NF-kappaB activation and iNOS upregulation in skeletal muscle of patients with COPD and low body weight

A Agustí, M Morlá, J Sauleda, C Saus, X Busquets, A Agustí, M Morlá, J Sauleda, C Saus, X Busquets

Abstract

Background: Weight loss, mostly due to skeletal muscle atrophy, is a frequent and clinically relevant problem in patients with chronic obstructive pulmonary disease (COPD). The molecular mechanisms underlying this phenomenon are unclear. This study sought to investigate whether activation of the nuclear transcription factor NF-kappaB and upregulation of the inducible form of nitric oxide synthase (iNOS) occur in the skeletal muscle of patients with COPD and low body weight as potential molecular mechanisms leading to cachexia

Methods: NF-kappaB DNA binding activity was determined by electromobility shift assay and the immunoreactivity of its inhibitory subunit IkappaB-kappa and that of iNOS by Western blot analysis in biopsy specimens of the quadriceps femoris muscle of seven COPD patients with normal body mass index (BMI, 27.5 (1) kg/m(2)) and seven patients with low BMI (18.5 (1) kg/m(2)).

Results: Compared with patients with normal body weight, those with low BMI showed a 30% increase in NF-kappaB DNA binding activity, a lower expression of IkappaB-alpha (3.37 (0.47) IOD v 5.96 (0.75) IOD, p<0.05; mean difference 2.59; 95% CI -4.53 to -0.65) and higher iNOS expression (1.51 (0.29) IOD v 0.78 (0.11) IOD, p<0.05; mean difference 0.74; 95% CI 0.04 to 1.42).

Conclusions: NF-kappaB activation and iNOS induction occur in skeletal muscle of COPD patients with low body weight. These changes might contribute to the molecular pathogenesis of cachexia in COPD.

References

    1. FEBS Lett. 2000 Jul 7;476(3):253-7
    1. Am J Respir Cell Mol Biol. 2003 Dec;29(6):771-8
    1. Science. 2000 Sep 29;289(5488):2363-6
    1. Am J Respir Crit Care Med. 2000 Dec;162(6):2308-15
    1. Am J Respir Crit Care Med. 2001 Oct 1;164(7):1101-2
    1. Am J Respir Crit Care Med. 2001 Nov 1;164(9):1712-7
    1. Am J Respir Cell Mol Biol. 2002 Apr;26(4):438-46
    1. Am J Respir Crit Care Med. 2002 Aug 15;166(4):485-9
    1. Biochem J. 2002 Sep 1;366(Pt 2):399-404
    1. Eur Respir J. 2003 Feb;21(2):347-60
    1. Clin Exp Rheumatol. 2003 Jan-Feb;21(1):41-8
    1. Eur J Cardiovasc Prev Rehabil. 2003 Aug;10(4):273-7
    1. Anal Biochem. 1976 May 7;72:248-54
    1. Bull Eur Physiopathol Respir. 1986 May-Jun;22(3):217-24
    1. Proc Natl Acad Sci U S A. 1990 Dec;87(24):9943-7
    1. Am Rev Respir Dis. 1993 May;147(5):1151-6
    1. N Engl J Med. 1993 Dec 30;329(27):2002-12
    1. Proc Natl Acad Sci U S A. 1994 Oct 11;91(21):10089-93
    1. Surg Oncol. 1994 Oct;3(5):255-62
    1. Lancet. 1995 May 13;345(8959):1190-1
    1. Biochem Biophys Res Commun. 1995 May 25;210(3):1009-16
    1. Thorax. 1996 Aug;51(8):819-24
    1. Biochem Biophys Res Commun. 1996 Oct 3;227(1):88-93
    1. N Engl J Med. 1997 Apr 10;336(15):1066-71
    1. Acta Physiol Scand. 1998 Mar;162(3):401-9
    1. Am J Respir Crit Care Med. 1998 May;157(5 Pt 1):1413-7
    1. Am J Respir Crit Care Med. 1998 Jun;157(6 Pt 1):1791-7
    1. Am J Respir Crit Care Med. 1998 Aug;158(2):629-34
    1. Eur J Pharmacol. 1998 Jun 26;351(3):261-72
    1. Am J Respir Crit Care Med. 1998 Nov;158(5 Pt 1):1585-92
    1. Respir Med. 2000 Sep;94(9):859-67

Source: PubMed

3
Abonneren