GFAp and tau protein as predictors of neurological outcome after out-of-hospital cardiac arrest: A post hoc analysis of the COMACARE trial

Jaana Humaloja, Marika Lähde, Nicholas J Ashton, Matti Reinikainen, Johanna Hästbacka, Pekka Jakkula, Hans Friberg, Tobias Cronberg, Ville Pettilä, Kaj Blennow, Henrik Zetterberg, Markus B Skrifvars, COMACARE Study Groups, Jaana Humaloja, Marika Lähde, Nicholas J Ashton, Matti Reinikainen, Johanna Hästbacka, Pekka Jakkula, Hans Friberg, Tobias Cronberg, Ville Pettilä, Kaj Blennow, Henrik Zetterberg, Markus B Skrifvars, COMACARE Study Groups

Abstract

Aim: To determine the ability of serum glial fibrillary acidic protein (GFAp) and tau protein to predict neurological outcome after out-of-hospital cardiac arrest (OHCA).

Methods: We measured plasma concentrations of GFAp and tau of patients included in the previously published COMACARE trial (NCT02698917) on intensive care unit admission and at 24, 48, and 72 h after OHCA, and compared them to neuron specific enolase (NSE). NSE concentrations were determined already during the original trial. We defined unfavourable outcome as a cerebral performance category (CPC) score of 3-5 six months after OHCA. We determined the prognostic accuracy of GFAp and tau using the receiver operating characteristic curve and area under the curve (AUROC).

Results: Overall, 39/112 (35%) patients had unfavourable outcomes. Over time, both markers were evidently higher in the unfavourable outcome group (p < 0.001). At 48 h, the median (interquartile range) GFAp concentration was 1514 (886-4995) in the unfavourable versus 238 (135-463) pg/ml in the favourable outcome group (p < 0.001). The corresponding tau concentrations were 99.6 (14.5-352) and 3.0 (2.2-4.8) pg/ml (p < 0.001). AUROCs at 48 and 72 h were 0.91 (95% confidence interval 0.85-0.97) and 0.91 (0.85-0.96) for GFAp and 0.93 (0.86-0.99) and 0.95 (0.89-1.00) for tau. Corresponding AUROCs for NSE were 0.86 (0.79-0.94) and 0.90 (0.82-0.97). The difference between the prognostic accuracies of GFAp or tau and NSE were not statistically significant.

Conclusions: At 48 and 72 h, serum both GFAp and tau demonstrated excellent accuracy in predicting outcomes after OHCA but were not superior to NSE.

Clinical trial registration: NCT02698917 (https://www.clinicaltrials.gov/ct2/show/NCT02698917).

Keywords: Biomarkers; Glial fibrillary acidic protein; Neurological outcome prognostication; Out-of-hospital cardiac arrest; Tau protein.

Conflict of interest statement

Declaration of Competing Interest J. Humaloja, M.L., N.J.A, M.R., J. Hästbacka, P.J., H.F., T.C. and V.P. have nothing to disclose. M.B.S. has received a lecture fee and a travel grant from BARD Medical (Ireland and South Korea, not related to this study). H.Z. has served at scientific advisory boards and/or as a consultant for AbbVie, Alector, Eisai, Denali, Roche Diagnostics, Wave, Samumed, Siemens Healthineers, Pinteon Therapeutics, Nervgen, AZTherapies, CogRx and Red Abbey Labs; has given lectures in symposia sponsored by Cellectricon, Fujirebio, Alzecure and Biogen; and is a co-founder of Brain Biomarker Solutions in Gothenburg AB (BBS), which is a part of the GU Ventures Incubator Program (outside submitted work). KB has served as a consultant at advisory boards or at data-monitoring committees for Abcam, Axon, Biogen JOMDD/Shimadzu, Julius Clinical, Lilly, MagQu, Novartis, Prothena, Roche Diagnostics and Siemens Healthineers and is a co-founder of Brain Biomarker Solutions in Gothenburg AB (BBS), which is a part of the GU Ventures Incubator Program, all unrelated to the work presented in this paper.

Copyright © 2021 The Author(s). Published by Elsevier B.V. All rights reserved.

Figures

Fig. 1
Fig. 1
Flowchart of the study population and blood samples available for the analyses. Definitions of abbreviations: COMACARE trial: Carbon dioxide, Oxygen, and Mean Arterial pressure After Cardiac Arrest and Resuscitation trial ICU: intensive care unit GFAp: glial fibrillary acidic protein.
Fig. 2
Fig. 2
GFAp and tau concentrations between patients with favourable (CPC 1–2) and unfavourable (CPC 3–5) outcomes at six months presented on a logarithmic scale. The p-value indicates the difference of GFAp and tau concentrations over time between the outcome groups. Definitions of abbreviations: GFAp: glial fibrillary acidic protein CPC: cerebral performance category.
Fig. 3
Fig. 3
Receiver operating characteristic curves and areas under the curves (AUROC) for concentrations of GFAp and tau on ICU admission (0 h) and at 24, 48 and 72 h for prediction of favourable (CPC 1–2) vs unfavourable (CPC 3–5) outcomes six months after cardiac arrest. Definitions of abbreviations: 95% CI: 95% confidence interval ROC: receiver operating characteristic AUROC: area under the receiving operating characteristic curve GFAp: glial fibrillary acidic protein.

References

    1. Björklund E., Lindberg E., Rundgren M., Cronberg T., Friberg H., Englund E. Ischaemic brain damage after cardiac arrest and induced hypothermia–a systematic description of selective eosinophilic neuronal death. A neuropathologic study of 23 patients. Resuscitation. 2014;85:527–532. doi: 10.1016/J.RESUSCITATION.2013.11.022.
    1. Lu-Emerson C., Khot S. Neurological sequelae of hypoxic-ischemic brain injury. NeuroRehabilitation. 2010;26:35–45. doi: 10.3233/NRE-2010-0534.
    1. Nolan J.P., Sandroni C., Böttiger B.W., et al. European Resuscitation Council and European Society of Intensive Care Medicine Guidelines 2021: Post-resuscitation care. Resuscitation. 2021;161:220–269. doi: 10.1016/J.RESUSCITATION.2021.02.012.
    1. Callaway C.W., Donnino M.W., Fink E.L., et al. Part 8: Post-Cardiac Arrest Care. Circulation. 2015;132:S465–S482. doi: 10.1161/CIR.0000000000000262.
    1. Wang C.H., Chang W.T., Su K.I., et al. Neuroprognostic accuracy of blood biomarkers for post-cardiac arrest patients: A systematic review and meta-analysis. Resuscitation. 2020;148:108–117. doi: 10.1016/j.resuscitation.2020.01.006.
    1. Metting Z., Wilczak N., Rodiger L.A., Schaaf J.M., van der Naalt J. GFAP and S100B in the acute phase of mild traumatic brain injury. Neurology. 2012;78:1428–1433. doi: 10.1212/WNL.0b013e318253d5c7.
    1. Vos P.E., Jacobs B., Andriessen T.M.J.C., et al. GFAP and S100B are biomarkers of traumatic brain injury: An observational cohort study. Neurology. 2010;75:1786–1793. doi: 10.1212/WNL.0b013e3181fd62d2.
    1. Larsson I.M., Wallin E., Kristofferzon M.L., Niessner M., Zetterberg H., Rubertsson S. Post-cardiac arrest serum levels of glial fibrillary acidic protein for predicting neurological outcome. Resuscitation. 2014;85:1654–1661. doi: 10.1016/j.resuscitation.2014.09.007.
    1. Kaneko T., Kasaoka S., Miyauchi T., et al. Serum glial fibrillary acidic protein as a predictive biomarker of neurological outcome after cardiac arrest. Resuscitation. 2009;80:790–794. doi: 10.1016/j.resuscitation.2009.04.003.
    1. Katsanos A.H., Makris K., Stefani D., et al. Plasma Glial Fibrillary Acidic Protein in the Differential Diagnosis of Intracerebral Hemorrhage. Stroke. 2017;48:2586–2588. doi: 10.1161/STROKEAHA.117.018409.
    1. Vos P.E., van Gils M., Beems T., Zimmerman C., Verbeek M.M. Increased GFAP and S100β but not NSE serum levels after subarachnoid haemorrhage are associated with clinical severity. Eur J Neurol. 2006;13:632–638. doi: 10.1111/j.1468-1331.2006.01332.x.
    1. Vos P.E., Lamers K.J.B., Hendriks J.C.M., et al. Glial and neuronal proteins in serum predict outcome after severe traumatic brain injury. Neurology. 2004;62:1303–1310. doi: 10.1212/01.WNL.0000120550.00643.DC.
    1. Hol E.M., Pekny M. Glial fibrillary acidic protein (GFAP) and the astrocyte intermediate filament system in diseases of the central nervous system. Curr Opin Cell Biol. 2015;32:121–130. doi: 10.1016/j.ceb.2015.02.004.
    1. Weingarten M.D., Lockwood A.H., Hwo S.Y., Kirschner M.W. A protein factor essential for microtubule assembly. PNAS. 1975;72:1858–1862. doi: 10.1073/pnas.72.5.1858.
    1. Williams D.R. Tauopathies: Classification and clinical update on neurodegenerative diseases associated with microtubule-associated protein tau. Int Med J. 2006;36:652–660. doi: 10.1111/j.1445-5994.2006.01153.x.
    1. Wunderlich M.T., Lins H., Skalej M., Wallesch C.W., Goertler M. Neuron-specific enolase and tau protein as neurobiochemical markers of neuronal damage are related to early clinical course and long-term outcome in acute ischemic stroke. Clin Neurol Neurosurg. 2006;108:558–563. doi: 10.1016/j.clineuro.2005.12.006.
    1. Mörtberg E., Zetterberg H., Nordmark J., Blennow K., Rosengren L., Rubertsson S. S-100B is superior to NSE, BDNF and GFAP in predicting outcome of resuscitation from cardiac arrest with hypothermia treatment. Resuscitation. 2011;82:26–31. doi: 10.1016/j.resuscitation.2010.10.011.
    1. Randall J., Mörtberg E., Provuncher G.K., et al. Tau proteins in serum predict neurological outcome after hypoxic brain injury from cardiac arrest: Results of a pilot study. Resuscitation. 2013;84:351–356. doi: 10.1016/j.resuscitation.2012.07.027.
    1. Blennow K., Hampel H., Weiner M., Zetterberg H. Cerebrospinal fluid and plasma biomarkers in Alzheimer disease. Nat Rev Neurol. 2010;6:131–144. doi: 10.1038/nrneurol.2010.4.
    1. Öst M., Nylén K., Csajbok L., et al. Initial CSF total tau correlates with 1-year outcome in patients with traumatic brain injury. Neurology. 2006;67:1600–1604. doi: 10.1212/01.WNL.0000242732.06714.0F.
    1. Mattsson N., Zetterberg H., Nielsen N., et al. Serum tau and neurological outcome in cardiac arrest. Ann Neurol. 2017;82:665–675. doi: 10.1002/ana.25067.
    1. Jakkula P., Reinikainen M., Hästbacka J., et al. Targeting two different levels of both arterial carbon dioxide and arterial oxygen after cardiac arrest and resuscitation: a randomised pilot trial. Intensive Care Med. 2018;44:2112–2121. doi: 10.1007/s00134-018-5453-9.
    1. Jakkula P., Reinikainen M., Hästbacka J., et al. Targeting low- or high-normal Carbon dioxide, Oxygen, and Mean arterial pressure After Cardiac Arrest and REsuscitation: Study protocol for a randomized pilot trial. Trials. 2017;18:507. doi: 10.1186/s13063-017-2257-0.
    1. Nolan J.P., Soar J., Cariou A., et al. European Resuscitation Council and European Society of Intensive Care Medicine Guidelines for Post-resuscitation Care 2015. Section 5 of the European Resuscitation Council Guidelines for Resuscitation 2015. Resuscitation. 2015;95:202–222. doi: 10.1016/j.resuscitation.2015.07.018.
    1. Rissin D.M., Fournier D.R., Piech T., et al. Simultaneous Detection of Single Molecules and Singulated Ensembles of Molecules Enables Immunoassays with Broad Dynamic Range. Anal Chem. 2011;83:2279–2285. doi: 10.1021/AC103161B.
    1. Cummins R.O., Chamberlain D.A., Abramson N.S., et al. Recommended guidelines for uniform reporting of data from out-of-hospital cardiac arrest: The utstein style: A statement for health professionals from a task force of the American Heart Association, the European Resuscitation Council, and Heart and Stroke Foundation of Canada, and the Australian Resuscitation Council. Circulation. 1991;84:960–975. doi: 10.1161/01.CIR.84.2.960.
    1. Neuhäuser M. In: International Encyclopedia of Statistical Science. Lovric M., editor. Springer; Berlin Heidelberg: 2011. Wilcoxon–Mann–Whitney Test; pp. 1656–1658.
    1. McHugh M.L. The Chi-square test of independence. Biochemia Medica. 2012;23:143–149. doi: 10.11613/BM.2013.018.
    1. Sahai H., Khurshid A. On analysis of epidemiological data involving a 2 × 2 contingency table: An overview of fisher’s exact test and yates’ correction for continuity. J Biopharm Stat. 1995;5:43–70. doi: 10.1080/10543409508835098.
    1. Duricki D.A., Soleman S., Moon L.D.F. Analysis of longitudinal data from animals with missing values using SPSS. Nat Protoc. 2016;11:1112–1129. doi: 10.1038/nprot.2016.048.
    1. Jawień W. Searching for an optimal AUC estimation method: a never-ending task? J Pharmacokinet Pharmacodyn. 2014;41:655–673. doi: 10.1007/s10928-014-9392-y.
    1. LaValley M.P. Logistic regression. Circulation. 2008;117:2395–2399. doi: 10.1161/CIRCULATIONAHA.106.682658.
    1. Youden W.J. Index for Index for rating diagnostic testsrating diagnostic tests. Cancer. 1950;3 doi: 10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>;2-3.
    1. Greiner M., Pfeiffer D., Smith R.D. Principles and practical application of the receiver-operating characteristic analysis for diagnostic tests. Prevent Veterin Med. 2000;45:23–41. doi: 10.1016/S0167-5877(00)00115-X.
    1. Endisch C., Westhall E., Kenda M., et al. Hypoxic-Ischemic Encephalopathy Evaluated by Brain Autopsy and Neuroprognostication After Cardiac Arrest. JAMA Neurol. 2020;77:1430–1439. doi: 10.1001/JAMANEUROL.2020.2340.
    1. Busl K.M., Greer D.M. Hypoxic-ischemic brain injury: Pathophysiology, neuropathology and mechanisms. NeuroRehabilitation. 2010;26:5–13. doi: 10.3233/NRE-2010-0531.
    1. Järnum H., Knutsson L., Rundgren M., et al. Diffusion and perfusion MRI of the brain in comatose patients treated with mild hypothermia after cardiac arrest: A prospective observational study. Resuscitation. 2009;80:425–430. doi: 10.1016/J.RESUSCITATION.2009.01.004.
    1. Streitberger K.J., Endisch C., Ploner C.J., et al. Timing of brain computed tomography and accuracy of outcome prediction after cardiac arrest. Resuscitation. 2019;145:8–14. doi: 10.1016/J.RESUSCITATION.2019.09.025.
    1. Thelin E.P., Zeiler F.A., Ercole A., et al. Serial sampling of serum protein biomarkers for monitoring human traumatic brain injury dynamics: A systematic review. Front Neurol. 2017;8:300. doi: 10.3389/fneur.2017.00300.
    1. Luyt C.E., Galanaud D., Perlbarg V., et al. Diffusion tensor imaging to predict long-term outcome after cardiac arrest: A bicentric pilot study. Anesthesiology. 2012;117:1311–1321. doi: 10.1097/ALN.0b013e318275148c.
    1. Pluta R., Ułamek-Kozioł M., Januszewski S., Czuczwar S.J. Tau protein dysfunction after brain ischemia. J Alzheimer’s Dis. 2018;66:429–433. doi: 10.3233/JAD-180772.
    1. Rahaman P., del Bigio M.R. Histology of Brain Trauma and Hypoxia-Ischemia. Acad Foren Pathol. 2018;8:539. doi: 10.1177/1925362118797728.
    1. Helwig K., Seeger F., Hölschermann H., et al. Elevated Serum Glial Fibrillary Acidic Protein (GFAP) is Associated with Poor Functional Outcome After Cardiopulmonary Resuscitation. Neurocrit Care. 2017;27:68–74. doi: 10.1007/s12028-016-0371-6.
    1. Ebner F., Moseby-Knappe M., Mattsson-Carlgren N., et al. Serum GFAP and UCH-L1 for the prediction of neurological outcome in comatose cardiac arrest patients. Resuscitation. 2020;154:61–68. doi: 10.1016/j.resuscitation.2020.05.016.
    1. Nielsen N., Wetterslev J., Cronberg T., et al. Targeted Temperature Management at 33°C versus 36°C after Cardiac Arrest. New Engl J Med. 2013;369:2197–2206. doi: 10.1056/NEJMOA1310519.
    1. Mörtberg E., Zetterberg H., Nordmark J., et al. Plasma tau protein in comatose patients after cardiac arrest treated with therapeutic hypothermia. Acta Anaesthesiol Scand. 2011;55:1132–1138. doi: 10.1111/j.1399-6576.2011.02505.x.
    1. Wihersaari L., Ashton N.J., Reinikainen M., et al. Neurofilament light as an outcome predictor after cardiac arrest: a post hoc analysis of the COMACARE trial. Intens Care Med. 2021;47:39–48. doi: 10.1007/s00134-020-06218-9.
    1. Moseby-Knappe M., Mattsson N., Nielsen N., et al. Serum Neurofilament Light Chain for Prognosis of Outcome after Cardiac Arrest. JAMA Neurol. 2019;76:64–71. doi: 10.1001/jamaneurol.2018.3223.
    1. Moseby-Knappe M., Mattsson-Carlgren N., Stammet P., et al. Serum markers of brain injury can predict good neurological outcome after out-of-hospital cardiac arrest. Intens Care Med. 2021;47:984–994. doi: 10.1007/S00134-021-06481-4.
    1. Ashton N.J., Suárez-Calvet M., Karikari T.K., et al. Effects of pre-analytical procedures on blood biomarkers for Alzheimer’s pathophysiology, glial activation, and neurodegeneration. Alzheimer’s Demen Diagn Assess Dis Monit. 2021;13 doi: 10.1002/DAD2.12168.
    1. Bazarian J.J., Biberthaler P., Welch R.D., et al. Serum GFAP and UCH-L1 for prediction of absence of intracranial injuries on head CT (ALERT-TBI): a multicentre observational study. Lancet Neurol. 2018;17:782–789. doi: 10.1016/S1474-4422(18)30231-X.
    1. Chiu M.-J., Lue L.-F., Sabbagh M.N., Chen T.-F., Chen H.H., Yang S.-Y. Long-Term Storage Effects on Stability of Aβ1–40, Aβ1–42, and Total Tau Proteins in Human Plasma Samples Measured with Immunomagnetic Reduction Assays. Dement Geriatr Cogn Disord Extra. 2019;9:77–86. doi: 10.1159/000496099.

Source: PubMed

3
Abonneren