Application of Circulating Tumor DNA as a Non-Invasive Tool for Monitoring the Progression of Colorectal Cancer

Jiaolin Zhou, Lianpeng Chang, Yanfang Guan, Ling Yang, Xuefeng Xia, Liqiang Cui, Xin Yi, Guole Lin, Jiaolin Zhou, Lianpeng Chang, Yanfang Guan, Ling Yang, Xuefeng Xia, Liqiang Cui, Xin Yi, Guole Lin

Abstract

Background: Liquid biopsy has been proposed to be a promising noninvasive tool to obtain information on tumor progression. Through a clinical observation of a case series of 6 consecutive patients, we aim to determine the value of circulating tumor DNA (ctDNA) for monitoring the tumor burden during the treatment of colorectal cancer (CRC).

Materials and methods: We used capture sequencing of 545 genes to identify somatic alternations in primary tumor tissues of the six CRC patients who underwent radical surgery and in 23 plasma samples collected at serial time points. We compared the mutation patterns and variant allele frequencies (VAFs) between the matched tissue and the plasma samples and evaluated the potential advantage of using ctDNA as a better tumor load indicator to detect disease relapse over carcinoembryonic antigen (CEA), cancer antigen (CA) 19-9 and imaging studies.

Results: We identified low-frequency mutations with a mean VAF of 0.88% (corresponding to a mean tumor burden of 0.20ng/mL) in the preoperative plasmas of four patients with locally advanced CRC and a subset of mutations shared by their primary tumors. The tumor loads appeared a sudden decrease upon surgery or other adjuvant treatments and then generally maintained at low levels (0.092ng/mL) until disease recurred. ctDNA increased by 13-fold when disease relapsed in one patient while the CEA and CA 19-9 levels remained normal. In this patient, all six somatic mutations identified in the preoperative plasma were detected in the recrudescent plasma again, with five mutations showing allele fraction increase.

Conclusions: We described a multi-time-point profile of ctDNA of CRC patients during the course of comprehensive treatment and observed a correlation of ctDNA level with the clinically evaluated tumor progression. This demonstrated a new strategy by analyzing the heterogeneous ctDNA to evaluate and monitor the tumor burden in the treatment and follow-up of CRC patients, with potentially better potency than conventional biomarkers.

Conflict of interest statement

Competing Interests: Lianpeng Chang, Yanfang Guan, Ling Yang, and Xin Yi are consultants for Geneplus-Beijing. The authors confirm that this does not alter their adherence to all the PLOS ONE policies on sharing data and materials. Other authors declare no conflict of interest.

Figures

Fig 1. Three-dimensional spectra of genes showing…
Fig 1. Three-dimensional spectra of genes showing tumor-derived nonsynonymous mutations detected in patient plasma.
Spectra are shown for patients 3, 4, and 6. The gene coordinates were plotted according to the reference genome (hg19). Cone height represents relative VAF. Individual driver genes also identified in tissue samples are labeled.
Fig 2. Clinical application of ctDNA to…
Fig 2. Clinical application of ctDNA to monitor colorectal cancer in patients after surgery.
CEA and CA 19–9 levels and tumor burden were assessed at the indicated time points in (A) patient 3, (C) patient 5, and (D) patient 6, who showed no recurrence; (B) patient 4, in whom colonoscopy and contrast-enhanced computed tomography (CT) showed recurrence. ctDNA, circulating tumor DNA; P, patient; CEA, carcinoembryonic antigen; CA 19–9, cancer antigen 19–9; W, week; M, month(s).
Fig 3. Mutated allele fraction of common…
Fig 3. Mutated allele fraction of common somatic variations in preoperative blood versus blood sampled when disease was relapsing of patient 4.
VAF, variant allele frequency.

References

    1. Bohm B, Schwenk W, Hucke HP, Stock W. Does methodic long-term follow-up affect survival after curative resection of colorectal carcinoma? Diseases of the colon and rectum. 1993;36(3):280–6. Epub 1993/03/01. .
    1. Scholefield JH, Steele RJ. Guidelines for follow up after resection of colorectal cancer. Gut. 2002;51 Suppl 5:V3–5. Epub 2002/09/11.
    1. Umpleby HC, Fermor B, Symes MO, Williamson RC. Viability of exfoliated colorectal carcinoma cells. The British journal of surgery. 1984;71(9):659–63. Epub 1984/09/01. .
    1. Bast RC Jr., Ravdin P, Hayes DF, Bates S, Fritsche H Jr., Jessup JM, et al. 2000 update of recommendations for the use of tumor markers in breast and colorectal cancer: clinical practice guidelines of the American Society of Clinical Oncology. Journal of clinical oncology: official journal of the American Society of Clinical Oncology. 2001;19(6):1865–78. .
    1. Kraus S, Nabiochtchikov I, Shapira S, Arber N. Recent advances in personalized colorectal cancer research. Cancer letters. 2014;347(1):15–21. 10.1016/j.canlet.2014.01.025 .
    1. Liu Z, Zhang Y, Niu Y, Li K, Liu X, Chen H, et al. A systematic review and meta-analysis of diagnostic and prognostic serum biomarkers of colorectal cancer. PloS one. 2014;9(8):e103910 10.1371/journal.pone.0103910
    1. Sorbye H, Dahl O. Carcinoembryonic antigen surge in metastatic colorectal cancer patients responding to oxaliplatin combination chemotherapy: implications for tumor marker monitoring and guidelines. Journal of clinical oncology: official journal of the American Society of Clinical Oncology. 2003;21(23):4466–7. 10.1200/JCO.2003.99.200 .
    1. Diehl F, Li M, Dressman D, He Y, Shen D, Szabo S, et al. Detection and quantification of mutations in the plasma of patients with colorectal tumors. Proceedings of the National Academy of Sciences of the United States of America. 2005;102(45):16368–73. Epub 2005/11/01. 10.1073/pnas.0507904102
    1. Diehl F, Schmidt K, Choti MA, Romans K, Goodman S, Li M, et al. Circulating mutant DNA to assess tumor dynamics. Nature medicine. 2008;14(9):985–90. Epub 2008/08/02. 10.1038/nm.1789
    1. Nawroz H, Koch W, Anker P, Stroun M, Sidransky D. Microsatellite alterations in serum DNA of head and neck cancer patients. Nature medicine. 1996;2(9):1035–7. Epub 1996/09/01. .
    1. Reinert T, Scholer LV, Thomsen R, Tobiasen H, Vang S, Nordentoft I, et al. Analysis of circulating tumour DNA to monitor disease burden following colorectal cancer surgery. Gut. 2015. Epub 2015/02/07. 10.1136/gutjnl-2014-308859 .
    1. Sherwood JL, Corcoran C, Brown H, Sharpe AD, Musilova M, Kohlmann A. Optimised Pre-Analytical Methods Improve KRAS Mutation Detection in Circulating Tumour DNA (ctDNA) from Patients with Non-Small Cell Lung Cancer (NSCLC). PloS one. 2016;11(2):e0150197 Epub 2016/02/27. 10.1371/journal.pone.0150197
    1. Seshagiri S, Stawiski EW, Durinck S, Modrusan Z, Storm EE, Conboy CB, et al. Recurrent R-spondin fusions in colon cancer. Nature. 2012;488(7413):660–4. Epub 2012/08/17. 10.1038/nature11282
    1. Bettegowda C, Sausen M, Leary RJ, Kinde I, Wang Y, Agrawal N, et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Science translational medicine. 2014;6(224):224ra24 Epub 2014/02/21. 10.1126/scitranslmed.3007094
    1. Butler TM, Johnson-Camacho K, Peto M, Wang NJ, Macey TA, Korkola JE, et al. Exome Sequencing of Cell-Free DNA from Metastatic Cancer Patients Identifies Clinically Actionable Mutations Distinct from Primary Disease. PloS one. 2015;10(8):e0136407 10.1371/journal.pone.0136407
    1. Roschewski M, Dunleavy K, Pittaluga S, Moorhead M, Pepin F, Kong K, et al. Circulating tumour DNA and CT monitoring in patients with untreated diffuse large B-cell lymphoma: a correlative biomarker study. The Lancet Oncology. 2015. Epub 2015/04/07. 10.1016/S1470-2045(15)70106-3 .
    1. Xu S, Lou F, Wu Y, Sun DQ, Zhang JB, Chen W, et al. Circulating tumor DNA identified by targeted sequencing in advanced-stage non-small cell lung cancer patients. Cancer letters. 2016;370(2):324–31. 10.1016/j.canlet.2015.11.005 .
    1. Nielsen R, Paul JS, Albrechtsen A, Song YS. Genotype and SNP calling from next-generation sequencing data. Nature reviews Genetics. 2011;12(6):443–51. 10.1038/nrg2986
    1. Cibulskis K, Lawrence MS, Carter SL, Sivachenko A, Jaffe D, Sougnez C, et al. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nature biotechnology. 2013;31(3):213–9. 10.1038/nbt.2514
    1. Li J, Lupat R, Amarasinghe KC, Thompson ER, Doyle MA, Ryland GL, et al. CONTRA: copy number analysis for targeted resequencing. Bioinformatics. 2012;28(10):1307–13. 10.1093/bioinformatics/bts146
    1. Chen K, Wallis JW, McLellan MD, Larson DE, Kalicki JM, Pohl CS, et al. BreakDancer: an algorithm for high-resolution mapping of genomic structural variation. Nature methods. 2009;6(9):677–81. 10.1038/nmeth.1363
    1. Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, Getz G, et al. Integrative genomics viewer. Nature biotechnology. 2011;29(1):24–6. 10.1038/nbt.1754
    1. Kandoth C, McLellan MD, Vandin F, Ye K, Niu B, Lu C, et al. Mutational landscape and significance across 12 major cancer types. Nature. 2013;502(7471):333–9. 10.1038/nature12634
    1. Lawrence MS, Stojanov P, Polak P, Kryukov GV, Cibulskis K, Sivachenko A, et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature. 2013;499(7457):214–8. 10.1038/nature12213
    1. Fearon ER. Molecular genetics of colorectal cancer. Annual review of pathology. 2011;6:479–507. 10.1146/annurev-pathol-011110-130235 .
    1. Wood LD, Parsons DW, Jones S, Lin J, Sjoblom T, Leary RJ, et al. The genomic landscapes of human breast and colorectal cancers. Science. 2007;318(5853):1108–13. 10.1126/science.1145720 .
    1. Sottoriva A, Kang H, Ma Z, Graham TA, Salomon MP, Zhao J, et al. A Big Bang model of human colorectal tumor growth. Nature genetics. 2015;47(3):209–16. 10.1038/ng.3214
    1. Dawson SJ, Tsui DW, Murtaza M, Biggs H, Rueda OM, Chin SF, et al. Analysis of circulating tumor DNA to monitor metastatic breast cancer. The New England journal of medicine. 2013;368(13):1199–209. Epub 2013/03/15. 10.1056/NEJMoa1213261 .
    1. Klevebring D, Neiman M, Sundling S, Eriksson L, Darai Ramqvist E, Celebioglu F, et al. Evaluation of exome sequencing to estimate tumor burden in plasma. PloS one. 2014;9(8):e104417 10.1371/journal.pone.0104417
    1. Siravegna G, Mussolin B, Buscarino M, Corti G, Cassingena A, Crisafulli G, et al. Clonal evolution and resistance to EGFR blockade in the blood of colorectal cancer patients. Nature medicine. 2015;21(7):827 10.1038/nm0715-827b .
    1. Tie J, Kinde I, Wang Y, Wong HL, Roebert J, Christie M, et al. Circulating Tumor DNA as an Early Marker of Therapeutic Response in Patients with Metastatic Colorectal Cancer . Annals of oncology: official journal of the European Society for Medical Oncology / ESMO. 2015. Epub 2015/04/09. 10.1093/annonc/mdv177 .
    1. Lecomte T, Berger A, Zinzindohoue F, Micard S, Landi B, Blons H, et al. Detection of free-circulating tumor-associated DNA in plasma of colorectal cancer patients and its association with prognosis. International journal of cancer. 2002;100(5):542–8. 10.1002/ijc.10526 .
    1. Schmitt MW, Kennedy SR, Salk JJ, Fox EJ, Hiatt JB, Loeb LA. Detection of ultra-rare mutations by next-generation sequencing. Proceedings of the National Academy of Sciences of the United States of America. 2012;109(36):14508–13. 10.1073/pnas.1208715109
    1. Kennedy SR, Schmitt MW, Fox EJ, Kohrn BF, Salk JJ, Ahn EH, et al. Detecting ultralow-frequency mutations by Duplex Sequencing. Nature protocols. 2014;9(11):2586–606. 10.1038/nprot.2014.170
    1. Newman AM, Bratman SV, To J, Wynne JF, Eclov NC, Modlin LA, et al. An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nature medicine. 2014;20(5):548–54. 10.1038/nm.3519
    1. Ouyang DL, Chen JJ, Getzenberg RH, Schoen RE. Noninvasive testing for colorectal cancer: a review. The American journal of gastroenterology. 2005;100(6):1393–403. 10.1111/j.1572-0241.2005.41427.x .
    1. Tao S, Hundt S, Haug U, Brenner H. Sensitivity estimates of blood-based tests for colorectal cancer detection: impact of overrepresentation of advanced stage disease. The American journal of gastroenterology. 2011;106(2):242–53. 10.1038/ajg.2010.393 .
    1. Bernheim O, Colombel JF, Ullman TA, Laharie D, Beaugerie L, Itzkowitz SH. The management of immunosuppression in patients with inflammatory bowel disease and cancer. Gut. 2013;62(11):1523–8. 10.1136/gutjnl-2013-305300 .

Source: PubMed

3
Abonneren