Bifidobacteria exhibit social behavior through carbohydrate resource sharing in the gut

Christian Milani, Gabriele Andrea Lugli, Sabrina Duranti, Francesca Turroni, Leonardo Mancabelli, Chiara Ferrario, Marta Mangifesta, Arancha Hevia, Alice Viappiani, Matthias Scholz, Stefania Arioli, Borja Sanchez, Jonathan Lane, Doyle V Ward, Rita Hickey, Diego Mora, Nicola Segata, Abelardo Margolles, Douwe van Sinderen, Marco Ventura, Christian Milani, Gabriele Andrea Lugli, Sabrina Duranti, Francesca Turroni, Leonardo Mancabelli, Chiara Ferrario, Marta Mangifesta, Arancha Hevia, Alice Viappiani, Matthias Scholz, Stefania Arioli, Borja Sanchez, Jonathan Lane, Doyle V Ward, Rita Hickey, Diego Mora, Nicola Segata, Abelardo Margolles, Douwe van Sinderen, Marco Ventura

Abstract

Bifidobacteria are common and frequently dominant members of the gut microbiota of many animals, including mammals and insects. Carbohydrates are considered key carbon sources for the gut microbiota, imposing strong selective pressure on the complex microbial consortium of the gut. Despite its importance, the genetic traits that facilitate carbohydrate utilization by gut microbiota members are still poorly characterized. Here, genome analyses of 47 representative Bifidobacterium (sub)species revealed the genes predicted to be required for the degradation and internalization of a wide range of carbohydrates, outnumbering those found in many other gut microbiota members. The glycan-degrading abilities of bifidobacteria are believed to reflect available carbon sources in the mammalian gut. Furthermore, transcriptome profiling of bifidobacterial genomes supported the involvement of various chromosomal loci in glycan metabolism. The widespread occurrence of bifidobacterial saccharolytic features is in line with metagenomic and metatranscriptomic datasets obtained from human adult/infant faecal samples, thereby supporting the notion that bifidobacteria expand the human glycobiome. This study also underscores the hypothesis of saccharidic resource sharing among bifidobacteria through species-specific metabolic specialization and cross feeding, thereby forging trophic relationships between members of the gut microbiota.

Figures

Figure 1. Predicted glycobiome of the Bifidobacterium…
Figure 1. Predicted glycobiome of the Bifidobacterium genus and some additional members of the Bifidobacteriaceae family.
GH families and carbohydrate-utilization pathways profiles, based on CAZy database and Pathway-tools software, respectively, were used to construct a hierarchical clustering of all tested species of the Bifidobacteriumgenus and additional members of the Bifidobacteriaceae family. This clustering highlights the presence of three distinct clusters named GHP/A, GHP/B and GHP/C that display a different repertoire of GHs as well as a different repertoire of plant carbohydrate degradation pathways. GH arsenal prediction for every analyzed Bifidobacteriaceae species is represented by a bar plot. The presence of pathways for degradation of simple or complex carbohydrates is represented by the red color in the heat map and the GH index (the number of GHs predicted in each genome normalized by genome size expressed as Mbp) is illustrated as an orange bar plot. Pathways denominations are indicated as follows: 1 Bifidobacteriumshunt, 2 galactose degradation I (Leloir pathway), 3 melibiose degradation, 4 ribose degradation, 5 lactose degradation III, 6 glycogen degradation I, 7 glycogen degradation II, 8 sucrose degradation IV, 9 L-arabinose degradation I, 10 xylose degradation I, 11 D-mannose degradation, 12 (1,4)-ß-xylan degradation, 13 starch degradation V, 14 chitin degradation (chitinase), 15 trehalose degradation IV, 16 Pectin (homogalacturonan) degradation, 17 2'-deoxy-a-D-ribose 1-phosphate degradation, 18 trehalose degradation I (low osmolarity), 19 L-rhamnose degradation II.
Figure 2. Comparative analysis of bifidobacterial GHs…
Figure 2. Comparative analysis of bifidobacterial GHs against other gut bacteria.
The central heat map shows GH prediction data of 2721 sequenced bacterial strains belonging to bacterial orders residing in the human gut, identified by different color codes as explained in the underlying table. The four heat map rows, situated above the main heat map, represent an enlarged view of the GH51, GH3, GH43 and GH13 content. Data regardingBifidobacteriales are highlighted in blue. Data regardingClostridiales and Bacteroidales are highlighted in green.
Figure 3. Evaluation of possible bifidobacterial cross-feeding…
Figure 3. Evaluation of possible bifidobacterial cross-feeding by a transcriptomics approach.
(Panel a) reports the abundance, observed through quantitative qRT-PCR, of eight bifidobacterial species cultivated in MRS supplemented with four different carbohydrates. These species were either grown on their own (mono-association) or in the presence of another bifidobacterial strain (bi-associations) sharing the same ecological niche. The five case studies analysed are named progressively with letters from A to D, corresponding to:B. cuniculi and B. magnum grown on starch (A), B. cuniculi and B. magnum grown on xylan (B), B. biavatiiand B. stellenboschense grown on glycogen (C) and B. thermacidophilum subsp. porcinum and B. longumsubsp. suis grown on starch (D). (Panel b) shows the transcriptional fold change of genes encoding enzymes in the breakdown of glycans observed in the five case studies, named progressively with letters from A to D. Functional annotation of enzymes are indicated in orange while the functional annotation of transporter encoding genes and the predicted glycan specificity is highlighted in green.
Figure 4. Data mining for bifidobacterial GH…
Figure 4. Data mining for bifidobacterial GH genes and bifidobacterial pathways for carbohydrate degradation in adult and infant fecal metagenome data sets and an infant fecal metatranscriptome data set.
Bar plots above the heatmaps show the relative abundance of bifidobacteria in the analysed samples. Heatmaps in the upper part depict the coverage obtained by alignment of adult and infant fecal metagenomic data sets, or infant metatranscriptome data sets to predicted bifidobacterial GH-encoding genes. In order to compare results for datasets with different sizes, all coverage values were normalized as obtained from a 10 million read dataset. Heatmaps in the lower part of the image represent the coverage obtained by alignment of the same datasets to genes constituting the bifidobacterial pathways for carbohydrate degradation. Relevant GH genes and pathways involved in the metabolism of glycans are highlighted in red. Pathways designations are identical to those indicated in Fig. 1.

References

    1. Ventura M., Turroni F., Motherway M. O., MacSharry J. & van Sinderen D. Host-microbe interactions that facilitate gut colonization by commensal bifidobacteria. Trends in microbiology 20, 467–476, doi: 10.1016/j.tim.2012.07.002 (2012).
    1. Bergey D. H., Goodfellow M., Whitman W. B. & Parte A. C. 1 online resource (2 v.) (Springer, New York, 2012).
    1. Turroni F. et al. Diversity of Bifidobacteria within the Infant Gut Microbiota. PLoS One 7, e36957, doi: 10.1371/journal.pone.0036957 (2012).
    1. Milani C. et al. Assessing the fecal microbiota: an optimized ion torrent 16S rRNA gene-based analysis protocol. PLoS One 8, e68739, doi: 10.1371/journal.pone.0068739 (2013).
    1. Turroni F. et al. Exploring the diversity of the bifidobacterial population in the human intestinal tract. Applied and environmental microbiology 75, 1534–1545, doi: 10.1128/AEM.02216-08 (2009).
    1. El Kaoutari A., Armougom F., Gordon J. I., Raoult D. & Henrissat B. The abundance and variety of carbohydrate-active enzymes in the human gut microbiota. Nat Rev Microbiol 11, 497–504, doi: 10.1038/nrmicro3050 (2013).
    1. Koropatkin N. M., Cameron E. A. & Martens E. C. How glycan metabolism shapes the human gut microbiota. Nature reviews. Microbiology 10, 323–335, doi: 10.1038/nrmicro2746 (2012).
    1. Ventura M. et al. Genome-scale analyses of health-promoting bacteria: probiogenomics. Nature reviews. Microbiology 7, 61–71, doi: 10.1038/nrmicro2047 (2009).
    1. Milani C. et al. Genomic encyclopedia of type strains of the genus Bifidobacterium. Applied and environmental microbiology 80, 6290–6302, doi: 10.1128/AEM.02308-14 (2014).
    1. Lugli G. A. et al. Investigation of the evolutionary development of the genus Bifidobacterium by comparative genomics. Applied and environmental microbiology 80, 6383–6394, doi: 10.1128/AEM.02004-14 (2014).
    1. Powell S. et al. eggNOG v4.0: nested orthology inference across 3686 organisms. Nucleic acids research 42, D231–239, doi: 10.1093/nar/gkt1253 (2014).
    1. Ventura M., Canchaya C., Fitzgerald G. F., Gupta R. S. & van Sinderen D. Genomics as a means to understand bacterial phylogeny and ecological adaptation: the case of bifidobacteria. Antonie Van Leeuwenhoek 91, 351–372, doi: 10.1007/s10482-006-9122-6 (2007).
    1. Lombard V., Golaconda Ramulu H., Drula E., Coutinho P. M. & Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic acids research 42, D490–495, doi: 10.1093/nar/gkt1178 (2014).
    1. Pokusaeva K., Fitzgerald G. F. & van Sinderen D. Carbohydrate metabolism in Bifidobacteria. Genes & nutrition 6, 285–306, doi: 10.1007/s12263-010-0206-6 (2011).
    1. Rennie E. A. & Scheller H. V. Xylan biosynthesis. Current opinion in biotechnology 26C, 100–107, doi: 10.1016/j.copbio.2013.11.013 (2014).
    1. Foschia M., D. P., Sensidoni A. & Brennan C. S. The effects of dietary fibre addition on the quality of common cereal products. Journal of Cereal Science 58, 216–227 (2013).
    1. Lee F. J., Rusch D. B., Stewart F. J., Mattila H. R. & Newton I. L. Saccharide breakdown and fermentation by the honey bee gut microbiome. Environmental microbiology 17, 796–815, doi: 10.1111/1462-2920.12526 (2015).
    1. Gill S. R. et al. Metagenomic analysis of the human distal gut microbiome. Science 312, 1355–1359, doi: 10.1126/science.1124234 (2006).
    1. Human Microbiome Project, C. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214, doi: 10.1038/nature11234 (2012).
    1. Turroni F. et al. Genome analysis of Bifidobacterium bifidum PRL2010 reveals metabolic pathways for host-derived glycan foraging. Proc Natl Acad Sci USA 107, 19514–19519, doi: 10.1073/pnas.1011100107 (2010).
    1. Kiyohara M. et al. An exo-alpha-sialidase from bifidobacteria involved in the degradation of sialyloligosaccharides in human milk and intestinal glycoconjugates. Glycobiology 21, 437–447, doi: 10.1093/glycob/cwq175 (2011).
    1. Karp P. D. et al. Pathway Tools version 13.0: integrated software for pathway/genome informatics and systems biology. Briefings in bioinformatics 11, 40–79, doi: 10.1093/bib/bbp043 (2010).
    1. Wang L. & Wise M. J. Glycogen with short average chain length enhances bacterial durability. Die Naturwissenschaften 98, 719–729, doi: 10.1007/s00114-011-0832-x (2011).
    1. Goh Y. J. & Klaenhammer T. R. Insights into glycogen metabolism in Lactobacillus acidophilus: impact on carbohydrate metabolism, stress tolerance and gut retention. Microbial cell factories 13, 94, doi: 10.1186/s12934-014-0094-3 (2014).
    1. Jones S. A. et al. Glycogen and maltose utilization by Escherichia coli O157:H7 in the mouse intestine. Infection and immunity 76, 2531–2540, doi: 10.1128/IAI.00096-08 (2008).
    1. Henrissat B., Deleury E. & Coutinho P. M. Glycogen metabolism loss: a common marker of parasitic behaviour in bacteria? Trends in genetics: TIG 18, 437–440 (2002).
    1. Misof B. et al. Phylogenomics resolves the timing and pattern of insect evolution. Science 346, 763–767, doi: 10.1126/science.1257570 (2014).
    1. Wyatt G. R. The Biochemistry of Sugars and Polysaccharides in Insects. Advances in Insect Physiology 4, 287–360 (1967).
    1. Egan M. et al. Cross-feeding by Bifidobacterium breve UCC2003 during co-cultivation with Bifidobacterium bifidum PRL2010 in a mucin-based medium. BMC microbiology 14, 282, doi: 10.1186/s12866-014-0282-7 (2014).
    1. Sonnenburg J. L., Chen C. T. & Gordon J. I. Genomic and metabolic studies of the impact of probiotics on a model gut symbiont and host. PLoS Biol 4, e413, doi: 10.1371/journal.pbio.0040413 (2006).
    1. Barile D. & Rastall R. A. Human milk and related oligosaccharides as prebiotics. Current opinion in biotechnology 24, 214–219, doi: 10.1016/j.copbio.2013.01.008 (2013).
    1. Kitaoka M. Bifidobacterial enzymes involved in the metabolism of human milk oligosaccharides. Advances in nutrition 3, 422S–429S, doi: 10.3945/an.111.001420 (2012).
    1. Sela D. A. et al. The genome sequence of Bifidobacterium longum subsp. infantis reveals adaptations for milk utilization within the infant microbiome. Proceedings of the National Academy of Sciences of the United States of America 105, 18964–18969, doi: 10.1073/pnas.0809584105 (2008).
    1. Segata N. et al. Metagenomic microbial community profiling using unique clade-specific marker genes. Nature methods 9, 811–814, doi: 10.1038/nmeth.2066 (2012).
    1. Marino K. et al. Method for milk oligosaccharide profiling by 2-aminobenzamide labeling and hydrophilic interaction chromatography. Glycobiology 21, 1317–1330, doi: 10.1093/glycob/cwr067 (2011).
    1. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry 72, 248–254 (1976).
    1. Wilson D. et al. SUPERFAMILY–sophisticated comparative genomics, data mining, visualization and phylogeny. Nucleic acids research 37, D380–386, doi: 10.1093/nar/gkn762 (2009).
    1. Sambrook J., E. F. F. & Maniatis T. Molecular cloning: a laboratory manual. Cold Spring Harbor,NY: Cold Spring Harbor Laboratory, 545 (1989).
    1. Li H. & Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760, doi: 10.1093/bioinformatics/btp324 (2009).
    1. Love M. I., Huber W. & Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome biology 15, 550, doi: 10.1186/s13059-014-0550-8 (2014).
    1. Langmead B. & Salzberg S. L. Fast gapped-read alignment with Bowtie 2. Nature methods 9, 357–U354, doi: Doi 10.1038/Nmeth.1923 (2012).
    1. Li H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079, doi: 10.1093/bioinformatics/btp352 (2009).
    1. Quinlan A. R. & Hall I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842, doi: 10.1093/bioinformatics/btq033 (2010).

Source: PubMed

3
Abonneren