Coronavirus disease 2019: initial chest CT findings

Zhiming Zhou, Dajing Guo, Chuanming Li, Zheng Fang, Linli Chen, Ran Yang, Xiang Li, Wenbing Zeng, Zhiming Zhou, Dajing Guo, Chuanming Li, Zheng Fang, Linli Chen, Ran Yang, Xiang Li, Wenbing Zeng

Abstract

Objectives: To systematically analyze CT findings during the early and progressive stages of natural course of coronavirus disease 2019 and also to explore possible changes in pulmonary parenchymal abnormalities during these two stages.

Methods: We retrospectively reviewed the initial chest CT data of 62 confirmed coronavirus disease 2019 patients (34 men, 28 women; age range 20-91 years old) who did not receive any antiviral treatment between January 21 and February 4, 2020, in Chongqing, China. Patients were assigned to the early-stage group (onset of symptoms within 4 days) or progressive-stage group (onset of symptoms within 4-7 days) for analysis. CT characteristics and the distribution, size, and CT score of pulmonary parenchymal abnormalities were assessed.

Results: In our study, the major characteristic of coronavirus disease 2019 was ground-glass opacity (61.3%), followed by ground-glass opacity with consolidation (35.5%), rounded opacities (25.8%), a crazy-paving pattern (25.8%), and an air bronchogram (22.6%). No patient presented cavitation, a reticular pattern, or bronchial wall thickening. The CT scores of the progressive-stage group were significantly greater than those of the early-stage group (p = 0.004).

Conclusions: Multiple ground-glass opacities with consolidations in the periphery of the lungs were the primary CT characteristic of coronavirus disease 2019. CT score can be used to evaluate the severity of the disease. If these typical alterations are found, then the differential diagnosis of coronavirus disease 2019 must be considered.

Key points: • Multiple GGOs with consolidations in the periphery of the lungs were the primary CT characteristic of COVID-19. • The halo sign may be a special CT feature in the early-stage COVID-19 patients. • Significantly increased CT score may indicate the aggravation of COVID-19 in the progressive stage.

Keywords: COVID-19; Coronavirus; Pneumonia; SARS-CoV-2; Spiral CT scan.

Conflict of interest statement

The authors of this manuscript declare no relationships with any companies whose products or services may be related to the subject matter of the article.

Figures

Fig. 1
Fig. 1
The workflow of coronavirus disease 2019 selection
Fig. 2
Fig. 2
A 56-year-old male with coronavirus disease 2019 in the early-stage group. a Axial non-contrast CT shows ground-glass opacities in the anterior segments of bilateral upper lobes. b Ground-glass opacity is also shown in the peripheral region of the lateral basal segment of left lower lobe. CT score = 1 (right upper lobe) + 1 (left upper lobe) + 1 (left lower lobe) = 3
Fig. 3
Fig. 3
A 34-year-old female with coronavirus disease 2019 in the early-stage group. a Axial non-contrast CT shows halo sign in the dorsal segment of left lower lobe and multiple ground-glass opacities in the right upper lobe and the dorsal segment of the right lower lobe. b Sagittal non-contrast CT demonstrates multiple ground-glass opacities with consolidations in the right lung, mainly distributed in the periphery. CT score = 2 (right upper lobe) + 2 (right lower lobe) + 1 (left lower lobe) = 5
Fig. 4
Fig. 4
A 40-year-old female with coronavirus disease 2019 in the progressive-stage group. a Axial non-contrast CT shows crazy-paving pattern in the anterior segment and consolidation in the posterior segment of right upper lobe. b Consolidations are noted in the bilateral lower lobes mainly in the peripheral regions, accompanied with subpleural curvilinear line. CT score = 3 (right upper lobe) + 1 (right middle lobe) + 3 (right lower lobe) + 1 (left upper lobe) + 3 (left lower lobe) = 11
Fig. 5
Fig. 5
A 60-year-old male with coronavirus disease 2019 in the progressive-stage group. a Axial non-contrast CT in pulmonary window shows diffuse ground-glass opacities with consolidations in bilateral lungs. b Axial non-contrast CT in mediastinal window shows consolidations in bilateral lungs, with bilateral pleural effusion. CT score = 5 (right upper lobe) + 4 (right middle lobe) + 4 (right lower lobe) + 3 (left upper lobe) + 2 (left lower lobe) = 18
Fig. 6
Fig. 6
The CT score of each lobe in the early-stage group and progressive-stage group

References

    1. Holshue ML, DeBolt C, Lindquist S, et al. First case of 2019 novel coronavirus in the United States. N Engl J Med. 2020;382(10):929–936. doi: 10.1056/NEJMoa2001191.
    1. World Health Organization . Statement on novel coronavirus in Thailand. Geneva: World Health Organization; 2020.
    1. World Health Organization . WHO confirms first cases of novel coronavirus (2019-nCoV) in the Eastern Mediterranean Region. Geneva: World Health Organization; 2020.
    1. World Health Organization . Readiness is the key to detect, combat spread of the new coronavirus. Geneva: World Health Organization; 2020.
    1. Lei J, Li J, Li X, Qi X (2020) CT imaging of the 2019 novel coronavirus (2019-nCoV) pneumonia. Radiology. 10.1148/radiol.2020200236:200236
    1. Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395(10223):507–513.
    1. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506. doi: 10.1016/S0140-6736(20)30183-5.
    1. Yin Y, Wunderink RG. MERS, SARS and other coronaviruses as causes of pneumonia. Respirology. 2018;23:130–137. doi: 10.1111/resp.13196.
    1. World Health Organization . Global surveillance for human infection with coronavirus disease (COVID-19) Geneva: World Health Organization; 2020.
    1. Chan JF, Yuan S, Kok KH, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet. 2020;395(10223):514–523. doi: 10.1016/S0140-6736(20)30154-9.
    1. Li Q, Guan X, Wu P et al (2020) Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N Engl J Med. 10.1056/NEJMoa2001316
    1. People's Medical Publishing House; Committee of the Infectious Diseases Radiology Group of Chinese Society of Radiology; Committee of the Infectious Diseases Radiology Section of Chinese Medical Doctor Association; Infectious Disease Imaging Group, Infectious Disease Branch, Chinese Research Hospital Association; Imaging Committee of Chinese Association for the Prevention and Treatment of STD AIDS Infection (Infectious Disease); Infectious Diseases Group, General Radiological Equipment Committee, China Association of Medical Equipment; Beijing Imaging Diagnosis and Treatment Technology Innovation Alliance. Li HJ, Xu HB. Guideline for imaging diagnosis of novel coronavirus (2019-nCoV) infected pneumonia (1st edition 2020) New Medicine. 2020;30:22–34.
    1. Wormanns D, Hamer OW. Glossary of terms for thoracic imaging--German version of the Fleischner Society recommendations. Rofo. 2015;187(8):638–661. doi: 10.1055/s-0035-1553216.
    1. Hansell DM, Bankier AA, MacMahon H, McLoud TC, Müller NL, Remy J. Fleischner Society: glossary of terms for thoracic imaging. Radiology. 2008;246:697–722. doi: 10.1148/radiol.2462070712.
    1. Ooi GC, Khong PL, Müller NL, et al. Severe acute respiratory syndrome: temporal lung changes at thin-section CT in 30 patients. Radiology. 2004;230:836–844. doi: 10.1148/radiol.2303030853.
    1. Chang YC, Yu CJ, Chang SC, et al. Pulmonary sequelae in convalescent patients after severe acute respiratory syndrome: evaluation with thin-section CT. Radiology. 2005;236:1067–1075. doi: 10.1148/radiol.2363040958.
    1. Zhou P, Yang XL, Wang XG et al (2020) A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 10.1038/s41586-020-2012-7
    1. Lu R, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020;395(10224):565–574. doi: 10.1016/S0140-6736(20)30251-8.
    1. Koo HJ, Lim S, Choe J, Choi SH, Sung H, Do KH. Radiographic and CT features of viral pneumonia. Radiographics. 2018;38:719–739. doi: 10.1148/rg.2018170048.
    1. Wong KT, Antonio GE, Hui DS, et al. Thin-section CT of severe acute respiratory syndrome: evaluation of 73 patients exposed to or with the disease. Radiology. 2003;228:395–400. doi: 10.1148/radiol.2283030541.
    1. Das KM, Lee EY, Enani MA, et al. CT correlation with outcomes in 15 patients with acute Middle East respiratory syndrome coronavirus. AJR Am J Roentgenol. 2015;204:736–742. doi: 10.2214/AJR.14.13671.
    1. Ajlan AM, Ahyad RA, Jamjoom LG, Alharthy A, Madani TA. Middle East respiratory syndrome coronavirus (MERS-CoV) infection: chest CT findings. AJR Am J Roentgenol. 2014;203:782–787. doi: 10.2214/AJR.14.13021.
    1. Munster VJ, Koopmans M, van Doremalen N, van Riel D, de Wit E. A novel coronavirus emerging in China - key questions for impact assessment. N Engl J Med. 2020;382(8):692–694. doi: 10.1056/NEJMp2000929.
    1. Grinblat L, Shulman H, Glickman A, Matukas L, Paul N. Severe acute respiratory syndrome: radiographic review of 40 probable cases in Toronto, Canada. Radiology. 2003;228:802–809. doi: 10.1148/radiol.2283030671.

Source: PubMed

3
Abonneren