Protocol for the Prognosticating Delirium Recovery Outcomes Using Wakefulness and Sleep Electroencephalography (P-DROWS-E) study: a prospective observational study of delirium in elderly cardiac surgical patients

S Kendall Smith, Thomas Nguyen, Alyssa K Labonte, MohammadMehdi Kafashan, Orlandrea Hyche, Christian S Guay, Elizabeth Wilson, Courtney W Chan, Anhthi Luong, L Brian Hickman, Bradley A Fritz, Daniel Emmert, Thomas J Graetz, Spencer J Melby, Brendan P Lucey, Yo-El S Ju, Troy S Wildes, Michael S Avidan, Ben J A Palanca, S Kendall Smith, Thomas Nguyen, Alyssa K Labonte, MohammadMehdi Kafashan, Orlandrea Hyche, Christian S Guay, Elizabeth Wilson, Courtney W Chan, Anhthi Luong, L Brian Hickman, Bradley A Fritz, Daniel Emmert, Thomas J Graetz, Spencer J Melby, Brendan P Lucey, Yo-El S Ju, Troy S Wildes, Michael S Avidan, Ben J A Palanca

Abstract

Introduction: Delirium is a potentially preventable disorder characterised by acute disturbances in attention and cognition with fluctuating severity. Postoperative delirium is associated with prolonged intensive care unit and hospital stay, cognitive decline and mortality. The development of biomarkers for tracking delirium could potentially aid in the early detection, mitigation and assessment of response to interventions. Because sleep disruption has been posited as a contributor to the development of this syndrome, expression of abnormal electroencephalography (EEG) patterns during sleep and wakefulness may be informative. Here we hypothesise that abnormal EEG patterns of sleep and wakefulness may serve as predictive and diagnostic markers for postoperative delirium. Such abnormal EEG patterns would mechanistically link disrupted thalamocortical connectivity to this important clinical syndrome.

Methods and analysis: P-DROWS-E (Prognosticating Delirium Recovery Outcomes Using Wakefulness and Sleep Electroencephalography) is a 220-patient prospective observational study. Patient eligibility criteria include those who are English-speaking, age 60 years or older and undergoing elective cardiac surgery requiring cardiopulmonary bypass. EEG acquisition will occur 1-2 nights preoperatively, intraoperatively, and up to 7 days postoperatively. Concurrent with EEG recordings, two times per day postoperative Confusion Assessment Method (CAM) evaluations will quantify the presence and severity of delirium. EEG slow wave activity, sleep spindle density and peak frequency of the posterior dominant rhythm will be quantified. Linear mixed-effects models will be used to evaluate the relationships between delirium severity/duration and EEG measures as a function of time.

Ethics and dissemination: P-DROWS-E is approved by the ethics board at Washington University in St. Louis. Recruitment began in October 2018. Dissemination plans include presentations at scientific conferences, scientific publications and mass media.

Trial registration number: NCT03291626.

Keywords: adult intensive & critical care; cardiothoracic surgery; delirium & cognitive disorders; neurophysiology; old age psychiatry; sleep medicine.

Conflict of interest statement

Competing interests: None declared.

© Author(s) (or their employer(s)) 2020. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.

Figures

Figure 1
Figure 1
Overnight electroencephalography (EEG). A hypnogram acquired with the EEG device reveals cycling of sleep stages over an evening with wakefulness (W), rapid eye movement sleep (R) and non-rapid eye movement sleep stages (N1, N2 and N3) (A). The corresponding spectrogram shows signal power in the frontal EEG decomposed by frequency as a function of time. Slow waves (blue arrow) carry low frequency power during N3 sleep, while sleep spindles (red arrow) have power in higher frequencies and occur primarily during N2 sleep (B). Sleep spindles (underlined) occurring at the point designated by the red arrow in panel B are reflected by ~13 Hz power (C). Slow waves occurring at the point designated by the blue arrow in (B) are reflected by 0.5–4 Hz power (D).
Figure 2
Figure 2
The posterior dominant rhythm (PDR) during eyes closed wakefulness using the electroencephalography (EEG) recording device. Alpha oscillations are not easily discernable during eyes open wakefulness (A). During eyes closed wakefulness, the PDR in cognitively intact adults is comprised oscillations in the alpha (8–13 Hz) frequency band (B). This activity is apparent in the decomposition of these two signals into power at corresponding frequencies by spectral analysis. The PDR emerges during eyes closed wakefulness with signal power at ~10 Hz (blue) compared with signal power during eyes open (red) (C). A power spectrogram demonstrates quantifiable fluctuations in the ~10 Hz power during epochs of eyes open vs eyes closed wakefulness (red vs blue arrow) (D).
Figure 3
Figure 3
Overview of electroencephalography (EEG) device and patient participation workflow. Perioperative EEG will be obtained via the Dreem device, a consumer-grade wireless wearable EEG device that records from five sensors, pulse oximetry and accelerometry (A). Longitudinal assessments of EEG and delirium symptomatology will occur preoperatively, intraoperatively and postoperatively. Following consent in the Center for Preoperative Assessment and Planning/inpatient unit, a baseline confusion assessment method (CAM) and EEG are acquired. Postoperative daytime assessments occur within a 2-hour window surrounding 07:00, 13:00 and 19:00 until postoperative day 7, patient withdrawal or hospital discharge (B). The human in this figure is a model and not a patient. Permission was granted for non-commercial use of this image by Dreem.
Figure 4
Figure 4
Prognosticating Delirium Recovery Outcomes Using Wakefulness and Sleep Electroencephalography study overview. CAM, confusion assessment method; EEG, electroencephalography; PDR, posterior dominant rhythm; SWA, slow wave activity.

References

    1. MacLullich AMJ, Beaglehole A, Hall RJ, et al. . Delirium and long-term cognitive impairment. Int Rev Psychiatry 2009;21:30–42. 10.1080/09540260802675031
    1. Jackson JC, Gordon SM, Hart RP, et al. . The association between delirium and cognitive decline: a review of the empirical literature. Neuropsychol Rev 2004;14:87–98. 10.1023/B:NERV.0000028080.39602.17
    1. Rudolph JL, Inouye SK, Jones RN, et al. . Delirium: an independent predictor of functional decline after cardiac surgery. J Am Geriatr Soc 2010;58:643–9. 10.1111/j.1532-5415.2010.02762.x
    1. Gottesman RF, Grega MA, Bailey MM, et al. . Delirium after coronary artery bypass graft surgery and late mortality. Ann Neurol 2010;67:338–44. 10.1002/ana.21899
    1. McKhann GM, Grega MA, Borowicz LM, et al. . Encephalopathy and stroke after coronary artery bypass grafting: incidence, consequences, and prediction. Arch Neurol 2002;59:1422–8. 10.1001/archneur.59.9.1422
    1. Fong TG, Davis D, Growdon ME, et al. . The interface between delirium and dementia in elderly adults. Lancet Neurol 2015;14:823–32. 10.1016/S1474-4422(15)00101-5
    1. Leslie DL, Marcantonio ER, Zhang Y. One-Year health care costs associated with delirium in the elderly population. Arch Intern Med 2008;168:27–32. 10.1001/archinternmed.2007.4
    1. Dasgupta M, Dumbrell AC. Preoperative risk assessment for delirium after noncardiac surgery: a systematic review. J Am Geriatr Soc 2006;54:1578–89. 10.1111/j.1532-5415.2006.00893.x
    1. Brown CH. Delirium in the cardiac surgical ICU. Curr Opin Anaesthesiol 2014;27:117–22. 10.1097/ACO.0000000000000061
    1. Eide LSP, Ranhoff AH, Fridlund B, et al. . Comparison of frequency, risk factors, and time course of postoperative delirium in octogenarians after transcatheter aortic valve implantation versus surgical aortic valve replacement. Am J Cardiol 2015;115:802–9. 10.1016/j.amjcard.2014.12.043
    1. Robinson TN, Raeburn CD, Tran ZV, et al. . Postoperative delirium in the elderly: risk factors and outcomes. Ann Surg 2009;249:173–8. 10.1097/SLA.0b013e31818e4776
    1. Nicholas LM, Lindsey BA. Delirium presenting with symptoms of depression. Psychosomatics 1995;36:471–9. 10.1016/S0033-3182(95)71628-0
    1. Spiller JA, Keen JC. Hypoactive delirium: assessing the extent of the problem for inpatient specialist palliative care. Palliat Med 2006;20:17–23. 10.1191/0269216306pm1097oa
    1. van Eijk MMJ, van Marum RJ, Klijn IAM, et al. . Comparison of delirium assessment tools in a mixed intensive care unit*. Crit Care Med 2009;37:1881–5. 10.1097/CCM.0b013e3181a00118
    1. Lipowski ZJ. Delirium in the elderly patient. N Engl J Med 1989;320:578–82. 10.1056/NEJM198903023200907
    1. Cole MG, Ciampi A, Belzile E, et al. . Subsyndromal delirium in older people: a systematic review of frequency, risk factors, course and outcomes. Int J Geriatr Psychiatry 2013;28:771–80. 10.1002/gps.3891
    1. Ouimet S, Riker R, Bergeon N, et al. . Subsyndromal delirium in the ICU: evidence for a disease spectrum. Intensive Care Med 2007;33:1007–13. 10.1007/s00134-007-0618-y
    1. Shim J, DePalma G, Sands LP, et al. . Prognostic significance of postoperative Subsyndromal delirium. Psychosomatics 2015;56:644–51. 10.1016/j.psym.2015.05.002
    1. Cole M, McCusker J, Dendukuri N, et al. . The prognostic significance of subsyndromal delirium in elderly medical inpatients. J Am Geriatr Soc 2003;51:754–60. 10.1046/j.1365-2389.2003.51255.x
    1. Levkoff SE, Liptzin B, Cleary PD, et al. . Subsyndromal delirium. Am J Geriatr Psychiatry 1996;4:320–9. 10.1097/00019442-199622440-00006
    1. Hakim SM, Othman AI, Naoum DO. Early treatment with risperidone for Subsyndromal delirium after on-pump cardiac surgery in the elderly. Anesthesiology 2012;116:987–97. 10.1097/ALN.0b013e31825153cc
    1. Al-Qadheeb NS, et al. Preventing ICU Subsyndromal delirium conversion to delirium with low-dose IV haloperidol: a double-blind, placebo-controlled pilot study. Crit Care Med 2016;44:583–91.
    1. Besedovsky L, Lange T, Born J. Sleep and immune function. Pflugers Arch - Eur J Physiol 2012;463:121–37. 10.1007/s00424-011-1044-0
    1. AlDabal L, Bahammam AS. Metabolic, endocrine, and immune consequences of sleep deprivation. Open Respir Med J 2011;5:31–43. 10.2174/1874306401105010031
    1. Alhola P, Polo-Kantola P. Sleep deprivation: impact on cognitive performance. Neuropsychiatr Dis Treat 2007;3:553–67.
    1. Cedernaes J, Osorio RS, Varga AW, et al. . Candidate mechanisms underlying the association between sleep-wake disruptions and Alzheimer’s disease. Sleep Med Rev 2017;31:102–11. 10.1016/j.smrv.2016.02.002
    1. Ju Y-ES, Lucey BP, Holtzman DM. Sleep and Alzheimer disease pathology—a bidirectional relationship. Nat Rev Neurol 2014;10:115–9. 10.1038/nrneurol.2013.269
    1. Dyken ME, Afifi AK, Lin-Dyken DC. Sleep-Related problems in neurologic diseases. Chest 2012;141:528–44. 10.1378/chest.11-0773
    1. Vaz Fragoso CA, Gill TM. Sleep complaints in community-living older persons: a multifactorial geriatric syndrome. J Am Geriatr Soc;55:1853–66. 10.1111/j.1532-5415.2007.01399.x
    1. Leung JM, Sands LP, Newman S, et al. . Preoperative sleep disruption and postoperative delirium. J Clin Sleep Med 2015;11:907–13. 10.5664/jcsm.4944
    1. Gögenur I, Bisgaard T, Burgdorf S, et al. . Disturbances in the circadian pattern of activity and sleep after laparoscopic versus open abdominal surgery. Surg Endosc 2009;23:1026–31. 10.1007/s00464-008-0112-9
    1. Gögenur I, Wildschiøtz G, Rosenberg J. Circadian distribution of sleep phases after major abdominal surgery. Br J Anaesth 2008;100:45–9. 10.1093/bja/aem340
    1. Berry RBB, Gamaldo CE, Marcus CL, et al. . The AASM manual for scoring of sleep and associated events: rules, terminology and technical specifications, version 2.3. American Academy of Sleep Medicine, 2015.
    1. Van Cauter E, Leproult R, Plat L. Age-Related changes in slow wave sleep and REM sleep and relationship with growth hormone and cortisol levels in healthy men. JAMA 2000;284:861–8. 10.1001/jama.284.7.861
    1. Roth T, Benca RM, Erman M. An introduction to the clinical correlates of disrupted slow-wave sleep. J Clin Psychiatry 2010;71:e09 10.4088/JCP.9007tx1cc
    1. Scullin MK. Sleep, memory, and aging: the link between slow-wave sleep and episodic memory changes from younger to older adults. Psychol Aging 2013;28:105–14. 10.1037/a0028830
    1. Moote CA, Knill RL. Isoflurane anesthesia causes a transient alteration in nocturnal sleep. Anesthesiology 1988;69:327–31. 10.1097/00000542-198809000-00007
    1. Knill RL, Moote CA, Skinner MI, et al. . Anesthesia with abdominal surgery leads to intense REM sleep during the first post-operative week. Anesthesiology 1990;73:52–61. 10.1097/00000542-199007000-00009
    1. Orr WC, Stahl ML. Sleep disturbances after open heart surgery. Am J Cardiol 1977;39:196–201. 10.1016/S0002-9149(77)80191-4
    1. Johns MW, Large AA, Masterton JP, et al. . Sleep and delirium after open heart surgery. Br J Surg 1974;61:377–81. 10.1002/bjs.1800610513
    1. Ellis BW, Dudley HAF. Some aspects of sleep research in surgical stress. J Psychosom Res 1976;20:303–8. 10.1016/0022-3999(76)90081-7
    1. Rosenberg-Adamsen S, Kehlet H, Dodds C, et al. . Postoperative sleep disturbances: mechanisms and clinical implications. Br J Anaesth 1996;76:552–9. 10.1093/bja/76.4.552
    1. Kavey NB, Ahshuler KZ. Sleep in herniorrhaphy patients. Am J Surg 1979;138:682–7. 10.1016/0002-9610(79)90348-9
    1. Lehmkuhl P, Prass D, Pichlmayr I. General anesthesia and Postnarcotic sleep disorders. Neuropsychobiology 1987;18:37–42. 10.1159/000118390
    1. Aurell J, Elmqvist D. Sleep in the surgical intensive care unit: continuous polygraphic recording of sleep in nine patients receiving postoperative care. Br Med J 1985;290:1029–32. 10.1136/bmj.290.6474.1029
    1. Rosenberg J, Wildschiodtz G, Pedersen MH, et al. . Late postoperative nocturnal episodic hypoxaemia and associated sleep pattern. Br J Anaesth 1994;72:145–50. 10.1093/bja/72.2.145
    1. Daan S, Beersma DG, Borbely AA. Timing of human sleep: recovery process gated by a circadian pacemaker. Am J Physiol Regul Integr Comp Physiol 1984;246:R161–83. 10.1152/ajpregu.1984.246.2.R161
    1. Dijk DJ, Czeisler CA. Contribution of the circadian pacemaker and the sleep homeostat to sleep propensity, sleep structure, electroencephalographic slow waves, and sleep spindle activity in humans. J Neurosci 1995;15:3526–38. 10.1523/JNEUROSCI.15-05-03526.1995
    1. Watson PL, Pandharipande P, Gehlbach BK, et al. . Atypical sleep in ventilated patients: empirical electroencephalography findings and the path toward revised ICU sleep scoring criteria. Crit Care Med 2013;41:1958–67. 10.1097/CCM.0b013e31828a3f75
    1. Drouot X, Roche-Campo F, Thille AW, et al. . A new classification for sleep analysis in critically ill patients. Sleep Med 2012;13:7–14. 10.1016/j.sleep.2011.07.012
    1. Loomis AL, Harvey EN, Hobart GA. Distribution of disturbance-patterns in the human electroencephalogram, with special reference to sleep. J Neurophysiol 1938;1:413–30. 10.1152/jn.1938.1.5.413
    1. Schabus M, Hödlmoser K, Gruber G, et al. . Sleep spindle-related activity in the human EEG and its relation to general cognitive and learning abilities. Eur J Neurosci 2006;23:1738–46. 10.1111/j.1460-9568.2006.04694.x
    1. Clawson BC, Durkin J, Aton SJ. Form and function of sleep spindles across the lifespan. Neural Plast 2016;2016:1–16. 10.1155/2016/6936381
    1. Dempsey EW, Morison RS. The production of rhythmically recurrent cortical potentials after localized thalamic stimulation. American Journal of Physiology-Legacy Content 1941;135:293–300. 10.1152/ajplegacy.1941.135.2.293
    1. Steriade M, Deschenes M, Domich L, et al. . Abolition of spindle oscillations in thalamic neurons disconnected from nucleus reticularis thalami. J Neurophysiol 1985;54:1473–97. 10.1152/jn.1985.54.6.1473
    1. Purcell SM, Manoach DS, Demanuele C, et al. . Characterizing sleep spindles in 11,630 individuals from the National sleep research resource. Nat Commun 2017;8:15930 10.1038/ncomms15930
    1. Knoblauch V, Martens WLJ, Wirz-Justice A, et al. . Human sleep spindle characteristics after sleep deprivation. Clinical Neurophysiology 2003;114:2258–67. 10.1016/S1388-2457(03)00238-4
    1. Guazzelli M, Feinberg I, Aminoff M, et al. . Sleep spindles in normal elderly: comparison with young adult patterns and relation to nocturnal awakening, cognitive function and brain atrophy. Electroencephalogr Clin Neurophysiol 1986;63:526–39. 10.1016/0013-4694(86)90140-9
    1. Wei HG, Riel E, Czeisler CA, et al. . Attenuated amplitude of circadian and sleep-dependent modulation of electroencephalographic sleep spindle characteristics in elderly human subjects. Neurosci Lett 1999;260:29–32. 10.1016/S0304-3940(98)00851-9
    1. Rauchs G, Schabus M, Parapatics S, et al. . Is there a link between sleep changes and memory in Alzheimerʼs disease? Neuroreport 2008;19:1159–62. 10.1097/WNR.0b013e32830867c4
    1. Latreille V, Carrier J, Lafortune M, et al. . Sleep spindles in Parkinson’s disease may predict the development of dementia. Neurobiol Aging 2015;36:1083–90. 10.1016/j.neurobiolaging.2014.09.009
    1. Allen SR, Stähelin HB, Seiler WO, et al. . Eeg and sleep in aged hospitalized patients with senile dementia: 24-h recordings. Experientia 1983;39:249–55. 10.1007/BF01955288
    1. Ferrarelli F, Huber R, Peterson MJ, et al. . Reduced sleep spindle activity in schizophrenia patients. AJP 2007;164:483–92. 10.1176/ajp.2007.164.3.483
    1. Manoach DS, Pan JQ, Purcell SM, et al. . Reduced sleep spindles in schizophrenia: a treatable endophenotype that links risk genes to impaired cognition? Biol Psychiatry 2016;80:599–608. 10.1016/j.biopsych.2015.10.003
    1. Chander D, García PS, MacColl JN, et al. . Electroencephalographic variation during end maintenance and emergence from surgical anesthesia. PLoS One 2014;9:e106291 10.1371/journal.pone.0106291
    1. Ferenets R, Lipping T, Suominen P, et al. . Comparison of the properties of EEG spindles in sleep and propofol anesthesia. Conf Proc IEEE Eng Med Biol Soc 2006;2006:6356–9. 10.1109/IEMBS.2006.259909
    1. Contreras D, Destexhe A, Sejnowski TJ, et al. . Spatiotemporal patterns of spindle oscillations in cortex and thalamus. J Neurosci 1997;17:1179–96. 10.1523/JNEUROSCI.17-03-01179.1997
    1. Greene RW, Frank MG. Slow wave activity during sleep: functional and therapeutic implications. Neuroscientist 2010;16:618–33. 10.1177/1073858410377064
    1. Xie L, Kang H, Xu Q, et al. . Sleep drives metabolite clearance from the adult brain. Science 2013;342:373–7. 10.1126/science.1241224
    1. Tononi G, Cirelli C. Sleep and synaptic homeostasis: a hypothesis. Brain Res Bull 2003;62:143–50. 10.1016/j.brainresbull.2003.09.004
    1. Mander BA, Marks SM, Vogel JW, et al. . β-amyloid disrupts human NREM slow waves and related hippocampus-dependent memory consolidation. Nat Neurosci 2015;18:1051–7. 10.1038/nn.4035
    1. Nir Y, Staba RJ, Andrillon T, et al. . Regional slow waves and spindles in human sleep. Neuron 2011;70:153–69. 10.1016/j.neuron.2011.02.043
    1. Anaclet C, Ferrari L, Arrigoni E, et al. . The GABAergic parafacial zone is a medullary slow wave sleep–promoting center. Nat Neurosci 2014;17:1217–24. 10.1038/nn.3789
    1. Landsness EC, Goldstein MR, Peterson MJ, et al. . Antidepressant effects of selective slow wave sleep deprivation in major depression: a high-density EEG investigation. J Psychiatr Res 2011;45:1019–26. 10.1016/j.jpsychires.2011.02.003
    1. Huber R, Felice Ghilardi M, Massimini M, et al. . Local sleep and learning. Nature 2004;430:78–81. 10.1038/nature02663
    1. Landsness EC, Crupi D, Hulse BK, et al. . Sleep-dependent improvement in visuomotor learning: a causal role for slow waves. Sleep 2009;32:1273–84. 10.1093/sleep/32.10.1273
    1. Marshall L, Helgadóttir H, Mölle M, et al. . Boosting slow oscillations during sleep potentiates memory. Nature 2006;444:610–3. 10.1038/nature05278
    1. Ferrara M, De Gennaro L, Bertini M. Selective slow-wave sleep (SWS) deprivation and SWS rebound: do we need a fixed SWS amount per night? Sleep Res Online 1999;2:15–19.
    1. Dijk DJ, Beersma DGM. Effects of SWS deprivation on subsequent EEG power density and spontaneous sleep duration. Electroencephalogr Clin Neurophysiol 1989;72:312–20. 10.1016/0013-4694(89)90067-9
    1. Jan Dijk D, Beersma DGM, Daan S, et al. . Quantitative analysis of the effects of slow wave sleep deprivation during the first 3 H of sleep on subsequent EEG power density. Eur Arch Psychiatry Neurol Sci 1987;236:323–8. 10.1007/BF00377420
    1. Lucey BP, McCullough A, Landsness EC, et al. . Reduced non–rapid eye movement sleep is associated with tau pathology in early Alzheimer’s disease. Sci Transl Med 2019;11:eaau6550 10.1126/scitranslmed.aau6550
    1. Mander BA, Rao V, Lu B, et al. . Prefrontal atrophy, disrupted NREM slow waves and impaired hippocampal-dependent memory in aging. Nat Neurosci 2013;16:357–64. 10.1038/nn.3324
    1. Gilmore PC, Brenner RP. Correlation of EEG, computerized tomography, and clinical findings. study of 100 patients with focal delta activity. Arch Neurol 1981;38:371–2. 10.1001/archneur.1981.00510060073013
    1. Gloor P, Ball G, Schaul N. Brain lesions that produce delta waves in the EEG. Neurology 1977;27:326–33. 10.1212/WNL.27.4.326
    1. Gloor P, KALABAY O, GIARD N. The electroencephalogram in diffuse encephalopathies: electroencephalographic correlates of grey and white matter lesions. Brain 1968;91:779–802. 10.1093/brain/91.4.779
    1. Joynt RJ, Cape CA, Knott JR. Significance of focal delta activity in adult electroencephalogram. Arch Neurol 1965;12:631–8. 10.1001/archneur.1965.00460300079011
    1. Walter WG, Camb MA. The location of cerebral tumours by electro-encephalography. The Lancet 1936;228:305–8. 10.1016/S0140-6736(01)05173-X
    1. Ginsburg DA, Pasternak EB, Gurvitch AM. Correlation analysis of delta activity generated in cerebral hypoxia. Electroencephalogr Clin Neurophysiol 1977;42:445–55. 10.1016/0013-4694(77)90208-5
    1. Hanif S, Sinha S, Siddiqui KA. Electroencephalography findings in patients with acute post coronary artery bypass graft encephalopathy. Neurosciences 2014;19:331–3.
    1. Leuchter AF, Jacobson SA. Quantitative measurement of brain electrical activity in delirium. Int. Psychogeriatr. 1991;3:231–47. 10.1017/S1041610291000698
    1. Apakama GP. In international anesthesia research Society meeting. San Francisco, 2016.
    1. Parsons-Smith BG, Summerskill WHJ, Dawson AM, et al. . The ELECTROENCEPHALOGRAPH in liver disease. Lancet 1957;270:867–71. 10.1016/S0140-6736(57)90005-3
    1. Conn HO, Leevy CM, Vlahcevic ZR, et al. . Comparison of lactulose and neomycin in the treatment of chronic portal-systemic encephalopathy. Gastroenterology 1977;72:573–83. 10.1016/S0016-5085(77)80135-2
    1. Amodio P, Marchetti P, Del Piccolo F, et al. . Spectral versus visual EEG analysis in mild hepatic encephalopathy. Clinical Neurophysiology 1999;110:1334–44. 10.1016/S1388-2457(99)00076-0
    1. Van der Rijt CCD, Schalm SW, de Groot GH, et al. . Objective measurement of hepatic encephalopathy by means of automated EEG analysis. Electroencephalogr Clin Neurophysiol 1984;57:423–6. 10.1016/0013-4694(84)90071-3
    1. Young GB, Bolton CF, Austin TW, et al. . The encephalopathy associated with septic illness. Clin Invest Med 1990;13:297–304.
    1. Azabou E, Magalhaes E, Braconnier A, et al. . Early standard electroencephalogram abnormalities predict mortality in septic intensive care unit patients. PLoS One 2015;10:e0139969 10.1371/journal.pone.0139969
    1. Hosokawa K, Gaspard N, Su F, et al. . Clinical neurophysiological assessment of sepsis-associated brain dysfunction: a systematic review. Crit Care 2014;18:674 10.1186/s13054-014-0674-y
    1. Oddo M, Taccone FS. How to monitor the brain in septic patients? Minerva Anestesiol 2015;81:776–88.
    1. Pro JD, Wells CE. The use of the electroencephalogram in the diagnosis of delirium. Dis Nerv Syst 1977;38:804–8.
    1. Jacobson SA, Leuchter AF, Walter DO. Conventional and quantitative EEG in the diagnosis of delirium among the elderly. Journal of Neurology, Neurosurgery & Psychiatry 1993;56:153–8. 10.1136/jnnp.56.2.153
    1. Plaschke K, Fichtenkamm P, Schramm C, et al. . Early postoperative delirium after open-heart cardiac surgery is associated with decreased bispectral EEG and increased cortisol and interleukin-6. Intensive Care Med 2010;36:2081–9. 10.1007/s00134-010-2004-4
    1. Plaschke K, Hill H, Engelhardt R, et al. . Eeg changes and serum anticholinergic activity measured in patients with delirium in the intensive care unit. Anaesthesia 2007;62:1217–23. 10.1111/j.1365-2044.2007.05255.x
    1. Jacobson SA, Leuchter AF, Walter DO, et al. . Serial quantitative EEG among elderly subjects with delirium. Biol Psychiatry 1993;34:135–40. 10.1016/0006-3223(93)90382-N
    1. Katz IR, Curyto KJ, TenHave T, et al. . Validating the diagnosis of delirium and evaluating its association with deterioration over a one-year period. Am J Geriatr Psychiatry 2001;9:148–59. 10.1097/00019442-200105000-00007
    1. Thomas C, Hestermann U, Kopitz J, et al. . Serum anticholinergic activity and cerebral cholinergic dysfunction: an EEG study in frail elderly with and without delirium. BMC Neurosci 2008;9:86. 10.1186/1471-2202-9-86
    1. van der Kooi AW, Zaal IJ, Klijn FA, et al. . Delirium detection using EEG: what and how to measure. Chest 2015;147:94–101. 10.1378/chest.13-3050
    1. van der Kooi AW, Leijten FSS, van der Wekken RJ, et al. . What are the opportunities for EEG-based monitoring of delirium in the ICU? J Neuropsychiatry Clin Neurosci 2012;24:472–7. 10.1176/appi.neuropsych.11110347
    1. Koponen H, Partanen J, Pääkkönen A, et al. . Eeg spectral analysis in delirium. J Neurol Neurosurg Psychiatry 1989;52:980–5. 10.1136/jnnp.52.8.980
    1. Ní Mhuircheartaigh R, Warnaby C, Rogers R, et al. . Slow-Wave activity saturation and thalamocortical isolation during propofol anesthesia in humans. Sci Transl Med 2013;5:ra148. 10.1126/scitranslmed.3006007
    1. Hughes SW, Crunelli V. Thalamic mechanisms of EEG alpha rhythms and their pathological implications. Neuroscientist 2005;11:357–72. 10.1177/1073858405277450
    1. Berger H. Uber das Elektrenkephalogramm des Menschen: II. Arch Psychiatr Nervenkr 1930.
    1. Gloor P. Hans Berger on the Encephalogram of Man. Vol. Suppl 28. Elsevier, 1969.
    1. Soininen H, Reinikainen K, Partanen J, et al. . Slowing of the dominant occipital rhythm in electroencephalogram is associated with low concentration of noradrenaline in the thalamus in patients with Alzheimer's disease. Neurosci Lett 1992;137:5–8. 10.1016/0304-3940(92)90285-F
    1. Babiloni C, Lizio R, Vecchio F, et al. . Reactivity of cortical alpha rhythms to eye opening in mild cognitive impairment and Alzheimer's disease: an EEG study. J Alzheimers Dis 2010;22:1047–64. 10.3233/JAD-2010-100798
    1. Dauwels J, Vialatte F, Cichocki A. Diagnosis of Alzheimer's disease from EEG signals: where are we standing? Curr Alzheimer Res 2010;7:487–505. 10.2174/156720510792231720
    1. Dauwels J, Vialatte F, Musha T, et al. . A comparative study of synchrony measures for the early diagnosis of Alzheimer's disease based on EEG. Neuroimage 2010;49:668–93. 10.1016/j.neuroimage.2009.06.056
    1. Gordon EB, Sim M. The E.E.G. in presenile dementia. J Neurol Neurosurg Psychiatry 1967;30:285–91. 10.1136/jnnp.30.3.285
    1. Liddell DW. Investigations of E.E.G. findings in presenile dementia. J Neurol Neurosurg Psychiatry 1958;21:173–6. 10.1136/jnnp.21.3.173
    1. Prinz PN, Vitiello MV. Dominant occipital (alpha) rhythm frequency in early stage Alzheimer's disease and depression. Electroencephalogr Clin Neurophysiol 1989;73:427–32. 10.1016/0013-4694(89)90092-8
    1. Brenner RP, Reynolds CF. 3rd & Ulrich, R. F. Diagnostic efficacy of computerized spectral versus visual EEG analysis in elderly normal, demented and depressed subjects. Electroencephalogr Clin Neurophysiol 1988;69:110–7.
    1. Erkinjuntti T, Larsen T, Sulkava R, et al. . Eeg in the differential diagnosis between Alzheimer's disease and vascular dementia. Acta Neurol Scand 1988;77:36–43. 10.1111/j.1600-0404.1988.tb06971.x
    1. Obrist WD, Busse EW, Eisdorfer C, et al. . Relation of the electroencephalogram to intellectual function in senescence. J Gerontol 1962;17:197–206. 10.1093/geronj/17.2.197
    1. Johannesson G, Hagberg B, Gustafson L, et al. . Eeg and cognitive impairment in presenile dementia. Acta Neurol Scand 1979;59:225–40. 10.1111/j.1600-0404.1979.tb02933.x
    1. Roberts MA, McGeorge AP, Caird FI. Electroencephalography and computerised tomography in vascular and non-vascular dementia in old age. J Neurol Neurosurg Psychiatry 1978;41:903–6. 10.1136/jnnp.41.10.903
    1. Johns. M. W. A new method for measuring daytime sleepiness: the Epworth sleepiness scale. Sleep 1991;14:540–5.
    1. Buysse DJ, Yu L, Moul DE, et al. . Development and validation of patient-reported outcome measures for sleep disturbance and sleep-related impairments. Sleep 2010;33:781–92. 10.1093/sleep/33.6.781
    1. Buysse DJ, Reynolds CF. 3rd, Monk, T. H., Berman, S. R. & Kupfer, D. J. The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. Psychiatry Res 1989;28:193–213.
    1. Chung F, Abdullah HR, Liao P. Stop-Bang questionnaire: a practical approach to screen for obstructive sleep apnea. Chest 2016;149:631–8. 10.1378/chest.15-0903
    1. Yesavage JA, Sheikh JI. 9/Geriatric depression scale (GDS). Clin Gerontol 1986;5:165–73. 10.1300/J018v05n01_09
    1. Nasreddine ZS, Phillips NA, Bédirian V, et al. . The Montreal cognitive assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc 2005;53:695–9. 10.1111/j.1532-5415.2005.53221.x
    1. Galvin JE, Roe CM, Powlishta KK, et al. . The AD8: a brief informant interview to detect dementia. Neurology 2005;65:559–64. 10.1212/01.wnl.0000172958.95282.2a
    1. Galvin JE, Fagan AM, Holtzman DM, et al. . Relationship of dementia screening tests with biomarkers of Alzheimer's disease. Brain 2010;133:3290–300. 10.1093/brain/awq204
    1. Inouye SK, van Dyck CH, Alessi CA, et al. . Clarifying confusion: the confusion assessment method. A new method for detection of delirium. Ann Intern Med 1990;113:941–8. 10.7326/0003-4819-113-12-941
    1. Inouye SK, Westendorp RGJ, Saczynski JS. Delirium in elderly people. Lancet 2014;383:911–22. 10.1016/S0140-6736(13)60688-1
    1. Maybrier HR, Mickle AM, Escallier KE, et al. . Reliability and accuracy of delirium assessments among Investigators at multiple international centres. BMJ Open 2018;8:e023137. 10.1136/bmjopen-2018-023137
    1. Wildes TS, Winter AC, Maybrier HR, et al. . Protocol for the electroencephalography guidance of anesthesia to alleviate geriatric syndromes (engages) study: a pragmatic, randomised clinical trial. BMJ Open 2016;6:e011505. 10.1136/bmjopen-2016-011505
    1. Ely EW, Inouye SK, Bernard GR, et al. . Delirium in mechanically ventilated patients: validity and reliability of the confusion assessment method for the intensive care unit (CAM-ICU). JAMA 2001;286:2703–10. 10.1001/jama.286.21.2703
    1. Ely EW, Siegel MD, Inouye SK. Delirium in the intensive care unit: an under-recognized syndrome of organ dysfunction. Semin Respir Crit Care Med 2001;22:115–26. 10.1055/s-2001-13826
    1. Ely EW, Margolin R, Francis J, et al. . Evaluation of delirium in critically ill patients: validation of the confusion assessment method for the intensive care unit (CAM-ICU). Crit Care Med 2001;29:1370–9. 10.1097/00003246-200107000-00012
    1. Luetz A, Heymann A, Radtke FM, et al. . Different assessment tools for intensive care unit delirium: which score to use? Crit Care Med 2010;38:409–18. 10.1097/CCM.0b013e3181cabb42
    1. Plaschke K, von Haken R, Scholz M, et al. . Comparison of the confusion assessment method for the intensive care unit (CAM-ICU) with the Intensive Care Delirium Screening Checklist (ICDSC) for delirium in critical care patients gives high agreement rate(s). Intensive Care Med 2008;34:431–6. 10.1007/s00134-007-0920-8
    1. Sampson EL, West E, Fischer T. Pain and delirium: mechanisms, assessment, and management. Eur Geriatr Med 2020;11:45–52. 10.1007/s41999-019-00281-2
    1. Vlisides PE, Thompson A, Kunkler BS, et al. . Perioperative epidural use and risk of delirium in surgical patients: a secondary analysis of the podcast trial. Anesth Analg 2019;128:944–52. 10.1213/ANE.0000000000004038
    1. Koyama T, Kawano T, Iwata H, et al. . Acute postoperative pain exacerbates neuroinflammation and related delirium-like cognitive dysfunction in rats. J Anesth 2019;33:482–6. 10.1007/s00540-019-02635-3
    1. Payen JF, Bru O, Bosson JL, et al. . Assessing pain in critically ill sedated patients by using a behavioral pain scale. Crit Care Med 2001;29:2258–63. 10.1097/00003246-200112000-00004
    1. Debellemaniere E, Chambon S, Pinaud C, et al. . Performance of an ambulatory Dry-EEG device for auditory closed-loop stimulation of sleep slow oscillations in the home environment. Front Hum Neurosci 2018;12:88. 10.3389/fnhum.2018.00088
    1. Arnal PJ, Thorey V, Debellemaniere E, et al. . The Dreem Headband compared to polysomnography for EEG signal acquisition and sleep staging. Sleep 2020. 10.1093/sleep/zsaa097
    1. Ely EW, Shintani A, Truman B, et al. . Delirium as a predictor of mortality in mechanically ventilated patients in the intensive care unit. JAMA 2004;291:1753–62. 10.1001/jama.291.14.1753
    1. Sessler CN, Gosnell MS, Grap MJ, et al. . The Richmond Agitation-Sedation scale: validity and reliability in adult intensive care unit patients. Am J Respir Crit Care Med 2002;166:1338–44. 10.1164/rccm.2107138
    1. Saczynski JS, Kosar CM, Xu G, et al. . A tale of two methods: chart and interview methods for identifying delirium. J Am Geriatr Soc 2014;62:518–24. 10.1111/jgs.12684
    1. Inouye SK, Leo-Summers L, Zhang Y, et al. . A chart-based method for identification of delirium: validation compared with interviewer ratings using the confusion assessment method. J Am Geriatr Soc 2005;53:312–8. 10.1111/j.1532-5415.2005.53120.x
    1. Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 2004;134:9–21. 10.1016/j.jneumeth.2003.10.009
    1. Mitra PP, Bokil H. Observed brain dynamics. 1st edn Oxford University Press, 2008.
    1. Tsanas A, Clifford GD. Stage-independent, single lead EEG sleep spindle detection using the continuous wavelet transform and local weighted smoothing. Front Hum Neurosci 2015;9:181. 10.3389/fnhum.2015.00181
    1. Wendt SL, Christensen JAE, Kempfner J, et al. . Validation of a novel automatic sleep spindle detector with high performance during sleep in middle aged subjects. Annu Int Conf IEEE Eng Med Biol Soc 2012;2012:4250–3. 10.1109/EMBC.2012.6346905
    1. Wamsley EJ, Tucker MA, Shinn AK, et al. . Reduced sleep spindles and spindle coherence in schizophrenia: mechanisms of impaired memory consolidation? Biol Psychiatry 2012;71:154–61. 10.1016/j.biopsych.2011.08.008
    1. Martin N, Lafortune M, Godbout J, et al. . Topography of age-related changes in sleep spindles. Neurobiol Aging 2013;34:468–76. 10.1016/j.neurobiolaging.2012.05.020
    1. Mölle M, Marshall L, Gais S, et al. . Grouping of spindle activity during slow oscillations in human non-rapid eye movement sleep. J Neurosci 2002;22:10941–7. 10.1523/JNEUROSCI.22-24-10941.2002
    1. Bódizs R, Körmendi J, Rigó P, et al. . The individual adjustment method of sleep spindle analysis: methodological improvements and roots in the fingerprint paradigm. J Neurosci Methods 2009;178:205–13. 10.1016/j.jneumeth.2008.11.006
    1. Warby SC, Wendt SL, Welinder P, et al. . Sleep-spindle detection: crowdsourcing and evaluating performance of experts, non-experts and automated methods. Nat Methods 2014;11:385–92. 10.1038/nmeth.2855
    1. Parekh A, Selesnick IW, Rapoport DM, et al. . Detection of K-complexes and sleep spindles (DETOKS) using sparse optimization. J Neurosci Methods 2015;251:37–46. 10.1016/j.jneumeth.2015.04.006
    1. Latta F, Leproult R, Tasali E, et al. . Sex differences in delta and alpha EEG activities in healthy older adults. Sleep 2005;28:1525–34. 10.1093/sleep/28.12.1525
    1. Mensen A, Riedner B, Tononi G. Optimizing detection and analysis of slow waves in sleep EEG. J Neurosci Methods 2016;274:1–12. 10.1016/j.jneumeth.2016.09.006
    1. Inouye SK, Kosar CM, Tommet D, et al. . The CAM-S: development and validation of a new scoring system for delirium severity in 2 cohorts. Ann Intern Med 2014;160:526–33. 10.7326/M13-1927
    1. Khan BA, Perkins AJ, Gao S, et al. . The confusion assessment method for the ICU-7 delirium severity scale: a novel delirium severity instrument for use in the ICU. Crit Care Med 2017;45:851–7. 10.1097/CCM.0000000000002368
    1. Landolt HP, Dijk DJ, Achermann P, et al. . Effect of age on the sleep EEG: slow-wave activity and spindle frequency activity in young and middle-aged men. Brain Res 1996;738:205–12. 10.1016/S0006-8993(96)00770-6
    1. Nicolas A, Petit D, Rompré S, et al. . Sleep spindle characteristics in healthy subjects of different age groups. Clin Neurophysiol 2001;112:521–7. 10.1016/S1388-2457(00)00556-3
    1. Crowley K, Trinder J, Kim Y, et al. . The effects of normal aging on sleep spindle and K-complex production. Clin Neurophysiol 2002;113:1615–22. 10.1016/S1388-2457(02)00237-7
    1. Carrier J, Land S, Buysse DJ, et al. . The effects of age and gender on sleep EEG power spectral density in the middle years of life (ages 20-60 years old). Psychophysiology 2001;38:232–42. 10.1111/1469-8986.3820232
    1. Derbyshire AJ, Rempel B, Forbes A, et al. . The effects of anesthetics on action potentials in the cerebral cortex of the cat. Am J Physiol 1936;116:577–96. 10.1152/ajplegacy.1936.116.3.577
    1. Shortal BP, Hickman LB, Mak-McCully RA, et al. . Duration of EEG suppression does not predict recovery time or degree of cognitive impairment after general anaesthesia in human volunteers. Br J Anaesth 2019;123:206–18. 10.1016/j.bja.2019.03.046
    1. Wildes TS, Mickle AM, Ben Abdallah A, et al. . Effect of Electroencephalography-Guided anesthetic administration on postoperative delirium among older adults undergoing major surgery: the engages randomized clinical trial. JAMA 2019;321:473–83. 10.1001/jama.2018.22005
    1. Cohen J. Statistical Power Analysis for the Behavioral Sciences. Lawrence Erlbaum Associates, 1988.
    1. Lachman ME, Agrigoroaei S, Tun PA, et al. . Monitoring cognitive functioning: psychometric properties of the brief test of adult cognition by telephone. Assessment 2014;21:404–17. 10.1177/1073191113508807
    1. Tun PA, Lachman ME. Telephone assessment of cognitive function in adulthood: the brief test of adult cognition by telephone. Age Ageing 2006;35:629–32. 10.1093/ageing/afl095

Source: PubMed

3
Abonneren