Joint analysis of left ventricular expression and circulating plasma levels of Omentin after myocardial ischemia

Louis A Saddic, Sarah M Nicoloro, Olga T Gupta, Michael P Czech, Joshua Gorham, Stanton K Shernan, Christine E Seidman, Jon G Seidman, Sary F Aranki, Simon C Body, Timothy P Fitzgibbons, Jochen D Muehlschlegel, Louis A Saddic, Sarah M Nicoloro, Olga T Gupta, Michael P Czech, Joshua Gorham, Stanton K Shernan, Christine E Seidman, Jon G Seidman, Sary F Aranki, Simon C Body, Timothy P Fitzgibbons, Jochen D Muehlschlegel

Abstract

Background: Omentin-1, also known as Intelectin-1 (ITLN1), is an adipokine with plasma levels associated with diabetes, obesity, and coronary artery disease. Recent studies suggest that ITLN1 can mitigate myocardial ischemic injury but the expression of ITLN1 in the heart itself has not been well characterized. The purpose of this study is to discern the relationship between the expression pattern of ITLN1 RNA in the human heart and the level of circulating ITLN1 protein in plasma from the same patients following myocardial ischemia.

Methods: A large cohort of patients (n = 140) undergoing elective cardiac surgery for aortic valve replacement were enrolled in this study. Plasma and left ventricular biopsy samples were taken at the beginning of cardiopulmonary bypass and after an average of 82 min of ischemic cross clamp time. The localization of ITLN1 in epicardial adipose tissue (EAT) was also further characterized with immunoassays and cell fate transition studies.

Results: mRNA expression of ITLN1 decreases in left ventricular tissue after acute ischemia in human patients (mean difference 280.48, p = 0.001) whereas plasma protein levels of ITLN1 increase (mean difference 5.24, p < 0.001). Immunohistochemistry localized ITLN1 to the mesothelium or visceral pericardium of EAT. Epithelial to mesenchymal transition in mesothelial cells leads to a downregulation of ITLN1 expression.

Conclusions: Myocardial injury leads to a decrease in ITLN1 expression in the heart and a corresponding increase in plasma levels. These changes may in part be due to an epithelial to mesenchymal transition of the cells that express ITLN1 following ischemia. Trial Registration Clinicaltrials.gov ID: NCT00985049.

Keywords: Adipokine; Cardiovascular; Ischemia; Omentin; RNA-seq.

Figures

Fig. 1
Fig. 1
ITLN1 expression is decreased in the left ventricle and circulating plasma levels of ITLN1 are increased following acute ischemia in the human heart. Stripcharts display the change in ITLN1 expression in left ventricular tissue samples (a) and in circulating ITLN1 protein levels following acute ischemia in the heart (b). FPKM: fragments per kilobase per million mapped reads
Fig. 2
Fig. 2
Venn diagram of differentially regulated genes between subcutaneous adipose tissue (SAT) vs. visceral adipose tissue (VAT) and epicardial adipose tissue (EAT) vs. SAT. In the SAT vs. VAT comparison, 845 genes were differentially regulated (FC > 2.0, p < 0.05). In the EAT vs. SAT comparison 188 genes were differentially regulated. 46% of these were commonly differentially regulated in VAT in comparison to SAT (middle overlapping segment). The numbers in each circle indicate the number of genes whose expression was altered; numbers in bold italic are upregulated, those in red font are contraregulated, and those in underlined plain font are downregulated in the respective comparisons. The specific genes are listed in Table 3
Fig. 3
Fig. 3
ITLN1 is specifically expressed in the stromal vascular fraction of visceral fat in humans. a Microarrays were queried for expression of ITLN1 in visceral adipose tissue (VAT) vs. subcutaneous adipose tissue (SAT) in paired samples (n = 8) (*** p < 0.001). bITLN1 expression from microarrays of the adipocyte and stromal vascular fraction (SVF) of VAT in paired samples (n = 6) (** p < 0.01). c Expression of ITLN1 from microarrays of murine SAT and VAT
Fig. 4
Fig. 4
Immunohistochemistry of ITLN1 in epicardial adipose tissue (EAT) shows enrichment within the mesothelial cell layer. Subcutaneous adipose tissue (SAT) stained for ITLN1 (a). EAT stained for ITLN1 (b) with magnification of the mesothelial cell layer of the visceral pericardium (c). Secondary antibody alone was used as a control (d). ITLN1 red, DAPI blue
Fig. 5
Fig. 5
ITLN1 expression in primary mesothelial cells is dramatically reduced following an epithelial to mesenchymal transition. a qRT-PCR for ITLN1 in mesothelial cells ± TGFβ1 and in a human adipocyte cell line (SGBS) before (D0) and after differentiation (D14) (n = 6 per group). b qRT-PCR for the adipocyte specific gene PLIN1 in mesothelial cells ± TGFβ1 and in a human adipocyte cell line (SGBS) before (D0) and after differentiation (D14)(n = 6 per group). c Expression of the epithelial cell marker CDH-1 and the mesenchymal cell markers VMAC, SNAI1, and SNAI2 before and after treatment of mesothelial cells with TGFβ1 (n = 6 per group)

References

    1. Ouchi N, Parker JL, Lugus JJ, Walsh K. Adipokines in inflammation and metabolic disease. Nat Rev Immunol. 2011;11(2):85–97. doi: 10.1038/nri2921.
    1. Rabe K, Lehrke M, Parhofer KG, Broedl UC. Adipokines and insulin resistance. Mol Med. 2008;14(11–12):741–751.
    1. Rega-Kaun G, Kaun C, Wojta J. More than a simple storage organ: adipose tissue as a source of adipokines involved in cardiovascular disease. Thromb Haemost. 2013;110(4):641–650. doi: 10.1160/TH13-03-0212.
    1. Katsi V, Vamvakou G, Lekakis J, Tousoulis D, Stefanadis C, Makris T, Kallikazaros I. Omentin, fat and heart: classical music with new instruments. Heart Lung Circ. 2014;23(9):802–806. doi: 10.1016/j.hlc.2014.03.013.
    1. Mattu HS, Randeva HS. Role of adipokines in cardiovascular disease. J Endocrinol. 2013;216(1):T17–T36. doi: 10.1530/JOE-12-0232.
    1. Shibata R, Ohashi K, Murohara T, Ouchi N. The potential of adipokines as therapeutic agents for cardiovascular disease. Cytokine Growth Factor Rev. 2014;25(4):483–487. doi: 10.1016/j.cytogfr.2014.07.005.
    1. Yang R-Z, Lee M-J, Hu H, Pray J, Wu H-B, Hansen BC, Shuldiner AR, Fried SK, McLenithan JC, Gong D-W. Identification of omentin as a novel depot-specific adipokine in human adipose tissue: possible role in modulating insulin action. Am J Physiol-Endocrinol Metab. 2006;290(6):E1253. doi: 10.1152/ajpendo.00572.2004.
    1. Fain JN, Sacks HS, Buehrer B, Bahouth SW, Garrett E, Wolf RY, Carter RA, Tichansky DS, Madan AK. Identification of omentin mRNA in human epicardial adipose tissue: comparison to omentin in subcutaneous, internal mammary artery periadventitial and visceral abdominal depots. Int J Obes (Lond) 2008;32(5):810–815. doi: 10.1038/sj.ijo.0803790.
    1. Pan HY, Guo L, Li Q. Changes of serum omentin-1 levels in normal subjects and in patients with impaired glucose regulation and with newly diagnosed and untreated type 2 diabetes. Diabetes Res Clin Pract. 2010;88(1):29–33. doi: 10.1016/j.diabres.2010.01.013.
    1. de Souza Batista CM, Yang RZ, Lee MJ, Glynn NM, Yu DZ, Pray J, Ndubuizu K, Patil S, Schwartz A, Kligman M, et al. Omentin plasma levels and gene expression are decreased in obesity. Diabetes. 2007;56(6):1655–1661. doi: 10.2337/db06-1506.
    1. Shibata R, Takahashi R, Kataoka Y, Ohashi K, Ikeda N, Kihara S, Murohara T, Ouchi N. Association of a fat-derived plasma protein omentin with carotid artery intima-media thickness in apparently healthy men. Hypertens Res. 2011;34(12):1309–1312. doi: 10.1038/hr.2011.130.
    1. Shibata R, Ouchi N, Kikuchi R, Takahashi R, Takeshita K, Kataoka Y, Ohashi K, Ikeda N, Kihara S, Murohara T. Circulating omentin is associated with coronary artery disease in men. Atherosclerosis. 2011;219(2):811–814. doi: 10.1016/j.atherosclerosis.2011.08.017.
    1. Zhong X, Zhang HY, Tan H, Zhou Y, Liu FL, Chen FQ, Shang DY. Association of serum omentin-1 levels with coronary artery disease. Acta Pharmacol Sin. 2011;32(7):873–878. doi: 10.1038/aps.2011.26.
    1. Yamawaki H, Kuramoto J, Kameshima S, Usui T, Okada M, Hara Y. Omentin, a novel adipocytokine inhibits TNF-induced vascular inflammation in human endothelial cells. Biochem Biophys Res Commun. 2011;408(2):339–343. doi: 10.1016/j.bbrc.2011.04.039.
    1. Yamawaki H, Tsubaki N, Mukohda M, Okada M, Hara Y. Omentin, a novel adipokine, induces vasodilation in rat isolated blood vessels. Biochem Biophys Res Commun. 2010;393(4):668–672. doi: 10.1016/j.bbrc.2010.02.053.
    1. Gu N, Dong Y, Tian Y, Di Z, Liu Z, Chang M, Jia X, Qian Y, Zhang W. Anti-apoptotic and angiogenic effects of intelectin-1 in rat cerebral ischemia. Brain Res Bull. 2016;130:27–35. doi: 10.1016/j.brainresbull.2016.12.006.
    1. Kataoka Y, Shibata R, Ohashi K, Kambara T, Enomoto T, Uemura Y, Ogura Y, Yuasa D, Matsuo K, Nagata T, et al. Omentin prevents myocardial ischemic injury through AMP-activated protein kinase- and Akt-dependent mechanisms. J Am Coll Cardiol. 2014;63(24):2722–2733. doi: 10.1016/j.jacc.2014.03.032.
    1. Pourbehi MR, Zahedi T, Darabi H, Ostovar A, Assadi M, Nabipour I. Omentin-1 and nonfatal ischemic heart disease in postmenopausal women: a population-based study. Endocr Pract. 2016;22(7):780–785. doi: 10.4158/EP151134.OR.
    1. Harada K, Shibata R, Ouchi N, Tokuda Y, Funakubo H, Suzuki M, Kataoka T, Nagao T, Okumura S, Shinoda N, et al. Increased expression of the adipocytokine omentin in the epicardial adipose tissue of coronary artery disease patients. Atherosclerosis. 2016;251:299–304. doi: 10.1016/j.atherosclerosis.2016.07.003.
    1. Du Y, Ji Q, Cai L, Huang F, Lai Y, Liu Y, Yu J, Han B, Zhu E, Zhang J, et al. Association between omentin-1 expression in human epicardial adipose tissue and coronary atherosclerosis. Cardiovasc Diabetol. 2016;15(1):90. doi: 10.1186/s12933-016-0406-5.
    1. Muehlschlegel JD, Christodoulou DC, McKean D, Gorham J, Mazaika E, Heydarpour M, Lee G, DePalma SR, Perry TE, Fox AA, et al. Using next-generation RNA sequencing to examine ischemic changes induced by cold blood cardioplegia on the human left ventricular myocardium transcriptome. Anesthesiology. 2015;122(3):537–550. doi: 10.1097/ALN.0000000000000582.
    1. Trapnell C, Pachter L, Salzberg SL. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics (Oxford, England) 2009;25(9):1105–1111. doi: 10.1093/bioinformatics/btp120.
    1. Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc. 2012;7(3):562–578. doi: 10.1038/nprot.2012.016.
    1. Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10(3):R25. doi: 10.1186/gb-2009-10-3-r25.
    1. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol. 2010;28(5):511–515. doi: 10.1038/nbt.1621.
    1. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47. doi: 10.1093/nar/gkv007.
    1. Liu R, Holik AZ, Su S, Jansz N, Chen K, Leong HS, Blewitt ME, Asselin-Labat ML, Smyth GK, Ritchie ME. Why weight? Modelling sample and observational level variability improves power in RNA-seq analyses. Nucleic Acids Res. 2015;43(15):e97. doi: 10.1093/nar/gkv412.
    1. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics (Oxford, England) . 2010;26(1):139–140. doi: 10.1093/bioinformatics/btp616.
    1. Hardy OT, Perugini RA, Nicoloro SM, Gallagher-Dorval K, Puri V, Straubhaar J, Czech MP. Body mass index-independent inflammation in omental adipose tissue associated with insulin resistance in morbid obesity. Surg Obes Relat Dis. 2011;7(1):60–67. doi: 10.1016/j.soard.2010.05.013.
    1. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001;25(4):402–408. doi: 10.1006/meth.2001.1262.
    1. Team RC . R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2015.
    1. Muehlschlegel JD, Perry TE, Liu KY, Nascimben L, Fox AA, Collard CD, Avery EG, Aranki SF, D’Ambra MN, Shernan SK, et al. Troponin is superior to electrocardiogram and creatinine kinase MB for predicting clinically significant myocardial injury after coronary artery bypass grafting. Eur Heart J. 2009;30(13):1574–1583. doi: 10.1093/eurheartj/ehp134.
    1. Malmberg M, Parkka J, Vahasilta T, Saraste A, Laitio T, Kiss J, Latva-Hirvela J, Saukko P, Savunen T. Cardiomyocyte apoptosis after cardioplegic ischemia: comparison to unprotected regional ischemia-reperfusion. Eur Surg Res. 2011;46(1):19–25. doi: 10.1159/000321875.
    1. Fitzgibbons TP, Czech MP. Epicardial and perivascular adipose tissues and their influence on cardiovascular disease: basic mechanisms and clinical associations. J Am Heart Assoc. 2014;3(2):e000582. doi: 10.1161/JAHA.113.000582.
    1. Iacobellis G, Assael F, Ribaudo MC, Zappaterreno A, Alessi G, Di Mario U, Leonetti F. Epicardial fat from echocardiography: a new method for visceral adipose tissue prediction. Obes Res. 2003;11(2):304–310. doi: 10.1038/oby.2003.45.
    1. Lonsdale J, Thomas J, Salvatore M, Phillips R, Lo E, Shad S, Hasz R, Walters G, Garcia F, Young N, et al. The genotype-tissue expression (GTEx) project. Nat Genet. 2013;45(6):580–585. doi: 10.1038/ng.2653.
    1. Gaborit B, Venteclef N, Ancel P, Pelloux V, Gariboldi V, Leprince P, Amour J, Hatem SN, Jouve E, Dutour A, et al. Human epicardial adipose tissue has a specific transcriptomic signature depending on its anatomical peri-atrial, peri-ventricular, or peri-coronary location. Cardiovasc Res. 2015;108(1):62–73. doi: 10.1093/cvr/cvv208.
    1. Gupta OT, Gupta RK. Visceral adipose tissue mesothelial cells: living on the edge or just taking up space? Trends Endocrinol Metab: TEM. 2015;26(10):515–523. doi: 10.1016/j.tem.2015.07.003.
    1. Krainock M, Toubat O, Danopoulos S, Beckham A, Warburton D, Kim R. Epicardial epithelial-to-mesenchymal transition in heart development and disease. J Clin Med. 2016;5(2):27. doi: 10.3390/jcm5020027.
    1. Zhou B, Pu WT. Epicardial epithelial-to-mesenchymal transition in injured heart. J Cell Mol Med. 2011;15(12):2781–2783. doi: 10.1111/j.1582-4934.2011.01450.x.

Source: PubMed

3
Abonneren