans T, Ludovici D, Kukla M, et al. (2004) TMC125, a novel next-generation nonnucleoside reverse transcriptase inhibitor active against nonnucleoside reverse transcriptase inhibitor-resistant human immunodeficiency virus type 1. Antimicrob Agents Chemother 48(12): 4680–6.
    1. Katlama C, Haubrich R, Lalezari R, Lazzarin A, Madruga J, et al. (2009) Efficacy and safety of etravirine in treatment- experienced, HIV-1 patients: pooled 48 week analysis of two randomized, controlled trials. AIDS 23: 2289–2300.
    1. Moltó J, Valle M, Miranda C, Cedeño S, Negredo E, et al. (2012) Herb-Drug Interaction between Echinacea purpurea and Etravirine in HIV-Infected Patients. Antimicrob Agents Chemother 56 (10): 5328–31.
    1. De Jesus E, Lalezari JP, Osiyemi OO, Ruane PJ, Ryan R, et al. (2010) Pharmacokinetics of once-daily etravirine without and with once daily darunavir/ritonavir in antiretroviral-naive HIV type-1-infected adults. Antivir Ther 15 (5): 711–20.
    1. Gruzdev B, Rakhmanova A, Doubovskaya E, Yakovlev A, Peeters M, et al. (2003) A randomized, double-blind, placebo-controlled trial of TMC125 as 7-day monotherapy in antiretroviral naive, HIV-1 infected subjects. AIDS 17: 2487–94.
    1. Boffito M, Jackson A, Lamorde M, Back D, Watson V, et al. (2009) Pharmacokinetics and safety of etravirine administered once or twice daily after 2 weeks treatment with efavirenz in healthy volunteers. J Acquir Immune Defic Syndr 52 (2): 222–7.
    1. Waters L, Fisher M, Winston A, Higgs C, Hadley W, et al. (2011) A phase IV, double-blind, multicentre, randomized, placebo-controlled, pilot study to assess the feasibility of switching individuals receiving efavirenz with continuing central nervous system adverse events to etravirine. AIDS 25: 65–71.
    1. Nguyen A, Calmy A, Delhumeau C, Mercier IK, Cavassini M, et al. (2011) A randomized cross-over study to compare efavirenz and etravirine treatment. AIDS 25: 57–63.
    1. Martinez E, Arnaiz JA, Podzamczer D, Dalmau D, Ribera E, et al. (2003) Substitution of nevirapine, efavirenz, or abacavir for protease inhibitors in patients with human immunodeficiency virus infection. New England Journal of Medicine 349 Suppl 111036–46.
    1. Becker S, Rachlis A, Gill J (2001) Successful substitution of protease inhibitors with efavirenz (EFV) in patients with undetectable viral loads – a prospective, randomized, multicenter, open-label study (DMP 049). In the programme and abstracts of the 8TH Conference on Retroviruses and Opportunistic infections. Chicago IL, February 2001 [abstract 20].
    1. Raffi F, Bonnet B, Ferre V, Esnault JL, Perré P, et al. (2000) Substitution of a nonnucleoside reverse transcriptase inhibitor for a protease inhibitor in the treatment of patient with undetectable plasma human immunodeficiency virus type 1 RNA. Clin Infect Dis 31: 1274–8.
    1. Ruiz L, Negredo E, Domingo P, Paredes R, Francia E, et al. (2001) Antiretroviral treatment simplification with nevirapine in protease inhibitor-experienced patients with HIV-associated lipodystrophy: 1-year prospective follow-up of a multicenter, randomized, controlled study. J Acquir Immune Defic Syndr 27 Suppl 3229–36.
    1. Negredo E, Cruz L, Paredes R, Ruiz L, Fumaz CR, et al. (2002) Virological, immunological, and clinical impact of switching from protease inhibitors to nevirapine or to efavirenz in patients with human immunodeficiency virus infection and long-lasting viral suppression. Clin Infect Dis 34: 504–10.
    1. Barreiro P, Soriano V, Blanco F, Casimiro C, de la Cruz JJ, et al. (2000) Risk and benefits of replacing protease inhibitors by nevirapine in HIV-infected subjects under long-term successful triple combination therapy. AIDS 14: 807–812.
    1. Nelson M, Stellbrink HJ, Podzamczer D, Banhegyi D, Gazzard B, et al. (2011) A comparison of neuropsychiatric adverse events during 12 weeks of treatment with etravirine and efavirenz in a treatment-naive, HIV-1-infected population. AIDS 25(3): 335–40.
    1. Gazzard B, Duvivier C, Zagler C, Castagna A, Hill A, et al. (2011) Phase 2 double-blind, randomized trial of etravirine versus efavirenz in treatment-naive patients: 48-week results. AIDS 25(18): 2249–58.
    1. Fätkenheuer G, Duvivier C, Rieger A, Durant J, Rey D, et al. (2012) SENSE Study Team. Lipid profiles for etravirine versus efavirenz in treatment-naive patients in the randomized, double-blind SENSE trial. J Antimicrob Chemother 67(3): 685–90.
    1. Tohyama J, Billheimer JT, Fuki IV, Rothblat GH, Rader DJ, et al. (2009) Effects of nevirapine and efavirenz on HDL cholesterol levels and reverse cholesterol transport in mice. Atherosclerosis 204(2): 418–23.
    1. Barragan P, Fisac C, Podzamczer D (2006) Switching strategies to improve lipid profile and morphologic changes. AIDS Rev 8(4): 191–203.
    1. Young J, Weber R, Rickenbach M, Furrer H, Bernasconi E, et al. (2005) Lipid profiles for antiretroviral-naïve patients starting PI- and NNRTI-based therapy in the Swiss HIV cohort study. Antivir Ther 10(5): 585–91.
    1. Fisac C, Fumero E, Crespo M, Roson B, Ferrer E, et al. (2005) Metabolic benefits 24 months after replacing a protease inhibitor with abacavir, efavirenz or nevirapine. AIDS 19(9): 917–25.
    1. Van Leth F, Phanuphak P, Stroes E, Gazzard B, Cahn P, et al. (2004) Nevirapine and efavirenz elicit different changes in lipid profiles in antiretroviral-therapy-naive patients infected with HIV-1. PloS Med 1(1): e19.
    1. Negredo E, Ribalta J, Ferré R, Salazar J, Rey-Joly C, et al. (2004) Efavirenz induces a striking and generalized increase of HDL-cholesterol in HIV-infected patients. AIDS 18(5): 819–21.
    1. Negredo E, Ribalta J, Paredes R, Ferré R, Sirera G, et al. (2002) Reversal of atherogenic lipoprotein profile in HIV-1 infected patients with lipodystrophy after replacing protease inhibitors by nevirapine. AIDS 16(10): 1383–9.

Source: PubMed

3
Abonneren