Prognostic implications of the microenvironment for follicular lymphoma under immunomodulation therapy

Thomas Menter, Alexandar Tzankov, Emanuele Zucca, Eva Kimby, Magnus Hultdin, Christer Sundström, Klaus Beiske, Sergio Cogliatti, Yara Banz, Gieri Cathomas, Marja-Liisa Karjalainen-Lindsberg, Rainer Grobholz, Luca Mazzucchelli, Birgitta Sander, Hanne Hawle, Stefanie Hayoz, Stefan Dirnhofer, Thomas Menter, Alexandar Tzankov, Emanuele Zucca, Eva Kimby, Magnus Hultdin, Christer Sundström, Klaus Beiske, Sergio Cogliatti, Yara Banz, Gieri Cathomas, Marja-Liisa Karjalainen-Lindsberg, Rainer Grobholz, Luca Mazzucchelli, Birgitta Sander, Hanne Hawle, Stefanie Hayoz, Stefan Dirnhofer

Abstract

Follicular lymphoma (FL) constitutes a significant proportion of lymphomas and shows frequent relapses. Beyond conventional chemotherapy, new therapeutic approaches have emerged, focussing on the interplay between lymphoma cells and the microenvironment. Here we report the immunophenotypic investigation of the microenvironment of a clinically well-characterized prospective cohort (study SAKK35/10, NCT01307605) of 154 treatment-naïve FL patients in need of therapy, who have been treated with rituximab only or a combination of rituximab and the immunomodulatory drug lenalidomide/Revlimid® A high ratio of CD4- to CD8-positive T cells (P = 0·009) and increased amounts of PD1+ tumour-infiltrating T cells (P = 0·007) were associated with inferior progression-free survival in the whole cohort. Interestingly, the prognostic impact of PD1+ T cells and the CD4/CD8 ratio lost its significance in the subgroup treated with R2 . In the latter group, high amounts of GATA3+ T helper (Th2) equivalents were associated with better progression-free survival (P < 0·001). We identified tumour microenvironmental features that allow prognostic stratification with respect to immuno- and combined immuno- and immunomodulatory therapy. Our analysis indicates that lenalidomide may compensate the adverse prognostic implication of higher amounts of CD4+ and, particularly, PD1+ T cells and that it has favourable effects mainly in cases with higher amounts of Th2 equivalents. [Correction added on 11 February 2020, after online publication: The NCT-trial number was previously incorrect and has been updated in this version].

Keywords: GATA3; PD1; follicular lymphoma; lenalidomide; rituximab.

© 2020 British Society for Haematology and John Wiley & Sons Ltd.

References

    1. Alvaro, T., Lejeune, M., Salvado, M.T., Lopez, C., Jaen, J., Bosch, R. & Pons, L.E. (2006) Immunohistochemical patterns of reactive microenvironment are associated with clinicobiologic behavior in follicular lymphoma patients. Journal of Clinical Oncology, 24, 5350-5357.
    1. Ame-Thomas, P., Le Priol, J., Yssel, H., Caron, G., Pangault, C., Jean, R., Martin, N., Marafioti, T., Gaulard, P., Lamy, T., Fest, T., Semana, G. & Tarte, K. (2012) Characterization of intratumoral follicular helper T cells in follicular lymphoma: role in the survival of malignant B cells. Leukemia, 26, 1053-1063.
    1. Balaian, E., Schuster, C., Schonefeldt, C., Germing, U., Haase, D., Tuve, S., Ordemann, R., Ehninger, G., Bornhauser, M., Oelschlaegel, U., Mohr, B., von Bonin, M., Platzbecker, U. & Wermke, M. (2016) Selective expansion of regulatory T cells during lenalidomide treatment of myelodysplastic syndrome with isolated deletion 5q. Annals of Haematology, 95, 1805-1810.
    1. Bargetzi, M., Baumann, R., Cogliatti, S., Dietrich, P.Y., Duchosal, M., Goede, J., Hitz, F., Konermann, C., Lohri, A., Mey, U., Novak, U., Papachristofilou, A., Stenner, F., Taverna, C., Zander, T. & Renner, C. (2018) Diagnosis and treatment of follicular lymphoma: an update. Swiss Medical Weekly, 148, w14635.
    1. Blaker, Y.N., Spetalen, S., Brodtkorb, M., Lingjaerde, O.C., Beiske, K., Ostenstad, B., Sander, B., Wahlin, B.E., Melen, C.M., Myklebust, J.H., Holte, H., Delabie, J. & Smeland, E.B. (2016) The tumour microenvironment influences survival and time to transformation in follicular lymphoma in the rituximab era. British Journal of Haematology, 175, 102-114.
    1. Brady, M.T., Hilchey, S.P., Hyrien, O., Spence, S.A. & Bernstein, S.H. (2014) Mesenchymal stromal cells support the viability and differentiation of follicular lymphoma-infiltrating follicular helper T-cells. PLoS ONE, 9, e97597.
    1. Budau, L., Wilhelm, C., Moll, R., Jakel, J., Hirt, C., Dolken, G., Maschmeyer, G., Neubauer, E., Strauch, K., Burchert, A., Herold, M. & Neubauer, A. (2019) Low number of intrafollicular T cells may predict favourable response to rituximab-based immuno-chemotherapy in advanced follicular lymphoma: a secondary analysis of a randomized clinical trial. Journal of Cancer Research and Clinical Oncology, 145, 2149-2156.
    1. Canioni, D., Salles, G., Mounier, N., Brousse, N., Keuppens, M., Morchhauser, F., Lamy, T., Sonet, A., Rousselet, M.C., Foussard, C. & Xerri, L. (2008) High numbers of tumor-associated macrophages have an adverse prognostic value that can be circumvented by rituximab in patients with follicular lymphoma enrolled onto the GELA-GOELAMS FL-2000 trial. Journal of Clinical Oncology, 26, 440-446.
    1. Carreras, J., Lopez-Guillermo, A., Roncador, G., Villamor, N., Colomo, L., Martinez, A., Hamoudi, R., Howat, W.J., Montserrat, E. & Campo, E. (2009) High numbers of tumor-infiltrating programmed cell death 1-positive regulatory lymphocytes are associated with improved overall survival in follicular lymphoma. Journal of Clinical Oncology, 27, 1470-1476.
    1. Cheah, C.Y. & Fowler, N.H. (2018) Novel agents for relapsed and refractory follicular lymphoma. Best Practice & Research Clinical Haematology, 31, 41-48.
    1. Chiu, H., Trisal, P., Bjorklund, C., Carrancio, S., Torano, E.G., Guarinos, C., Papazoglou, D., Hagner, P.R., Beldi-Ferchiou, A., Tarte, K., Delfau-Larue, M.H., Morschhauser, F., Ramsay, A.G. & Gandhi, A.K. (2019) Combination lenalidomide-rituximab immunotherapy activates anti-tumour immunity and induces tumour cell death by complementary mechanisms of action in follicular lymphoma. British Journal of Haematology, 185, 240-253.
    1. Crotty, S. (2011) Follicular helper CD4 T cells (TFH). Annual Review of Immunology, 29, 621-663.
    1. Dave, S.S., Wright, G., Tan, B., Rosenwald, A., Gascoyne, R.D., Chan, W.C., Fisher, R.I., Braziel, R.M., Rimsza, L.M., Grogan, T.M., Miller, T.P., LeBlanc, M., Greiner, T.C., Weisenburger, D.D., Lynch, J.C., Vose, J., Armitage, J.O., Smeland, E.B., Kvaloy, S., Holte, H., Delabie, J., Connors, J.M., Lansdorp, P.M., Ouyang, Q., Lister, T.A., Davies, A.J., Norton, A.J., Muller-Hermelink, H.K., Ott, G., Campo, E., Montserrat, E., Wilson, W.H., Jaffe, E.S., Simon, R., Yang, L., Powell, J., Zhao, H., Goldschmidt, N., Chiorazzi, M. & Staudt, L.M. (2004) Prediction of survival in follicular lymphoma based on molecular features of tumor-infiltrating immune cells. New England Journal of Medicine, 351, 2159-2169.
    1. Devan, J., Janikova, A. & Mraz, M. (2018) New concepts in follicular lymphoma biology: From BCL2 to epigenetic regulators and non-coding RNAs. Seminars in Oncology, 45, 291-302.
    1. Dreyling, M., Ghielmini, M., Rule, S., Salles, G., Vitolo, U., Ladetto, M. & Committee, E.G. (2016) Newly diagnosed and relapsed follicular lymphoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Annals of Oncology, 27, v83-v90.
    1. Gandhi, A.K., Kang, J., Havens, C.G., Conklin, T., Ning, Y., Wu, L., Ito, T., Ando, H., Waldman, M.F., Thakurta, A., Klippel, A., Handa, H., Daniel, T.O., Schafer, P.H. & Chopra, R. (2014) Immunomodulatory agents lenalidomide and pomalidomide co-stimulate T cells by inducing degradation of T cell repressors Ikaros and Aiolos via modulation of the E3 ubiquitin ligase complex CRL4(CRBN.). British Journal of Haematology, 164, 811-821.
    1. Glas, A.M., Knoops, L., Delahaye, L., Kersten, M.J., Kibbelaar, R.E., Wessels, L.A., van Laar, R., van Krieken, J.H., Baars, J.W., Raemaekers, J., Kluin, P.M., van't Veer, L.J. & de Jong, D. (2007) Gene-expression and immunohistochemical study of specific T-cell subsets and accessory cell types in the transformation and prognosis of follicular lymphoma. Journal of Clinical Oncology, 25, 390-398.
    1. Gorgun, G., Samur, M.K., Cowens, K.B., Paula, S., Bianchi, G., Anderson, J.E., White, R.E., Singh, A., Ohguchi, H., Suzuki, R., Kikuchi, S., Harada, T., Hideshima, T., Tai, Y.T., Laubach, J.P., Raje, N., Magrangeas, F., Minvielle, S., Avet-Loiseau, H., Munshi, N.C., Dorfman, D.M., Richardson, P.G. & Anderson, K.C. (2015) Lenalidomide enhances immune checkpoint blockade-induced immune response in multiple myeloma. Clinical Cancer Research, 21, 4607-4618.
    1. Gribben, J.G. (2010) Implications of the tumor microenvironment on survival and disease response in follicular lymphoma. Current Opinion in Oncology, 22, 424-430.
    1. Grygorowicz, M.A., Borycka, I.S., Nowak, E., Paszkiewicz-Kozik, E., Rymkiewicz, G., Blachnio, K., Biernacka, M., Bujko, M., Walewski, J. & Markowicz, S. (2017) Lenalidomide potentiates CD4(+)CD25(+)Treg-related suppression of lymphoma B-cell proliferation. Clinical and Experimental Medicine, 17, 193-207.
    1. Hilchey, S.P., Rosenberg, A.F., Hyrien, O., Secor-Socha, S., Cochran, M.R., Brady, M.T., Wang, J.C., Sanz, I., Burack, W.R., Quataert, S.A. & Bernstein, S.H. (2011) Follicular lymphoma tumor-infiltrating T-helper (T(H)) cells have the same polyfunctional potential as normal nodal T(H) cells despite skewed differentiation. Blood, 118, 3591-3602.
    1. Lee, A.M., Clear, A.J., Calaminici, M., Davies, A.J., Jordan, S., MacDougall, F., Matthews, J., Norton, A.J., Gribben, J.G., Lister, T.A. & Goff, L.K. (2006) Number of CD4+ cells and location of forkhead box protein P3-positive cells in diagnostic follicular lymphoma tissue microarrays correlates with outcome. Journal of Clinical Oncology, 24, 5052-5059.
    1. Lindner, S. & Kronke, J. (2016) The molecular mechanism of thalidomide analogs in haematologic malignancies. Journal of Molecular Medicine (Berlin), 94, 1327-1334.
    1. Lipson, E.J., Forde, P.M., Hammers, H.J., Emens, L.A., Taube, J.M. & Topalian, S.L. (2015) Antagonists of PD-1 and PD-L1 in cancer treatment. Seminars in Oncology, 42, 587-600.
    1. Lopez-Girona, A., Mendy, D., Ito, T., Miller, K., Gandhi, A.K., Kang, J., Karasawa, S., Carmel, G., Jackson, P., Abbasian, M., Mahmoudi, A., Cathers, B., Rychak, E., Gaidarova, S., Chen, R., Schafer, P.H., Handa, H., Daniel, T.O., Evans, J.F. & Chopra, R. (2012) Cereblon is a direct protein target for immunomodulatory and antiproliferative activities of lenalidomide and pomalidomide. Leukemia, 26, 2326-2335.
    1. Maman, S. & Witz, I.P. (2018) A history of exploring cancer in context. Nature Reviews Cancer, 18, 359-376.
    1. McShane, L.M., Altman, D.G., Sauerbrei, W., Taube, S.E., Gion, M., Clark, G.M. & Statistics Subcommittee of the, N.C.I.E.W.G.o.C.D. (2005) REporting recommendations for tumour MARKer prognostic studies (REMARK). European Journal of Cancer, 41, 1690-1696.
    1. Moon, H.G., Tae, Y.M., Kim, Y.S., Gyu Jeon, S., Oh, S.Y., Song Gho, Y., Zhu, Z. & Kim, Y.K. (2010) Conversion of Th17-type into Th2-type inflammation by acetyl salicylic acid via the adenosine and uric acid pathway in the lung. Allergy, 65, 1093-1103.
    1. Morschhauser, F., Fowler, N.H., Feugier, P., Bouabdallah, R., Tilly, H., Palomba, M.L., Fruchart, C., Libby, E.N., Casasnovas, R.O., Flinn, I.W., Haioun, C., Maisonneuve, H., Ysebaert, L., Bartlett, N.L., Bouabdallah, K., Brice, P., Ribrag, V., Daguindau, N., Le Gouill, S., Pica, G.M., Martin Garcia-Sancho, A., Lopez-Guillermo, A., Larouche, J.F., Ando, K., Gomes da Silva, M., Andre, M., Zachee, P., Sehn, L.H., Tobinai, K., Cartron, G., Liu, D., Wang, J., Xerri, L., Salles, G.A. & Investigators, R.T. (2018) Rituximab plus Lenalidomide in Advanced Untreated Follicular Lymphoma. New England Journal of Medicine, 379, 934-947.
    1. Rajnai, H., Bodor, C., Balogh, Z., Gagyi, E., Csomor, J., Krenacs, T., Toth, E. & Matolcsy, A. (2012) Impact of the reactive microenvironment on the bone marrow involvement of follicular lymphoma. Histopathology, 60, E66-75.
    1. Ramsay, A.G., Clear, A.J., Kelly, G., Fatah, R., Matthews, J., Macdougall, F., Lister, T.A., Lee, A.M., Calaminici, M. & Gribben, J.G. (2009) Follicular lymphoma cells induce T-cell immunologic synapse dysfunction that can be repaired with lenalidomide: implications for the tumor microenvironment and immunotherapy. Blood, 114, 4713-4720.
    1. Relander, T., Johnson, N.A., Farinha, P., Connors, J.M., Sehn, L.H. & Gascoyne, R.D. (2010) Prognostic factors in follicular lymphoma. Journal of Clinical Oncology, 28, 2902-2913.
    1. Richendollar, B.G., Pohlman, B., Elson, P. & Hsi, E.D. (2011) Follicular programmed death 1-positive lymphocytes in the tumor microenvironment are an independent prognostic factor in follicular lymphoma. Human Pathology, 42, 552-557.
    1. Sander, B., de Jong, D., Rosenwald, A., Xie, W., Balague, O., Calaminici, M., Carreras, J., Gaulard, P., Gribben, J., Hagenbeek, A., Kersten, M.J., Molina, T.J., Lee, A., Montes-Moreno, S., Ott, G., Raemaekers, J., Salles, G., Sehn, L., Thorns, C., Wahlin, B.E., Gascoyne, R.D. & Weller, E. (2014) The reliability of immunohistochemical analysis of the tumor microenvironment in follicular lymphoma: a validation study from the Lunenburg Lymphoma Biomarker Consortium. Haematologica, 99, 715-725.
    1. Schnotalle, P., Koch, K., Au-Yeung, R.K.H., Reinke, S., Winter, K., Loeffler, M., Braumann, U.D. & Klapper, W. (2018) T-Cell Clustering in Neoplastic Follicles of Follicular Lymphoma. Cancer Microenviron, 11, 135-140.
    1. Stenner, F. & Renner, C. (2018) Cancer Immunotherapy and the Immune Response in Follicular Lymphoma. Frontiers in Oncology, 8, 219.
    1. Tan, D., Horning, S.J., Hoppe, R.T., Levy, R., Rosenberg, S.A., Sigal, B.M., Warnke, R.A., Natkunam, Y., Han, S.S., Yuen, A., Plevritis, S.K. & Advani, R.H. (2013) Improvements in observed and relative survival in follicular grade 1-2 lymphoma during 4 decades: the Stanford University experience. Blood, 122, 981-987.
    1. Tilly, H., Morschhauser, F., Casasnovas, O., Molina, T.J., Feugier, P., Gouill, S.L., Haioun, C., Tournilhac, O., Bouabdallah, R., Gabarre, J., Lamy, T., Cabecadas, J., Becker, S., Jardin, F., Mounier, N., Salles, G. & Lymphoma Study, A. (2018) Lenalidomide in combination with R-CHOP (R2-CHOP) as first-line treatment of patients with high tumour burden follicular lymphoma: a single-arm, open-label, phase 2 study. Lancet Haematology, 5, e403-e410.
    1. Tzankov, A., Went, P., Zimpfer, A. & Dirnhofer, S. (2005) Tissue microarray technology: principles, pitfalls and perspectives-lessons learned from haematological malignancies. Experimental Gerontology, 40, 737-744.
    1. Tzankov, A., Meier, C., Hirschmann, P., Went, P., Pileri, S.A. & Dirnhofer, S. (2008) Correlation of high numbers of intratumoral FOXP3+ regulatory T cells with improved survival in germinal center-like diffuse large B-cell lymphoma, follicular lymphoma and classical Hodgkin's lymphoma. Haematologica, 93, 193-200.
    1. Tzankov, A., Xu-Monette, Z.Y., Gerhard, M., Visco, C., Dirnhofer, S., Gisin, N., Dybkaer, K., Orazi, A., Bhagat, G., Richards, K.L., Hsi, E.D., Choi, W.W., van Krieken, J.H., Ponzoni, M., Ferreri, A.J., Ye, Q., Winter, J.N., Farnen, J.P., Piris, M.A., Moller, M.B., You, M.J., McDonnell, T., Medeiros, L.J. & Young, K.H. (2014) Rearrangements of MYC gene facilitate risk stratification in diffuse large B-cell lymphoma patients treated with rituximab-CHOP. Modern Pathology, 27, 958-971.
    1. Tzankov, A., Leu, N., Muenst, S., Juskevicius, D., Klingbiel, D., Mamot, C. & Dirnhofer, S. (2015) Multiparameter analysis of homogeneously R-CHOP-treated diffuse large B cell lymphomas identifies CD5 and FOXP1 as relevant prognostic biomarkers: report of the prospective SAKK 38/07 study. Journal of Haematology & Oncology, 8, 70.
    1. Wahlin, B.E., Sundstrom, C., Holte, H., Hagberg, H., Erlanson, M., Nilsson-Ehle, H., Linden, O., Nordstrom, M., Ostenstad, B., Geisler, C.H., Brown Pde, N., Lehtinen, T., Maisenholder, M., Tierens, A.M., Sander, B., Christensson, B. & Kimby, E. (2011) T cells in tumors and blood predict outcome in follicular lymphoma treated with rituximab. Clinical Cancer Research, 17, 4136-4144.
    1. Xerri, L., Huet, S., Venstrom, J.M., Szafer-Glusman, E., Fabiani, B., Canioni, D., Chassagne-Clement, C., Dartigues-Cuilleres, P., Charlotte, F., Laurent, C., Gelas-Dore, B., Bolen, C.R., Punnoose, E., Bouabdallah, R., Brice, P., Morschhauser, F., Cartron, G., Olive, D., Salles, G. &a LYSA study. (2017) Rituximab treatment circumvents the prognostic impact of tumor-infiltrating T-cells in follicular lymphoma patients. Human Pathology, 64, 128-136.
    1. Zhang, X., Schwartz, J.C., Guo, X., Bhatia, S., Cao, E., Lorenz, M., Cammer, M., Chen, L., Zhang, Z.Y., Edidin, M.A., Nathenson, S.G. & Almo, S.C. (2004) Structural and functional analysis of the costimulatory receptor programmed death-1. Immunity, 20, 337-347.
    1. Zhu, J., Yamane, H. & Paul, W.E. (2010) Differentiation of effector CD4 T cell populations (*). Annual Review of Immunology, 28, 445-489.
    1. Zucca, E., Rondeau, S., Vanazzi, A., Ostenstad, B., Mey, U.J.M., Rauch, D., Wahlin, B.E., Hitz, F., Hernberg, M., Johansson, A.S., de Nully Brown, P., Hagberg, H., Ferreri, A.J.M., Lohri, A., Novak, U., Zander, T., Bersvendsen, H., Bargetzi, M., Mingrone, W., Krasniqi, F., Dirnhofer, S., Hayoz, S., Hawle, H., Berardi Vilei, S., Ghielmini, M. & Kimby, E. (2019) Short regimen of rituximab plus lenalidomide in follicular lymphoma patients in need of first-line therapy. Blood, 134, 353-362.

Source: PubMed

3
Abonneren