A phase 1b study of Selumetinib in combination with Cisplatin and Gemcitabine in advanced or metastatic biliary tract cancer: the ABC-04 study

John Bridgewater, Andre Lopes, Sandra Beare, Marian Duggan, Dymphna Lee, Maravic Ricamara, Delyth McEntee, Ajithkumar Sukumaran, Harpreet Wasan, Juan W Valle, John Bridgewater, Andre Lopes, Sandra Beare, Marian Duggan, Dymphna Lee, Maravic Ricamara, Delyth McEntee, Ajithkumar Sukumaran, Harpreet Wasan, Juan W Valle

Abstract

Background: Combined treatment with cisplatin and gemcitabine (CisGem) is the standard of care for patients with advanced biliary tract cancer (ABC). Selumetinib (AZD6244, ARRY-142886) potently and selectively inhibits MEK1/2, an intracellular kinase and has shown activity in ABC. The objective of the ABC-04 trial was to establish the recommended dose of selumetinib in combination with CisGem in patients with ABC.

Methods: Eligible patients were ≥ 18 years, had histologically or cytologically-confirmed unresectable recurrent or metastatic biliary tract, gallbladder or ampullary carcinoma, WHO performance status 0-2, and adequate major organ function. Patients may have had prior surgery, radiotherapy or adjuvant chemotherapy, but no prior CisGem and no prior chemotherapy for locally advanced or metastatic disease. Patients received cisplatin 25 mg/m(2) plus gemcitabine 1000 mg/m(2) intravenously on days 1 and 8 of a 21-day cycle. Selumetinib capsules were taken daily. Patients received up to 8 cycles of CisGem and could receive selumetinib until disease progression. A dose de-escalation scheme was used to determine the recommended dose of selumetinib. The first dose level was 75 mg bd. Patients were recruited in cohorts of 3 and assessed for dose limiting toxicity (DLT) during the first cycle of treatment.

Results: Thirteen patients were recruited, of whom 12 were evaluable for DLT (1 did not start treatment). All evaluable patients received the starting dose of selumetinib 75 mg bd and one patient experienced a DLT (cardiac chest pain). The median number of days selumetinib was taken (adjusted for the number of days of dose interruptions) was 171.5 (IQR: 75.5 to 344). Two patients remained on treatment at 14 and 19 months post registration. There were 3 temporary and 1 permanent interruptions of selumetinib in cycle 1. Eight patients were evaluable for objective response (RECIST v1.1): 3 had a partial response and 5 stable disease. The median PFS was 6.4 months (IQR 5.2 to 13.7). Toxicities related to selumetinib were mostly related to oedema and rash, grade 1-2 and manageable. Pharmacokinetic analysis showed that the AUC(0-t), AUC(0-∞) and Cmax of selumetinib increased by 12, 11 and 30 % respectively when it was administered with CisGem, while Cmax for the N-desmethyl metabolite of selumetinib decreased by 40 %. There was no evidence that the time of Cmax for selumetinib or N-desmethyl metabolite of selumetinib were different when selumetinib was administered alone or with CisGem.

Conclusion: The recommended dose of selumetinib when combined with CisGem was 75 mg bd. Translational studies are underway to identify biomarkers that may predict outcome (ClinicalTrials.gov identifier: NCT01242605 July 6(th) 2010).

Figures

Fig. 1
Fig. 1
Consort diagram for the ABC-04 study
Fig. 2
Fig. 2
Kaplan Meier curve of progression free survival

References

    1. Valle J, Wasan H, Palmer DH, Cunningham D, Anthoney A, Maraveyas A, Madhusudan S, Iveson T, Hughes S, Pereira SP et al. Cisplatin plus gemcitabine versus gemcitabine for biliary tract cancer. N Engl J Med. 2010;362(14):1273–81.
    1. Adjei AA, Cohen RB, Franklin W, Morris C, Wilson D, Molina JR, Hanson LJ, Gore L, Chow L, Leong S et al. Phase I pharmacokinetic and pharmacodynamic study of the oral, small-molecule mitogen-activated protein kinase kinase 1/2 inhibitor AZD6244 (ARRY-142886) in patients with advanced cancers. J Clin Oncol. 2008;26(13):2139–46.
    1. Yeh JJ, Routh ED, Rubinas T, Peacock J, Martin TD, Shen XJ, Sandler RS, Kim HJ, Keku TO, Der CJ et al. KRAS/BRAF mutation status and ERK1/2 activation as biomarkers for MEK1/2 inhibitor therapy in colorectal cancer. Mol Cancer Ther. 2009;8(4):834–43.
    1. Di Nicolantonio F, Martini M, Molinari F, Sartore-Bianchi A, Arena S, Saletti P, De Dosso S, Mazzucchelli L, Frattini M, Siena S et al. Wild-type BRAF is required for response to panitumumab or cetuximab in metastatic colorectal cancer. J Clin Oncol. 2008;26(35):5705–12.
    1. Lievre A, Bachet J-B, Le Corre D, Boige V, Landi B, Emile J-F, Cote J-F, Tomasic G, Penna C, Ducreux M et al. KRAS mutation status is predictive of response to cetuximab therapy in colorectal cancer. Cancer Res. 2006;66(8):3992–5.
    1. Jänne PA, Shaw AT, Pereira JR, Jeannin G, Vansteenkiste J, Barrios C, Franke FA, Grinsted L, Zazulina V, Smith P et al. Selumetinib plus docetaxel for KRAS-mutant advanced non-small-cell lung cancer: a randomised, multicentre, placebo-controlled, phase 2 study. Lancet Oncol. 2013;14(1):38–47.
    1. Robert C, Dummer R, Gutzmer R, Lorigan P, Kim KB, Nyakas M, Arance A, Liszkay G, Schadendorf D, Cantarini M et al. Selumetinib plus dacarbazine versus placebo plus dacarbazine as first-line treatment for BRAF-mutant metastatic melanoma: a phase 2 double-blind randomised study. Lancet Oncol. 2013;14(8):733–40.
    1. Bekaii-Saab T, Phelps MA, Li X, Saji M, Goff L, Kauh JSW, O'Neil BH, Balsom S, Balint C, Liersemann R et al. Multi-institutional phase II study of selumetinib in patients with metastatic biliary cancers. J Clin Oncol. 2011;29(17):2357–63.
    1. Prado CMM, Bekaii-Saab T, Doyle LA, Shrestha S, Ghosh S, Baracos VE, Sawyer MB et al. Skeletal muscle anabolism is a side effect of therapy with the MEK inhibitor: selumetinib in patients with cholangiocarcinoma. Br J Cancer. 2012;106(10):1583–6.
    1. Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, Dancey J, Arbuck S, Gwyther S, Mooney M et al. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45(2):228–47.
    1. Hansel DE, Rahman A, Hidalgo M, Thuluvath PJ, Lillemoe KD, Shulick R, Ku J-L, Park J-G, Miyazaki K, Ashfaq R et al. Identification of novel cellular targets in biliary tract cancers using global gene expression technology. Am J Pathol. 2003;163(1):217–29.
    1. Ong CK, Subimerb C, Pairojkul C, Wongkham S, Cutcutache I, Yu W, McPherson JR, Allen GE, Ng CCY, Wong BH et al. Exome sequencing of liver fluke-associated cholangiocarcinoma. Nat Genet. 2012;44(6):690–3.
    1. Andersen JB, Spee B, Blechacz BR, Avital I, Komuta M, Barbour A, Conner EA, Gillen MC, Roskams T, Roberts LR et al. Genomic and genetic characterization of cholangiocarcinoma identifies therapeutic targets for tyrosine kinase inhibitors. Gastroenterology. 2012;142(4):1021–31. e1015.
    1. Holcombe RF, Xiu J, Gatalica Z, Morse MA. Molecular profiling of bile duct and gallbladder cancer to identify different therapeutic options. ASCO Meet Abstr. 2014;32(15_suppl):4097.
    1. Ross JS, Wang K, Gay L, Al-Rohil R, Rand JV, Jones DM, Lee HJ, Sheehan CE, Otto GA, Palmer G et al. New routes to targeted therapy of intrahepatic cholangiocarcinomas revealed by next-generation sequencing. Oncologist. 2014;19(3):235–42.
    1. Stephens P, Wang K, Palma NA, Chmielecki J, Shroff RT, Churi C, Frampton GM, Ali SM, Javle MM, Ross JS et al. Comprehensive genomic profiling of gallbladder adenocarcinoma and frequent genomic-derived targets of therapy. ASCO Meet Abstr. 2014;32(15_suppl):4142.
    1. Malka D, Cervera P, Foulon S, Trarbach T, de la Fouchardière C, Boucher E, Fartoux L, Faivre S, Blanc J-F, Viret F, et al. Gemcitabine and oxaliplatin with or without cetuximab in advanced biliary-tract cancer (BINGO): a randomised, open-label, non-comparative phase 2 trial. Lancet Oncol. 2014;15(8):819–28. doi: 10.1016/S1470-2045(14)70212-8.
    1. Moehler M, Maderer A, Schimanski C, Kanzler S, Denzer U, Kolligs FT, Ebert MP, Distelrath A, Geissler M, Trojan J et al. Gemcitabine plus sorafenib versus gemcitabine alone in advanced biliary tract cancer: A double-blind placebo-controlled multicentre phase II AIO study with biomarker and serum programme. Eur J Cancer. 2014;50(18):3125–35.
    1. Valle JW, Wasan H, Lopes A, Backen AC, Palmer DH, Morris K, Duggan M, Cunningham D, Anthoney DA, Corrie P et al. Cediranib or placebo in combination with cisplatin and gemcitabine chemotherapy for patients with advanced biliary tract cancer (ABC-03): a randomised phase 2 trial. Lancet Oncol. 2015;16(8):967–78.
    1. Garon EB, Finn RS, Hosmer W, Dering J, Ginther C, Adhami S, Kamranpour N, Pitts S, Desai A, Elashoff D et al. Identification of common predictive markers of in vitro response to the mek inhibitor selumetinib (AZD6244; ARRY-142886) in human breast cancer and non–small cell lung cancer cell lines. Mol Cancer Ther. 2010;9(7):1985–94.
    1. Jiao Y, Pawlik TM, Anders RA, Selaru FM, Streppel MM, Lucas DJ, Niknafs N, Guthrie VB, Maitra A, Argani P et al. Exome sequencing identifies frequent inactivating mutations in BAP1, ARID1A and PBRM1 in intrahepatic cholangiocarcinomas. Nat Genet. 2013;45(12):1470–3.
    1. Carvajal RD, Sosman JA, Quevedo J, et al. Effect of selumetinib vs chemotherapy on progression-free survival in uveal melanoma: A randomized clinical trial. JAMA. 2014;311(23):2397–2405. doi: 10.1001/jama.2014.6096.
    1. Dai B, Meng J, Peyton M, Girard L, Bornmann WG, Ji L, Minna JD, Fang B, Roth JA et al. STAT3 mediates resistance to MEK inhibitor through MicroRNA miR-17. Cancer Res. 2011;71(10):3658–68.
    1. Hatzivassiliou G, Liu B, O’Brien C, Spoerke JM, Hoeflich KP, Haverty PM, Soriano R, Forrest WF, Heldens S, Chen H et al. ERK inhibition overcomes acquired resistance to MEK inhibitors. Mol Cancer Ther. 2012;11(5):1143–54.
    1. Tentler JJ, Nallapareddy S, Tan AC, Spreafico A, Pitts TM, Morelli MP, Selby HM, Kachaeva MI, Flanigan SA, Kulikowski GN et al. Identification of predictive markers of response to the MEK1/2 inhibitor selumetinib (AZD6244) in K-ras–mutated colorectal cancer. Mol Cancer Ther. 2010;9(12):3351–62.

Source: PubMed

3
Abonneren