Behavior of Gingival Fibroblasts on Titanium Implant Surfaces in Combination with either Injectable-PRF or PRP

Xuzhu Wang, Yufeng Zhang, Joseph Choukroun, Shahram Ghanaati, Richard J Miron, Xuzhu Wang, Yufeng Zhang, Joseph Choukroun, Shahram Ghanaati, Richard J Miron

Abstract

Various strategies have been employed to speed tissue regeneration using bioactive molecules. Interestingly, platelet concentrates derived from a patient's own blood have been utilized as a regenerative strategy in recent years. In the present study, a novel liquid platelet formulation prepared without the use of anti-coagulants (injectable-platelet-rich fibrin, i-PRF) was compared to standard platelet-rich plasma (PRP) with gingival fibroblasts cultured on smooth and roughened titanium implant surfaces. Standard PRP and i-PRF (centrifuged at 700 rpm (60× g) for 3 min) were compared by assays for fibroblast biocompatibility, migration, adhesion, proliferation, as well as expression of platelet-derived growth factor (PDGF), transforming growth factor-β (TGF-β), collagen1 (COL1) and fibronectin (FN). The results demonstrate that i-PRF induced significantly higher cell migration, as well as higher messenger RNA (mRNA) levels of PDGF, TGF-β, collagen1 and fibronectin when compared to PRP. Furthermore, collagen1 synthesis was highest in the i-PRF group. These findings demonstrate that liquid platelet concentrates can be formulated without the use of anticoagulants and present much translational potential for future research. Future animal and clinical trials are now necessary to further investigate the potential of utilizing i-PRF for soft tissue regenerative protocols in combination with various biomaterials.

Keywords: blood; fibrin; fibroblasts; platelet-rich fibrin; platelets; regeneration; wound healing.

Conflict of interest statement

Joseph Choukroun is the founder of Process of Platelet-Rich Fibrin (PRF), which supplied the PRF machine utilized in this study. All other authors declare no conflict of interest.

Figures

Figure 1
Figure 1
The percentage of human gingival fibroblasts quantified with a Live/Dead assay at 24 h on tissue culture plastic (TCP), Pickled titanium (PT) and Sand-blasted with Large grit particles followed by Acid-etching (SLA) with platelet rich plasma (PRP) or injectable platelet-rich fibrin (i-PRF) (* denotes difference between control TCP and experimental group, p < 0.05).
Figure 2
Figure 2
Effects of surface topography and PRP/i-PRF on the migration of human gingival fibroblasts (A) Cell migration was assessed after 24 h. (Scale bars = 100 µm); (B) Cell migration was quantified by normalizing to the control TCP group. (* denotes significant difference between control and experimental group, p < 0.05; ** denotes significantly higher than all other groups, p < 0.05).
Figure 3
Figure 3
Effect of surface topography in combination with PRP and i-PRF on the adhesion and proliferation of human gingival fibroblasts. (A) Cell adhesion at 2, 4 and 8 h and (B) Cell proliferation at 1, 3 and 5 days. (* denotes significant difference between control and experimental group, p < 0.05; ** denotes significantly higher than all other groups, p < 0.05; # denotes significant difference between PT and SLA surfaces p < 0.05).
Figure 4
Figure 4
Effects of surface topography in combination with PRP and i-PRF on the morphology of human gingival fibroblasts (A) Human gingival fibroblasts cultured with and without PRP or i-PRF at 8 h were stained for F-actin (green) and nuclei (blue) (Scale bars = 100 µm); (B) Average surface planar area of cells. (* denotes significant difference between control and experimental group, p < 0.05; ** denotes significantly higher than all other groups, p < 0.05; # denotes significant difference between PT and SLA surfaces, p < 0.05).
Figure 5
Figure 5
Real-time PCR of human gingival fibroblasts cultured on TCP, PT and SLA, with and without PRP or i-PRF for mRNA levels of (A) PDGF; (B) TGF-β; (C) COL1 and (D) FN1. (* denotes significant difference between control and experimental group, p < 0.05; ** denotes significantly higher than all other groups, p < 0.05; # denotes significant difference between PT and SLA surfaces, p < 0.05).
Figure 6
Figure 6
Immunofluorescent staining of collagen type 1 for human gingival fibroblasts seeded on TCP, PT and SLA surfaces with and without PRP and i-PRF at 7 days. (A) The merged fluorescent images of collagen type 1 staining (green) with DAPI staining (blue). (Scale bars = 100 µm) (B) Quantified values of collagen type 1 staining in comparison to control TCP sample (* denotes significant difference between control and experimental group, p < 0.05, ** denotes significantly higher than all other groups, p < 0.05, # denotes significant difference between PT and SLA surfaces, p < 0.05).

References

    1. Mendonça G., Mendonça D.B., Aragao F.J., Cooper L.F. Advancing dental implant surface technology—From micron-to nanotopography. Biomaterials. 2008;29:3822–3835. doi: 10.1016/j.biomaterials.2008.05.012.
    1. Le Guéhennec L., Soueidan A., Layrolle P., Amouriq Y. Surface treatments of titanium dental implants for rapid osseointegration. Dent. Mater. 2007;23:844–854. doi: 10.1016/j.dental.2006.06.025.
    1. Rupp F., Gittens R.A., Scheideler L., Marmur A., Boyan B.D., Schwartz Z., Geis-Gerstorfer J. A review on the wettability of dental implant surfaces I: Theoretical and experimental aspects. Acta Biomater. 2014;10:2894–2906. doi: 10.1016/j.actbio.2014.02.040.
    1. Gittens R.A., Scheideler L., Rupp F., Hyzy S.L., Geis-Gerstorfer J., Schwartz Z., Boyan B.D. A review on the wettability of dental implant surfaces II: Biological and clinical aspects. Acta Biomater. 2014;10:2907–2918. doi: 10.1016/j.actbio.2014.03.032.
    1. Luo T., Zhang W., Shi B., Cheng X., Zhang Y. Enhanced bone regeneration around dental implant with bone morphogenetic protein 2 gene and vascular endothelial growth factor protein delivery. Clin. Oral Implant. Res. 2012;23:467–473. doi: 10.1111/j.1600-0501.2011.02164.x.
    1. Carreira A., Lojudice F., Halcsik E., Navarro R., Sogayar M., Granjeiro J. Bone morphogenetic proteins facts, challenges, and future perspectives. J. Dent. Res. 2014;93:335–345. doi: 10.1177/0022034513518561.
    1. Cochran D.L., Schenk R., Buser D., Wozney J.M., Jones A.A. Recombinant human bone morphogenetic protein-2 stimulation of bone formation around endosseous dental implants. J. Periodontol. 1999;70:139–150. doi: 10.1902/jop.1999.70.2.139.
    1. Weibrich G., Hansen T., Kleis W., Buch R., Hitzler W. Effect of platelet concentration in platelet-rich plasma on peri-implant bone regeneration. Bone. 2004;34:665–671. doi: 10.1016/j.bone.2003.12.010.
    1. Zechner W., Tangl S., Tepper G., Fürst G., Bernhart T., Haas R., Watzek G. Influence of platelet-rich plasma on osseous healing of dental implants: A histologic and histomorphometric study in minipigs. Int. J. Oral Maxillofac. Implant. 2003;18:15–22.
    1. Wang Y., Zhang Y., Miron R.J. Health, Maintenance, and Recovery of Soft Tissues around Implants. Clin. Implant Dent. Relat. Res. 2016;18:618–634. doi: 10.1111/cid.12343.
    1. Sculean A., Gruber R., Bosshardt D.D. Soft tissue wound healing around teeth and dental implants. J. Clin. Periodontol. 2014;41:S6–S22. doi: 10.1111/jcpe.12206.
    1. Peerbooms J.C., van Laar W., Faber F., Schuller H.M., van der Hoeven H., Gosens T. Use of platelet rich plasma to treat plantar fasciitis: Design of a multi centre randomized controlled trial. BMC Musculoskelet. Disord. 2010;11:69. doi: 10.1186/1471-2474-11-69.
    1. Fujioka-Kobayashi M., Miron R.J., Hernandez M., Kandalam U., Zhang Y., Choukroun J. Optimized Platelet Rich Fibrin With the Low Speed Concept: Growth Factor Release, Biocompatibility and Cellular Response. J. Periodontol. 2016 doi: 10.1902/jop.2016.160443.
    1. Miron R.J., Fujioka-Kobayashi M., Bishara M., Zhang Y., Hernandez M., Choukroun J. Platelet-Rich Fibrin and Soft Tissue Wound Healing: A Systematic Review. Tissue Eng. Part B Rev. 2016 doi: 10.1089/ten.teb.2016.0233.
    1. Marx R.E. Platelet-rich plasma: Evidence to support its use. J. Oral Maxillofac. Surg. 2004;62:489–496. doi: 10.1016/j.joms.2003.12.003.
    1. Marx R.E., Carlson E.R., Eichstaedt R.M., Schimmele S.R., Strauss J.E., Georgeff K.R. Platelet-rich plasma: Growth factor enhancement for bone grafts. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 1998;85:638–646. doi: 10.1016/S1079-2104(98)90029-4.
    1. Cai Y.Z., Zhang C., Lin X.J. Efficacy of platelet-rich plasma in arthroscopic repair of full-thickness rotator cuff tears: A meta-analysis. J. Shoulder Elbow Surg. 2015;24:1852–1859. doi: 10.1016/j.jse.2015.07.035.
    1. Meheux C.J., McCulloch P.C., Lintner D.M., Varner K.E., Harris J.D. Efficacy of Intra-articular Platelet-Rich Plasma Injections in Knee Osteoarthritis: A Systematic Review. Arthrosc. J. Arthrosc. Relat. Surg. 2016;32:495–505. doi: 10.1016/j.arthro.2015.08.005.
    1. Singh B., Goldberg L.J. Autologous Platelet-Rich Plasma for the Treatment of Pattern Hair Loss. Am. J. Clin. Dermatol. 2016;17:359–367. doi: 10.1007/s40257-016-0196-2.
    1. Anfossi G., Trovati M., Mularoni E., Massucco P., Calcamuggi G., Emanuelli G. Influence of propranolol on platelet aggregation and thromboxane B2 production from platelet-rich plasma and whole blood. Prostaglandins Leukot. Essent. Fatty Acids. 1989;36:1–7. doi: 10.1016/0952-3278(89)90154-3.
    1. Fijnheer R., Pietersz R.N., de Korte D., Gouwerok C.W., Dekker W.J., Reesink H.W., Roos D. Platelet activation during preparation of platelet concentrates: A comparison of the platelet-rich plasma and the buffy coat methods. Transfusion. 1990;30:634–638. doi: 10.1046/j.1537-2995.1990.30790385523.x.
    1. Choukroun J., Adda F., Schoeffler C., Vervelle A. Une opportunité en paro-implantologie: Le PRF. Implantodontie. 2001;42:e62. (In French)
    1. Toffler M. Guided bone regeneration (GBR) using cortical bone pins in combination with leukocyte-and platelet-rich fibrin (L-PRF) Compend. Contin. Educ. Dent. 2014;35:192–198.
    1. Lekovic V., Milinkovic I., Aleksic Z., Jankovic S., Stankovic P., Kenney E., Camargo P. Platelet-rich fibrin and bovine porous bone mineral vs. platelet-rich fibrin in the treatment of intrabony periodontal defects. J. Periodontal Res. 2012;47:409–417. doi: 10.1111/j.1600-0765.2011.01446.x.
    1. Shivashankar V.Y., Johns D.A., Vidyanath S., Sam G. Combination of platelet rich fibrin, hydroxyapatite and PRF membrane in the management of large inflammatory periapical lesion. J. Conserv. Dent. 2013;16:261. doi: 10.4103/0972-0707.111329.
    1. Medina-Porqueres I., Alvarez-Juarez P. The Efficacy of Platelet-Rich Plasma Injection in the Management of Hip Osteoarthritis: A Systematic Review Protocol. Musculoskelet. Care. 2015 doi: 10.1002/msc.1115.
    1. Salamanna F., Veronesi F., Maglio M., Della Bella E. New and emerging strategies in platelet-rich plasma application in musculoskeletal regenerative procedures: General overview on still open questions and outlook. BioMed Res. Int. 2015;2015:846045. doi: 10.1155/2015/846045.
    1. Albanese A., Licata M.E., Polizzi B., Campisi G. Platelet-rich plasma (PRP) in dental and oral surgery: From the wound healing to bone regeneration. Immun. Ageing. 2013;10:23. doi: 10.1186/1742-4933-10-23.
    1. Panda S., Doraiswamy J., Malaiappan S., Varghese S.S., del Fabbro M. Additive effect of autologous platelet concentrates in treatment of intrabony defects: A systematic review and meta-analysis. J. Investig. Clin. Dent. 2016;7:13–26. doi: 10.1111/jicd.12117.
    1. Marrelli M., Tatullo M. Influence of PRF in the healing of bone and gingival tissues. Clinical and histological evaluations. Eur. Rev. Med. Pharmacol. Sci. 2013;17:1958–1962.
    1. Moraschini V., Barboza Edos S. Use of Platelet-Rich Fibrin Membrane in the Treatment of Gingival Recession: A Systematic Review and Meta-Analysis. J. Periodontol. 2016;87:281–290. doi: 10.1902/jop.2015.150420.
    1. Paduano F., Marrelli M., White L.J., Shakesheff K.M., Tatullo M. Odontogenic differentiation of human dental pulp stem cells on hydrogel scaffolds derived from decellularized bone extracellular matrix and collagen type I. PLoS ONE. 2016;11:e0148225. doi: 10.1371/journal.pone.0148225.
    1. Kobayashi E., Fluckiger L., Fujioka-Kobayashi M., Sawada K., Sculean A., Schaller B., Miron R.J. Comparative release of growth factors from PRP, PRF, and advanced-PRF. Clin. Oral Investig. 2016;20:2353–2360. doi: 10.1007/s00784-016-1719-1.
    1. Anitua E. Plasma rich in growth factors: Preliminary results of use in the preparation of future sites for implants. Int. J. Oral Maxillofac. Implant. 1999;14:529–535.
    1. Anitua E., Prado R., Troya M., Zalduendo M., de la Fuente M., Pino A., Muruzabal F., Orive G. Implementation of a more physiological plasma rich in growth factor (PRGF) protocol: Anticoagulant removal and reduction in activator concentration. Platelets. 2016;27:459–466. doi: 10.3109/09537104.2016.1143921.
    1. Ghanaati S., Booms P., Orlowska A., Kubesch A., Lorenz J., Rutkowski J., Landes C., Sader R., Kirkpatrick C., Choukroun J. Advanced platelet-rich fibrin: A new concept for cell-based tissue engineering by means of inflammatory cells. J. Oral Implantol. 2014;40:679–689. doi: 10.1563/aaid-joi-D-14-00138.
    1. Bielecki T., Dohan Ehrenfest D.M., Everts P.A., Wiczkowski A. The role of leukocytes from L-PRP/L-PRF in wound healing and immune defense: New perspectives. Curr. Pharm. Biotechnol. 2012;13:1153–1162. doi: 10.2174/138920112800624373.
    1. Martin P. Wound healing—Aiming for perfect skin regeneration. Science. 1997;276:75–81. doi: 10.1126/science.276.5309.75.
    1. Barrick B., Campbell E.J., Owen C.A. Leukocyte proteinases in wound healing: Roles in physiologic and pathologic processes. Wound Repair Regen. 1999;7:410–422. doi: 10.1046/j.1524-475X.1999.00410.x.
    1. Miron R.J., Oates C.J., Molenberg A., Dard M., Hamilton D.W. The effect of enamel matrix proteins on the spreading, proliferation and differentiation of osteoblasts cultured on titanium surfaces. Biomaterials. 2010;31:449–460. doi: 10.1016/j.biomaterials.2009.09.075.
    1. Cai K., Bossert J., Jandt K.D. Does the nanometre scale topography of titanium influence protein adsorption and cell proliferation? Colloids Surf. B Biointerfaces. 2006;49:136–144. doi: 10.1016/j.colsurfb.2006.02.016.
    1. Deligianni D., Katsala N., Ladas S., Sotiropoulou D., Amedee J., Missirlis Y. Effect of surface roughness of the titanium alloy Ti–6Al–4V on human bone marrow cell response and on protein adsorption. Biomaterials. 2001;22:1241–1251. doi: 10.1016/S0142-9612(00)00274-X.
    1. Lord M.S., Foss M., Besenbacher F. Influence of nanoscale surface topography on protein adsorption and cellular response. Nano Today. 2010;5:66–78. doi: 10.1016/j.nantod.2010.01.001.
    1. Tatullo M., Marrelli M., Falisi G., Rastelli C., Palmieri F., Gargari M., Zavan B., Paduano F., Benagiano V. Mechanical influence of tissue culture plates and extracellular matrix on mesenchymal stem cell behavior: A topical review. Int. J. Immunopathol. Pharmacol. 2015;29:3–8. doi: 10.1177/0394632015617951.
    1. Marrelli M., Falisi G., Apicella A., Apicella D., Amantea M., Cielo A., Bonanome L., Palmieri F., Santacroce L., Giannini S. Behaviour of dental pulp stem cells on different types of innovative mesoporous and nanoporous silicon scaffolds with different functionalizations of the surfaces. J. Biol. Regul. Homeost. Agents. 2014;29:991–997.
    1. Weibrich G., Kleis W.K., Hafner G. Growth factor levels in the platelet-rich plasma produced by 2 different methods: Curasan-type PRP kit versus PCCS PRP system. Int. J. Oral Maxillofac. Implant. 2002;17:184–190.
    1. Wang Y., Zhang Y., Jing D., Shuang Y., Miron R.J. Enamel matrix derivative improves gingival fibroblast cell behavior cultured on titanium surfaces. Clin. Oral Investig. 2016;20:685–695. doi: 10.1007/s00784-015-1558-5.
    1. Miron R.J., Hedbom E., Ruggiero S., Bosshardt D.D., Zhang Y., Mauth C., Gemperli A.C., Iizuka T., Buser D., Sculean A. Premature osteoblast clustering by enamel matrix proteins induces osteoblast differentiation through up-regulation of connexin 43 and N-cadherin. PLoS ONE. 2011;6:e23375. doi: 10.1371/journal.pone.0023375.
    1. Zhang Y., Wei L., Chang J., Miron R.J., Shi B., Yi S., Wu C. Strontium-incorporated mesoporous bioactive glass scaffolds stimulating in vitro proliferation and differentiation of bone marrow stromal cells and in vivo regeneration of osteoporotic bone defects. J. Mater. Chem. B. 2013;1:5711–5722. doi: 10.1039/c3tb21047b.
    1. Zhang Y., Wei L., Miron R.J., Shi B., Bian Z. Anabolic Bone Formation Via a Site Specific Bone Targeting Delivery System by Interfering with Semaphorin 4D Expression. J. Bone Miner. Res. 2015;30:286–296. doi: 10.1002/jbmr.2322.

Source: PubMed

3
Abonneren