Non-linear Entropy Analysis in EEG to Predict Treatment Response to Repetitive Transcranial Magnetic Stimulation in Depression

Reza Shalbaf, Colleen Brenner, Christopher Pang, Daniel M Blumberger, Jonathan Downar, Zafiris J Daskalakis, Joseph Tham, Raymond W Lam, Faranak Farzan, Fidel Vila-Rodriguez, Reza Shalbaf, Colleen Brenner, Christopher Pang, Daniel M Blumberger, Jonathan Downar, Zafiris J Daskalakis, Joseph Tham, Raymond W Lam, Faranak Farzan, Fidel Vila-Rodriguez

Abstract

Background: Biomarkers that predict clinical outcomes in depression are essential for increasing the precision of treatments and clinical outcomes. The electroencephalogram (EEG) is a non-invasive neurophysiological test that has promise as a biomarker sensitive to treatment effects. The aim of our study was to investigate a novel non-linear index of resting state EEG activity as a predictor of clinical outcome, and compare its predictive capacity to traditional frequency-based indices. Methods: EEG was recorded from 62 patients with treatment resistant depression (TRD) and 25 healthy comparison (HC) subjects. TRD patients were treated with excitatory repetitive transcranial magnetic stimulation (rTMS) to the dorsolateral prefrontal cortex (DLPFC) for 4 to 6 weeks. EEG signals were first decomposed using the empirical mode decomposition (EMD) method into band-limited intrinsic mode functions (IMFs). Subsequently, Permutation Entropy (PE) was computed from the obtained second IMF to yield an index named PEIMF2. Receiver Operator Characteristic (ROC) curve analysis and ANOVA test were used to evaluate the efficiency of this index (PEIMF2) and were compared to frequency-band based methods. Results: Responders (RP) to rTMS exhibited an increase in the PEIMF2 index compared to non-responders (NR) at F3, FCz and FC3 sites (p < 0.01). The area under the curve (AUC) for ROC analysis was 0.8 for PEIMF2 index for the FC3 electrode. The PEIMF2 index was superior to ordinary frequency band measures. Conclusion: Our data show that the PEIMF2 index, yields superior outcome prediction performance compared to traditional frequency band indices. Our findings warrant further investigation of EEG-based biomarkers in depression; specifically entropy indices applied in band-limited EEG components. Registration in ClinicalTrials.Gov; identifiers NCT02800226 and NCT01887782.

Keywords: EEG; biomarker; empirical mode decomposition; major depressive disorder; permutation entropy; rTMS.

Figures

FIGURE 1
FIGURE 1
A segment of EEG signal from one participant in FC3 site (A) [X(t)] and EMD of the same segment (B, Imf 1 to Imf 6).
FIGURE 2
FIGURE 2
Scalp topographical maps of PEIMF2 index (resting state, eyes closed). From left to right: topographies of the (A) RP, (B) the NR, and (C) HC. PEIMF2 index in RP and HC groups is higher than NR group especially at left frontal electrodes.
FIGURE 3
FIGURE 3
PEIMF2 index as a function of electrode sites for RP and NR with comparison to HC participant groups. Error bars represent ± 1 standard error. RP differ than NR to rTMS treatment especially at FC3.
FIGURE 4
FIGURE 4
ROC curve analysis and AUC value of Delta, Theta, Alpha, Beta, Gamma relative powers to discriminate between RP an NR on best electrodes. The low AUC value of frequency band measures indicates weak prediction accuracy of these linear approaches.

References

    1. Arns M., Cerquera A., Gutiérrez R. M., Hasselman F., Freund J. A. (2014). Non-linear EEG analyses predict non-response to rTMS treatment in major depressive disorder. Clin. Neurophysiol. 125 1392–1399. 10.1016/j.clinph.2013.11.022
    1. Arns M., Drinkenburg W. H., Fitzgerald P. B., Kenemans J. L. (2012). Neurophysiological predictors of non-response to rTMS in depression. Brain Stimul. 5 569–576. 10.1016/j.brs.2011.12.003
    1. Bandt C., Pompe B. (2002). Permutation entropy: a natural complexity measure for time series. Phys. Rev. Lett. 88:174102. 10.1103/PhysRevLett.88.174102
    1. Bares M., Brunovsky M., Novak T., Kopecek M., Stopkova P., Sos P., et al. (2015). QEEG theta cordance in the prediction of treatment outcome to prefrontal repetitive transcranial magnetic stimulation or venlafaxine ER in patients with major depressive disorder. Clin. EEG Neurosci. 46 73–80. 10.1177/1550059413520442
    1. Baskaran A., Milev R., McIntyre R. S. (2012). The neurobiology of the EEG biomarker as a predictor of treatment response in depression. Neuropharmacology 63 507–513. 10.1016/j.neuropharm.2012.04.021
    1. Berlim M., Fleck M., Turecki G. (2008). Current trends in the assessment and somatic treatment of resistant/refractory major depression: an overview. Ann. Med. 40 149–159. 10.1080/07853890701769728
    1. Blumberger D. M., Vila-Rodriguez F., Thorpe K. E. (2018). Effectiveness of theta burst versus high-frequency repetitive transcranial magnetic stimulation in patients with depression (THREE-D): a randomised non-inferiority trial. Lancet 391 1683–1692. 10.1016/S0140-6736(18)30295-2
    1. Cao Y., Tung W., Gao J. B., Protopopescu V. A., Hively L. M. (2004). Detecting dynamical changes in time series using the permutation entropy. Phys. Rev. E 70:46217. 10.1103/PhysRevE.70.046217
    1. Collins P. Y., Patel V., Joestl S. S., March D., Insel T. R., Daar A. S. (2011). Scientific advisory board and the executive committee of the grand challenges on global mental health. Nature 475 27–30. 10.1038/475027a
    1. Delorme A., Makeig S. (2004). EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 134 9–21. 10.1016/j.jneumeth.2003.10.009
    1. Dobek C. E., Dipinto A. A., Kuan A. J., Lam R. W., Blumberger D. M., Downar J., et al. (2016). Sinus tachycardia induced by methocarbamol and repetitive transcranial magnetic stimulation (rTMS). Brain Stimul. 9 156–158. 10.1016/j.brs.2015.10.012
    1. Elbert T., Ray W. J., Kowalik Z. J., Skinner J. E., Graf K. E., Birbaumer N. (1994). Chaos and physiology: deterministic chaos in excitable cell assemblies. Physiol. Rev. 74 1–47. 10.1152/physrev.1994.74.1.1
    1. Erguzel T. T., Ozekes S., Gultekin S., Tarhan N., Hizli Sayar G., Bayram A. (2015). Neural network based response prediction of rTMS in major depressive disorder using QEEG cordance. Psychiatry Investig. 12 61–65. 10.4306/pi.2015.12.1.61
    1. Farzan F., Atluri S., Frehlich M., Dhami P., Kleffner K., Price R., et al. (2017a). Standardization of electroencephalography for multi-site, multi-platform and multi-investigator studies: insights from the Canadian biomarker integration network in depression. Sci. Rep. 7:7473. 10.1038/s41598-017-07613-x
    1. Farzan F., Atluri S., Mei Y., Moreno S., Levinson A. J., Blumberger D. M., et al. (2017b). Brain temporal complexity in explaining the therapeutic and cognitive effects of seizure therapy. Brain 140 1011–1025. 10.1093/brain/awx030
    1. Ferrari A., Charlson F., Norman R., Patten S. (2013). Burden of depressive disorders by country, sex, age, and year: findings from the global burden of disease study 2010. PLoS Med. 10:e1001547. 10.1371/journal.pmed.1001547
    1. Galletly C., Gill S., Clarke P., Burton C., Fitzgerald P. B. (2011). A randomized trial comparing repetitive transcranial magnetic stimulation given 3 days/week and 5 days/week for the treatment of major depression: is efficacy related to the duration of treatment or the number of treatments? Psychol. Med. 13 1–8.
    1. Ge R., Blumberger D. M., Downar J., Daskalakis Z. J., Dipinto A. A., Tham J. C. W., et al. (2017). Abnormal functional connectivity within resting-state networks is related to rTMS-based therapy effects of treatment resistant depression: a pilot study. J. Affect. Disord. 218 75–81. 10.1016/j.jad.2017.04.060
    1. Hallett M. (2007). Transcranial magnetic stimulation: a primer. Neuron 55 187–199. 10.1016/j.neuron.2007.06.026
    1. Hayley S., Poulter M. O., Merali Z., Anisman H. (2005). The pathogenesis of clinical depression: stressor- and cytokine-induced alterations of neuroplasticity. Neuroscience 135 659–678. 10.1016/j.neuroscience.2005.03.051
    1. Hosseini P. T., Shalbaf R., Nasrabadi A. M. (2010). Extracting a seizure intensity index from one-channel EEG signal using bispectral and detrended fluctuation analysis. J. Biomed. Sci. Eng. 3 253–261. 10.4236/jbise.2010.33034
    1. Huang N. E., Shen Z., Long S. R., Wu M. C., Shih H. H., Zheng Q., et al. (1998). The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R Soc. London A Math. Phys. Eng. Sci. 454 903–995. Available at:
    1. Jaworska N., Wang H., Smith D. M., Blier P., Knott V., Protzner A. B. (2018). Pre-treatment EEG signal variability is associated with treatment success in depression. Neuroimage Clin. 17 368–377. 10.1016/j.nicl.2017.10.035
    1. Kevric J., Subasi A. (2017). Comparison of signal decomposition methods in classification of EEG signals for motor-imagery BCI system. Biomed. Signal. Process. Control 31 398–406. 10.1016/j.bspc.2016.09.007
    1. Lam R. W., Milev R., Rotzinger S., Andreazza A. C., Blier P., Brenner C., et al. (2016). Discovering biomarkers for antidepressant response: protocol from the Canadian biomarker integration network in depression (CAN-BIND) and clinical characteristics of the first patient cohort. BMC Psychiatry 16:105. 10.1186/s12888-016-0785-x
    1. Lo M.-T., Novak V., Peng C.-K., Liu Y., Hu K. (2009). Nonlinear phase interaction between nonstationary signals: a comparison study of methods based on Hilbert-Huang and Fourier transforms. Phys. Rev. E 79:61924. 10.1103/PhysRevE.79.061924
    1. Makeig S., Bell A., Jung T. (1996). Independent component analysis of electroencephalographic data. Adv. Neural 8:8.
    1. McDonald W. M., Durkalski V., Ball E. R., Holtzheimer P. E., Pavlicova M., Lisanby S. H., et al. (2011). Improving the antidepressant efficacy of transcranial magnetic stimulation: maximizing the number of stimulations and treatment location in treatmentresistant depression. Depress. Anxiety 28 973–980. 10.1002/da.20885
    1. Micoulaud-Franchi J.-A., Richieri R., Cermolacce M., Loundou A., Lancon C., Vion-Dury J. (2012). Parieto-temporal alpha EEG band power at baseline as a predictor of antidepressant treatment response with repetitive transcranial magnetic stimulation: a preliminary study. J. Affect Disord. 137 156–160. 10.1016/j.jad.2011.12.030
    1. Milev R. V., Giacobbe P., Kennedy S. H., Blumberger D. M., Daskalakis Z. J., Downar J., et al. (2016). Canadian Network for Mood and Anxiety Treatments (CANMAT) 2016 Clinical guidelines for the management of adults with major depressive disorder: section 4. neurostimulation treatments. Can. J. Psychiatry 61 561–575. 10.1177/0706743716660033
    1. Mizuno T., Takahashi T., Cho R., Kikuchi M. (2010). Assessment of EEG dynamical complexity in Alzheimer’s disease using multiscale entropy. Clin. Neurophysiol. 121 1438–1446. 10.1016/J.CLINPH.2010.03.025
    1. Narushima K., McCormick L. M., Yamada T., Thatcher R. W., Robinson R. G. (2010). Subgenual Cingulate theta activity predicts treatment response of repetitive transcranial magnetic stimulation in participants with vascular depression. J. Neuropsychiatry Clin. Neurosci. 22 75–84. 10.1176/jnp.2010.22.1.75
    1. Price G. W., Lee J. W., Garvey C., Gibson N. (2008). Appraisal of sessional EEG features as a correlate of clinical changes in an rTMS treatment of depression. Clin. EEG Neurosci. 39 131–138. 10.1177/155005940803900307
    1. Shalbaf R., Behnam H., Jelveh Moghadam H. (2015a). Monitoring depth of anesthesia using combination of EEG measure and hemodynamic variables. Cogn. Neurodyn. 9 41–51. 10.1007/s11571-014-9295-z
    1. Shalbaf R., Behnam H., Sleigh J. W., Steyn-Ross D. A., SteynRoss M. L. (2015b). Frontal-temporal synchronization of EEG signals quantified by order patterns cross recurrence analysis during propofol anesthesia. IEEE Trans. Neural Syst. Rehabil. Eng. 23 468–474. 10.1109/TNSRE.2014.2350537
    1. Shalbaf R., Behnam H., Sleigh J. W., Steyn-Ross A., Voss L. J. (2013). Monitoring the depth of anesthesia using entropy features and an artificial neural network. J. Neurosci. Methods 218 17–24. 10.1016/j.jneumeth.2013.03.008
    1. Shalbaf R., Behnam H., Sleigh J. W., Voss L. J. (2012). Using the Hilbert–Huang transform to measure the electroencephalographic effect of propofol. Physiol. Meas. 33 271–285. 10.1088/0967-3334/33/2/271
    1. Sheline Y. I., Price J. L., Yan Z., Mintun M. A. (2010). Resting-state functional MRI in depression unmasks increased connectivity between networks via the dorsal nexus. Proc. Natl. Acad. Sci. U.S.A. 107 11020–11025. 10.1073/pnas.1000446107
    1. Silverstein W. K., Noda Y., Barr M. S., Vila-Rodriguez F., Rajji T. K., Fitzgerald P. B., et al. (2015). Neurobiological predictors of response to dorsolateral prefrontal cortex repetitive transcranial magnetic stimulation in depression: a systematic review. Depress. Anxiety 32 871–891. 10.1002/da.22424
    1. Smart O. L., Tiruvadi V. R., Mayberg H. S. (2015). Multimodal approaches to define network oscillations in depression. Biol. Psychiatry 77 1061–1070. 10.1016/j.biopsych.2015.01.002
    1. Sweeney-Reed C. M., Nasuto S. J. (2007). A novel approach to the detection of synchronisation in EEG based on empirical mode decomposition. J. Comput. Neurosci. 23 79–111. 10.1007/s10827-007-0020-3
    1. Tsai P. H., Lin C., Tsao J., Lin P. F., Wang P. C., Huang N. E., et al. (2012). Empirical mode decomposition based detrended sample entropy in electroencephalography for Alzheimer’s disease. J. Neurosci. Methods 210 230–237. 10.1016/j.jneumeth.2012.07.002
    1. Wade E., Iosifescu D. (2016). Using electroencephalography for treatment guidance in major depressive disorder. Biol. Psychiatry Cogn. Neurosci. 1 411–422.
    1. Widge A. S., Avery D. H., Zarkowski P. (2013). Baseline and treatment-emergent EEG biomarkers of antidepressant medication response do not predict response to repetitive transcranial magnetic stimulation. Brain Stimul. 6 929–931. 10.1016/j.brs.2013.05.001
    1. World Health Organization [WHO] (2016). World Health Statistics: Monitoring Health for the SDGs Sustainable Development Goals. Geneva: WHO.
    1. Zarate C. A., Mathews D. C., Furey M. L. (2013). Human biomarkers of rapid antidepressant effects. Biol. Psychiatry 73 1142–1155. 10.1016/j.biopsych.2012.11.031
    1. Zikov T., Bibian S., Dumont G. (2006). Quantifying cortical activity during general anesthesia using wavelet analysis. IEEE Trans. 53 617–632.

Source: PubMed

3
Abonneren