Multisite validation of cryptococcal antigen lateral flow assay and quantification by laser thermal contrast

David R Boulware, Melissa A Rolfes, Radha Rajasingham, Maximilian von Hohenberg, Zhenpeng Qin, Kabanda Taseera, Charlotte Schutz, Richard Kwizera, Elissa K Butler, Graeme Meintjes, Conrad Muzoora, John C Bischof, David B Meya, David R Boulware, Melissa A Rolfes, Radha Rajasingham, Maximilian von Hohenberg, Zhenpeng Qin, Kabanda Taseera, Charlotte Schutz, Richard Kwizera, Elissa K Butler, Graeme Meintjes, Conrad Muzoora, John C Bischof, David B Meya

Abstract

Cryptococcal meningitis is common in sub-Saharan Africa. Given the need for data for a rapid, point-of-care cryptococcal antigen (CRAG) lateral flow immunochromatographic assay (LFA), we assessed diagnostic performance of cerebrospinal fluid (CSF) culture, CRAG latex agglutination, India ink microscopy, and CRAG LFA for 832 HIV-infected persons with suspected meningitis during 2006-2009 (n = 299) in Uganda and during 2010-2012 (n = 533) in Uganda and South Africa. CRAG LFA had the best performance (sensitivity 99.3%, specificity 99.1%). Culture sensitivity was dependent on CSF volume (82.4% for 10 μL, 94.2% for 100 μL). CRAG latex agglutination test sensitivity (97.0%-97.8%) and specificity (85.9%-100%) varied between manufacturers. India ink microscopy was 86% sensitive. Laser thermal contrast had 92% accuracy (R = 0.91, p<0.001) in quantifying CRAG titers from 1 LFA strip to within <1.5 dilutions of actual CRAG titers. CRAG LFA is a major advance for meningitis diagnostics in resource-limited settings.

Keywords: Cryptococcus spp.; HIV; India ink microscopy; South Africa; Uganda; cerebrospinal fluid; cryptococcal antigen; cryptococcal antigen latex agglutination; cryptococcal meningitis; culture; diagnostic techniques; fungi; laser thermal contrast measurement; lateral flow immunochromatographic assay; point-of-care systems; sensitivity; specificity; validation studies.

Figures

Figure 1
Figure 1
Five steps of the cryptococcal antigen lateral flow assay.
Figure 2
Figure 2
Venn diagram of distribution of 393 cryptococcal meningitis cases tested by 4 diagnostic assays, Uganda and South Africa. CSF, cerebrospinal fluid; CRAG LFA, cryptococcal antigen lateral immunochromatographic flow assay; India ink, India ink microscopy of 1 mL of concentrated CSF specimen. Numbers at the bottom right indicate 2 scenarios in which the Venn diagram does not overlap visually.
Figure 3
Figure 3
A) Prediction of cryptococcal antigen titer based on laser thermal contrast measurement and concept of lateral flow immunochromatographic assay (LFA) thermal contrast measurement in which a laser irradiates the test line in the LFA (19). The test line is formed by gold–monoclonal antibody–antigen sandwich complex with a monoclonal antibody affixed at the test line. When irradiated by a green laser (532 nm), any gold present absorbs light from the laser and generates heat in direct proportion to the amount of gold (and thereby antigen) present at the test line. This temperature change can be measured by using an infrared camera. B) Association of measured semiquantitative LFA cryptococcal antigen (CRAG) titer starting at a 1:250 dilution by the predicted CRAG titer based on thermal contrast measurement. Measurements on the negative portion of the x-axis are beyond the visual range when specimens were diluted 1:250, yet still detectable by thermal contrast. The Pearson correlation coefficient was r = 0.91 (p<0.001, R2 = 0.84) among 115 positive specimens quantified. A total of 58 LFA CRAG–negative specimens established background levels of heat radiation.

References

    1. Jarvis JN, Meintjes G, Williams A, Brown Y, Crede T, Harrison TS. Adult meningitis in a setting of high HIV and TB prevalence: findings from 4961 suspected cases. BMC Infect Dis. 2010;10:67 .10.1186/1471-2334-10-67
    1. Hakim JG, Gangaidzo IT, Heyderman RS, Mielke J, Mushangi E, Taziwa A, et al. Impact of HIV infection on meningitis in Harare, Zimbabwe: a prospective study of 406 predominantly adult patients. AIDS. 2000;14:1401–7 .10.1097/00002030-200007070-00013
    1. Cohen DB, Zijlstra EE, Mukaka M, Reiss M, Kamphambale S, Scholing M, et al. Diagnosis of cryptococcal and tuberculous meningitis in a resource-limited African setting. Trop Med Int Health. 2010;15:910–7 .10.1111/j.1365-3156.2010.02565.x
    1. Durski KN, Kuntz KM, Yasukawa K, Virnig BA, Meya DB, Boulware DR. Cost-effective diagnostic checklists for meningitis in resource-limited settings. J Acquir Immune Defic Syndr. 2013;63:e101–8 .10.1097/QAI.0b013e31828e1e56
    1. Park BJ, Wannemuehler KA, Marston BJ, Govender N, Pappas PG, Chiller TM. Estimation of the current global burden of cryptococcal meningitis among persons living with HIV/AIDS. AIDS. 2009;23:525–30 .10.1097/QAD.0b013e328322ffac
    1. French N, Gray K, Watera C, Nakiyingi J, Lugada E, Moore M, et al. Cryptococcal infection in a cohort of HIV-1-infected Ugandan adults. AIDS. 2002;16:1031–8 .10.1097/00002030-200205030-00009
    1. Liechty CA, Solberg P, Were W, Ekwaru JP, Ransom RL, Weidle PJ, et al. Asymptomatic serum cryptococcal antigenemia and early mortality during antiretroviral therapy in rural Uganda. Trop Med Int Health. 2007;12:929–35 .10.1111/j.1365-3156.2007.01874.x
    1. World Health Organization. Rapid advice: diagnosis, prevention and management of cryptococcal disease in HIV-infected adults, adolescents and children, 2011. [cited 2012 May 31].
    1. Jarvis JN, Govender N, Chiller T, Park BJ, Longley N, Meintjes G, et al. Cryptococcal antigen screening and preemptive therapy in patients initiating antiretroviral therapy in resource-limited settings: a proposed algorithm for clinical implementation. J Int Assoc Physicians AIDS Care (Chic). 2012;11:374–9 .10.1177/1545109712459077
    1. Rajasingham R, Meya DB, Boulware DR. Integrating cryptococcal antigen screening and pre-emptive treatment into routine HIV care. J Acquir Immune Defic Syndr. 2012;59:e85–91 .10.1097/QAI.0b013e31824c837e
    1. Bicanic T, Harrison TS. Cryptococcal meningitis. Br Med Bull. 2004;72:99–118 .10.1093/bmb/ldh043
    1. Kambugu A, Meya DB, Rhein J, O’Brien M, Janoff EN, Ronald AR, et al. Outcomes of cryptococcal meningitis in Uganda before and after the availability of highly active antiretroviral therapy. Clin Infect Dis. 2008;46:1694–701 .10.1086/587667
    1. Kisenge PR, Hawkins AT, Maro VP, McHele JP, Swai NS, Mueller A, et al. Low CD4 count plus coma predicts cryptococcal meningitis in Tanzania. BMC Infect Dis. 2007;7:39 .10.1186/1471-2334-7-39
    1. Trachtenberg JD, Kambugu AD, McKellar M, Semitala F, Mayanja-Kizza H, Samore MH, et al. The medical management of central nervous system infections in Uganda and the potential impact of an algorithm-based approach to improve outcomes. Int J Infect Dis. 2007;11:524–30 .10.1016/j.ijid.2007.01.014
    1. Brouwer AE, Teparrukkul P, Pinpraphaporn S, Larsen RA, Chierakul W, Peacock S, et al. Baseline correlation and comparative kinetics of cerebrospinal fluid colony-forming unit counts and antigen titers in cryptococcal meningitis. J Infect Dis. 2005;192:681–4 .10.1086/432073
    1. Taseera K, Siedner MJ, Klausner JD, Muzoora C, Boulware DR. Point-of-care diagnosis and prognostication of cryptococcal meningitis with the cryptococcal antigen lateral flow assay on cerebrospinal fluid. [Epub ahead of print]. Clin Infect Dis. 2013.
    1. Diamond RD, Bennett JE. Prognostic factors in cryptococcal meningitis. A study in 111 cases. Ann Intern Med. 1974;80:176–81 .10.7326/0003-4819-80-2-176
    1. Boulware DR, Meya DB, Bergemann TL, Wiesner DL, Rhein J, Musubire A, et al. Clinical features and serum biomarkers in HIV immune reconstitution inflammatory syndrome after cryptococcal meningitis: a prospective cohort study. PLoS Med. 2010;7:e1000384 .10.1371/journal.pmed.1000384
    1. Qin Z, Chan WC, Boulware DR, Akkin T, Butler EK, Bischof JC. Significantly improved analytical sensitivity of lateral flow immunoassays by using thermal contrast. Angew Chem Int Ed Engl. 2012;51:4358–61 .10.1002/anie.201200997
    1. Boulware DR, Bonham SC, Meya DB, Wiesner DL, Park GS, Kambugu A, et al. Paucity of initial cerebrospinal fluid inflammation in cryptococcal meningitis is associated with subsequent immune reconstitution inflammatory syndrome. J Infect Dis. 2010;202:962–70 .10.1086/655785
    1. Brouwer AE, Rajanuwong A, Chierakul W, Griffin GE, Larsen RA, White NJ, et al. Combination antifungal therapies for HIV-associated cryptococcal meningitis: a randomised trial. Lancet. 2004;363:1764–7 .10.1016/S0140-6736(04)16301-0
    1. Bicanic T, Meintjes G, Wood R, Hayes M, Rebe K, Bekker LG, et al. Fungal burden, early fungicidal activity, and outcome in cryptococcal meningitis in antiretroviral-naive or antiretroviral-experienced patients treated with amphotericin B or fluconazole. Clin Infect Dis. 2007;45:76–80 .10.1086/518607
    1. Wiesner DL, Moskalenko O, Corcoran JM, McDonald T, Rolfes MA, Meya DB, et al. Cryptococcal genotype influences immunologic response and human clinical outcome after meningitis. MBio. 2012;3:e00196–12 .10.1128/mBio.00196-12
    1. Jarvis JN, Percival A, Bauman S, Pelfrey J, Meintjes G, Williams GN, et al. Evaluation of a novel point-of-care cryptococcal antigen test on serum, plasma, and urine from patients with HIV-associated cryptococcal meningitis. Clin Infect Dis. 2011;53:1019–23 .10.1093/cid/cir613
    1. Gates-Hollingsworth MA, Kozel TR. Serotype sensitivity of a lateral flow immunoassay for cryptococcal antigen. Clin Vaccine Immunol. 2013;20:634–5 .10.1128/CVI.00732-12
    1. Rutjes AW, Reitsma JB, Coomarasamy A, Khan KS, Bossuyt PM. Evaluation of diagnostic tests when there is no gold standard. A review of methods. Health Technol Assess. 2007;11:iii: ix–51.
    1. Meya DB, Manabe YC, Castelnuovo B, Cook BA, Elbireer AM, Kambugu A, et al. Cost-effectiveness of serum cryptococcal antigen screening to prevent deaths among HIV-infected persons with a CD4+ cell count ≤100 cells/microL who start HIV therapy in resource-limited settings. Clin Infect Dis. 2010;51:448–55 .10.1086/655143
    1. Jarvis JN, Lawn SD, Vogt M, Bangani N, Wood R, Harrison TS. Screening for cryptococcal antigenemia in patients accessing an antiretroviral treatment program in South Africa. Clin Infect Dis. 2009;48:856–62 .10.1086/597262
    1. Joint Medical Store. Product catalogue. 2013. June 5, [cited 2013 Sep 1].
    1. Lindsley MD, Mekha N, Baggett HC, Surinthong Y, Autthateinchai R, Sawatwong P, et al. Evaluation of a newly developed lateral flow immunoassay for the diagnosis of cryptococcosis. Clin Infect Dis. 2011;53:321–5 .10.1093/cid/cir379
    1. Binnicker MJ, Jespersen DJ, Bestrom JE, Rollins LO. Comparison of four assays for the detection of cryptococcal antigen. Clin Vaccine Immunol. 2012;19:1988–90 .10.1128/CVI.00446-12
    1. Hansen J, Slechta ES, Gates-Hollingsworth MA, Neary B, Barker AP, Bauman S, et al. Large-scale evaluation of the immuno-mycologics lateral flow and enzyme-linked immunoassays for detection of cryptococcal antigen in serum and cerebrospinal fluid. Clin Vaccine Immunol. 2013;20:52–5 .10.1128/CVI.00536-12
    1. McMullan BJ, Halliday C, Sorrell TC, Judd D, Sleiman S, Marriott D, et al. Clinical utility of the cryptococcal antigen lateral flow assay in a diagnostic mycology laboratory. PLoS ONE. 2012;7:e49541 .10.1371/journal.pone.0049541
    1. Kaplan JE, Benson C, Holmes KH, Brooks JT, Pau A, Masur H. Guidelines for prevention and treatment of opportunistic infections in HIV-infected adults and adolescents: recommendations from CDC, the National Institutes of Health, and the HIV Medicine Association of the Infectious Diseases Society of America. MMWR Recomm Rep. 2009;58:1–207 .
    1. Govender NP, Meintjes G, Bicanic T, Dawood H, Harrison TS, Jarvis JN, et al. Guideline for the prevention, diagnosis and management of cryptococcal meningitis among HIV-infected persons: 2013 update. South African Journal of HIV Medicine. 2013;14:76–86 .10.7196/sajhivmed.930
    1. Perfect JR, Dismukes WE, Dromer F, Goldman DL, Graybill JR, Hamill RJ, et al. Clinical practice guidelines for the management of cryptococcal disease: 2010 update by the Infectious Diseases Society of America. Clin Infect Dis. 2010;50:291–322 .10.1086/649858
    1. Lortholary O, Poizat G, Zeller V, Neuville S, Boibieux A, Alvarez M, et al. Long-term outcome of AIDS-associated cryptococcosis in the era of combination antiretroviral therapy. AIDS. 2006;20:2183–91 .10.1097/01.aids.0000252060.80704.68
    1. Sungkanuparph S, Filler SG, Chetchotisakd P, Pappas PG, Nolen TL, Manosuthi W, et al. Cryptococcal immune reconstitution inflammatory syndrome after antiretroviral therapy in AIDS patients with cryptococcal meningitis: a prospective multicenter study. Clin Infect Dis. 2009;49:931–4 .10.1086/605497

Source: PubMed

3
Abonneren