Lenvatinib inhibits angiogenesis and tumor fibroblast growth factor signaling pathways in human hepatocellular carcinoma models

Masahiro Matsuki, Taisuke Hoshi, Yuji Yamamoto, Megumi Ikemori-Kawada, Yukinori Minoshima, Yasuhiro Funahashi, Junji Matsui, Masahiro Matsuki, Taisuke Hoshi, Yuji Yamamoto, Megumi Ikemori-Kawada, Yukinori Minoshima, Yasuhiro Funahashi, Junji Matsui

Abstract

Unresectable hepatocellular carcinoma (uHCC) is one of the most lethal and prevalent cancers worldwide, and current systemic therapeutic options for uHCC are limited. Lenvatinib, a multiple receptor tyrosine kinase inhibitor targeting vascular endothelial growth factor receptors (VEGFRs) and fibroblast growth factor receptors (FGFRs), recently demonstrated a treatment effect on overall survival by statistical confirmation of noninferiority to sorafenib in a phase 3 study of uHCC. Here, we investigated mechanisms underlying the antitumor activity of lenvatinib in preclinical HCC models. In vitro proliferation assay of nine human HCC cell lines showed that lenvatinib selectively inhibited proliferation of FGF signal-activated HCC cells including FGF19-expressing Hep3B2.1-7. Lenvatinib suppressed phosphorylation of FRS2, a substrate of FGFR1-4, in these cells in a concentration-dependent manner. Lenvatinib inhibited in vivo tumor growth in Hep3B2.1-7 and SNU-398 xenografts and decreased phosphorylation of FRS2 and Erk1/2 within the tumor tissues. Lenvatinib also exerted antitumor activity and potently reduced tumor microvessel density in PLC/PRF/5 xenograft model and two HCC patient-derived xenograft models. These results suggest that lenvatinib has antitumor activity consistently across diverse HCC models, and that targeting of tumor FGF signaling pathways and anti-angiogenic activity underlies its antitumor activity against HCC tumors.

Keywords: Lenvatinib; angiogenesis; fibroblast growth factor; hepatocellular carcinoma; vascular endothelial growth factor.

© 2018 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

Figures

Figure 1
Figure 1
In vitro antiproliferative activity of lenvatinib and sorafenib in nine human HCC cell lines. (A) Inhibition of HCC cell proliferation by lenvatinib and sorafenib. Data are presented as means of three independent experiments performed in triplicate. (B) IC 50 values for HCC cells, placed in the order of ascending values for lenvatinib. (C) Expression levels of FGF19, FGFR1–4, and β‐Klotho, as determined by Western blot analysis. Multiple bands represent different isoforms and/or post‐translational modifications of FGFRs and β‐Klotho.
Figure 2
Figure 2
Inhibitory effects of lenvatinib and sorafenib on FGF signaling pathways in human HCC cells. (A) Hep3B2.1‐7 cells were treated with lenvatinib, sorafenib, or vehicle (DMSO) for 1 h, followed by stimulation with FGF19 for 5 min. (B) HuH‐7 cells and (C) SNU‐398 cells were treated with each drug or vehicle for 1 h. Phosphorylated FRS2 (p‐FRS2), FRS2, and β‐actin were detected by Western blot analysis.
Figure 3
Figure 3
Effects of lenvatinib and sorafenib in human HCC xenograft models. Mice bearing xenograft tumors were orally administered lenvatinib (3–30 mg/kg), sorafenib (10, 30 mg/kg), or the corresponding vehicle for 7 (Hep3B2.1‐7) or 11 (SNU‐398) days. (A, B) Antitumor activity in the Hep3B2.1‐7 (A) and SNU‐398 (B) xenograft models. Data are means ± SEM (n = 8) *< 0.05, ***< 0.001, ****< 0.0001 versus vehicle control. (C–F) Inhibitory activity against phosphorylation of FRS2 and Erk1/2 in the xenograft‐derived tumors. Tumors were collected 2 h after single treatment with lenvatinib (C, E) or sorafenib (D, F) at the indicated doses. Lysates of Hep3B2.1‐7 tumors (C, D) and SNU‐398 tumors (E, F) were then subjected to Western blot analysis.
Figure 4
Figure 4
Antitumor and anti‐angiogenic activities of lenvatinib and sorafenib in the PLC/PRF/5 xenograft model. Mice bearing xenograft tumors were orally administered lenvatinib (LEN; 3–30 mg/kg), sorafenib (SOR; 10, 30 mg/kg), or the corresponding vehicle (Veh) for 7 days. (A) Tumor growth curves of PLC/PRF/5 xenograft model. Data are means ± SEM (n = 6). (B, C) Formalin‐fixed paraffin‐embedded sections of tumors collected on Day 8 were stained with anti‐CD31 antibody to visualize microvessels in the tumors. (B) Representative images of the tumor microvessels. Bar = 100 μm. (C) Quantification of MVD. Data are presented as means + SEM (n = 6). *< 0.05, **< 0.01, ***< 0.001, ****< 0.0001 versus vehicle control.
Figure 5
Figure 5
Effects of lenvatinib and sorafenib in the HCC PDX‐derived cell line (LIXC‐012) xenograft model. Mice bearing LIXC‐012 tumors were orally administered lenvatinib (3–30 mg/kg), sorafenib (10, 30 mg/kg), or the corresponding vehicle (Veh). Formalin‐fixed paraffin‐embedded sections of tumors collected the day after the last dosing were stained with anti‐Ki‐67 antibody to visualize proliferating tumor cells. (A) Tumor growth curves of the LIXC‐012 xenograft model. Data are means ± SEM (n = 8). *< 0.05, ***< 0.001 versus vehicle control on Days 1–11 (two‐way analysis of variance followed by Bonferroni's multiple comparison test). (B) Numbers of Ki‐67 positive cells (%). Data are means + SEM (n = 7 [Veh for lenvatinib] to 8). *< 0.05, ****< 0.0001 versus vehicle control.
Figure 6
Figure 6
Antitumor and anti‐angiogenic activities of lenvatinib and sorafenib in two HCC PDX models. Mice bearing tumors were orally administered lenvatinib (10, 30 mg/kg), sorafenib (30 mg/kg), or vehicle (Veh; 3 mmol/L HCl only) for 28 days. (A) Tumor growth curve of LI0050 model. In this study sorafenib was poorly tolerated, with the death of five mice (one on Day 10 and four on Day 19) and multiple dose suspensions, and 30 mg/kg lenvatinib treatment of one mouse was suspended for 13 days owing to transient BWL on Day 15. Data are means ± SEM; n = 15 (vehicle control and lenvatinib groups) or n = 10–15 (sorafenib group). NA, not applicable. (B) Tumor growth curve of LI0334 model. Data are means ± SEM (n = 15). NS, not significant. (C, D) MVD in the LI0050 (C) and LI0334 (D) models. Data are means + SEM. ***< 0.001, ****< 0.0001 versus vehicle control.

References

    1. Torre, L. A. , Bray F., Siegel R. L., Ferlay J., Lortet‐Tieulent J., and Jemal A.. 2015. Global cancer statistics, 2012. CA Cancer J. Clin. 65:87–108.
    1. Wilhelm, S. M. , Carter C., Tang L., Wilkie D., McNabola A., Rong H., et al. 2004. BAY 43‐9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res. 64:7099–7109.
    1. Tohyama, O. , Matsui J., Kodama K., Hata‐Sugi N., Kimura T., Okamoto K., et al. 2014. Antitumor activity of lenvatinib (e7080): an angiogenesis inhibitor that targets multiple receptor tyrosine kinases in preclinical human thyroid cancer models. J. Thyroid. Res. 2014:638747.
    1. Llovet, J. M. , Ricci S., Mazzaferro V., Hilgard P., Gane E., Blanc J. F., et al. 2008. Sorafenib in advanced hepatocellular carcinoma. N. Engl. J. Med. 359:378–390.
    1. Zhu, A. X. 2012. Molecularly targeted therapy for advanced hepatocellular carcinoma in 2012: current status and future perspectives. Semin. Oncol. 39:493–502.
    1. El‐Serag, H. B. 2011. Hepatocellular carcinoma. N. Engl. J. Med. 365:1118–1127.
    1. Yamamoto, Y. , Matsui J., Matsushima T., Obaishi H., Miyazaki K., Nakamura K., et al. 2014. Lenvatinib, an angiogenesis inhibitor targeting VEGFR/FGFR, shows broad antitumor activity in human tumor xenograft models associated with microvessel density and pericyte coverage. Vasc. Cell. 6:18.
    1. Matsui, J. , Yamamoto Y., Funahashi Y., Tsuruoka A., Watanabe T., Wakabayashi T., et al. 2008. E7080, a novel inhibitor that targets multiple kinases, has potent antitumor activities against stem cell factor producing human small cell lung cancer H146, based on angiogenesis inhibition. Int. J. Cancer 122:664–671.
    1. Okamoto, K. , Kodama K., Takase K., Sugi N. H., Yamamoto Y., Iwata M., et al. 2013. Antitumor activities of the targeted multi‐tyrosine kinase inhibitor lenvatinib (E7080) against RET gene fusion‐driven tumor models. Cancer Lett. 340:97–103.
    1. Matsui, J. , Funahashi Y., Uenaka T., Watanabe T., Tsuruoka A., and Asada M.. 2008. Multi‐kinase inhibitor E7080 suppresses lymph node and lung metastases of human mammary breast tumor MDA‐MB‐231 via inhibition of vascular endothelial growth factor‐receptor (VEGF‐R) 2 and VEGF‐R3 kinase. Clin. Cancer Res. 14:5459–5465.
    1. Ichikawa, K. , Miyano S. W., Adachi Y., Matsuki M., Okamoto K., and Matsui J.. 2016. Lenvatinib suppresses angiogenesis through the inhibition of both the VEGFR and FGFR signaling pathways. Glob. J. Cancer Ther. 2:019–024.
    1. Schlumberger, M. , Tahara M., Wirth L. J., Robinson B., Brose M. S., Elisei R., et al. 2015. Lenvatinib versus placebo in radioiodine‐refractory thyroid cancer. N. Engl. J. Med. 372:621–630.
    1. Motzer, R. J. , Hutson T. E., Glen H., Michaelson M. D., Molina A., Eisen T., et al. 2015. Lenvatinib, everolimus, and the combination in patients with metastatic renal cell carcinoma: a randomised, phase 2, open‐label, multicentre trial. Lancet Oncol. 16:1473–1482.
    1. Cheng, A.‐L. , Finn R. S., Qin S., Han K. H., Ikeda K., Piscaglia F., et al. 2017. Phase III trial of lenvatinib (LEN) vs sorafenib (SOR) in first‐line treatment of patients (pts) with unresectable hepatocellular carcinoma (uHCC). J. Clin. Oncol. 35:4001.
    1. Llovet, J. M. , Villanueva A., Lachenmayer A., and Finn R. S.. 2015. Advances in targeted therapies for hepatocellular carcinoma in the genomic era. Nat. Rev. Clin. Oncol. 12:408–424.
    1. Zucman‐Rossi, J. , Villanueva A., Nault J.‐C., and Llovet J. M.. 2015. Genetic landscape and biomarkers of hepatocellular carcinoma. Gastroenterology 149:1226–1239. e4.
    1. Sawey Eric, T. , Chanrion M., Cai C., Wu G., Zhang J., Zender L., et al. 2011. Identification of a therapeutic strategy targeting amplified FGF19 in liver cancer by oncogenomic screening. Cancer Cell 19:347–358.
    1. Totoki, Y. , Tatsuno K., Covington K. R., Ueda H., Creighton C. J., Kato M., et al. 2014. Trans‐ancestry mutational landscape of hepatocellular carcinoma genomes. Nat. Genet. 46:1267–1273.
    1. Miura, S. , Mitsuhashi N., Shimizu H., Kimura F., Yoshidome H., Otsuka M., et al. 2012. Fibroblast growth factor 19 expression correlates with tumor progression and poorer prognosis of hepatocellular carcinoma. BMC Cancer 12:56.
    1. Hagel, M. , Miduturu C., Sheets M., Rubin N., Weng W., Stransky N., et al. 2015. First selective small molecule inhibitor of FGFR4 for the treatment of hepatocellular carcinomas with an activated FGFR4 signaling pathway. Cancer Discov. 5:424–437.
    1. Schmidt, B. , Wei L., DePeralta D. K., Hoshida Y., Tan P. S., Sun X., et al. 2016. Molecular subclasses of hepatocellular carcinoma predict sensitivity to fibroblast growth factor receptor inhibition. Int. J. Cancer 138:1494–1505.
    1. Gauglhofer, C. , Sagmeister S., Schrottmaier W., Fischer C., Rodgarkia‐Dara C., Mohr T., et al. 2011. Up‐regulation of the fibroblast growth factor 8 subfamily in human hepatocellular carcinoma for cell survival and neoangiogenesis. Hepatology 53:854–864.
    1. Paur, J. , Nika L., Maier C., Moscu‐Gregor A., Kostka J., Huber D., et al. 2015. Fibroblast growth factor receptor 3 isoforms: Novel therapeutic targets for hepatocellular carcinoma? Hepatology 62:1767–1778.
    1. Homma, S. , Nagamori S., Fujise K., Hasumura S., Sujino H., Matsuura T., et al. 1990. Establishment and characterization of a human hepatocellular carcinoma cell line JHH‐7 producing alpha ‐fetoprotein and carcinoembryonic antigen–changes in secretion of AFP and CEA from JHH‐7 cells after heat treatment. Hum. Cell 3:152–157.
    1. Matsuki, M. , Adachi Y., Ozawa Y., Kimura T., Hoshi T., Okamoto K., et al. 2017. Targeting of tumor growth and angiogenesis underlies the enhanced antitumor activity of lenvatinib in combination with everolimus. Cancer Sci. 108:763–771.
    1. Futami, T. , Okada H., Kihara R., Kawase T., Nakayama A., Suzuki T., et al. 2017. ASP5878, a novel inhibitor of FGFR1, 2, 3, and 4, inhibits the growth of FGF19‐expressing hepatocellular carcinoma. Mol. Cancer Ther. 16:68–75.
    1. Liu, L. , Cao Y., Chen C., Zhang X., McNabola A., Wilkie D., et al. 2006. Sorafenib blocks the RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5. Cancer Res. 66:11851–11858.
    1. Okamoto, K. , Ikemori‐Kawada M., Jestel A., von König K., Funahashi Y., Matsushima T., et al. 2015. Distinct binding mode of multikinase inhibitor lenvatinib revealed by biochemical characterization. ACS Med. Chem. Lett. 6:89–94.
    1. Xin, H. , Wang K., Hu G., Xie F., Ouyang K., Tang X., et al. 2014. Establishment and characterization of 7 novel hepatocellular carcinoma cell lines from patient‐derived tumor xenografts. PLoS ONE 9:e85308.
    1. Iwata, H. , Imamura S., Hori A., Hixon M. S., Kimura H., and Miki H.. 2011. Biochemical characterization of TAK‐593, a novel VEGFR/PDGFR inhibitor with a two‐step slow binding mechanism. Biochemistry 50:738–751.
    1. Repana, D. , and Ross P.. 2015. Targeting FGF19/FGFR4 pathway: a novel therapeutic strategy for hepatocellular carcinoma. Diseases 3:294–305.
    1. Hyeon, J. , Ahn S., Lee J. J., Song D. H., and Park C. K.. 2013. Expression of fibroblast growth factor 19 is associated with recurrence and poor prognosis of hepatocellular carcinoma. Dig. Dis. Sci. 58:1916–1922.
    1. French, D. M. , Lin B. C., Wang M., Adams C., Shek T., Hötzel K., et al. 2012. Targeting FGFR4 inhibits hepatocellular carcinoma in preclinical mouse models. PLoS ONE 7:e36713.
    1. Desnoyers, L. R. , Pai R., Ferrando R. E., Hötzel K., Le T., Ross J., et al. 2008. Targeting FGF19 inhibits tumor growth in colon cancer xenograft and FGF19 transgenic hepatocellular carcinoma models. Oncogene 27:85–97.
    1. Kim, R. , Sharma S., Meyer T., Sarker D., Macarulla T., Sung M., et al. 2016. First‐in‐human study of BLU‐554, a potent, highly‐selective FGFR4 inhibitor designed for hepatocellular carcinoma (HCC) with FGFR4 pathway activation. Eur. J. Cancer 69:S41.
    1. Gu, Q. , Zhang B., Sun H., Xu Q., Tan Y., Wang G., et al. 2015. Genomic characterization of a large panel of patient‐derived hepatocellular carcinoma xenograft tumor models for preclinical development. Oncotarget 6:20160–20176.
    1. Tovar, V. , Cornella H., Moeini A., Vidal S., Hoshida Y., Sia D., et al. 2017. Tumour initiating cells and IGF/FGF signalling contribute to sorafenib resistance in hepatocellular carcinoma. Gut 66:530–540.
    1. Finn, R. S. , and Zhu A. X.. 2009. Targeting angiogenesis in hepatocellular carcinoma: focus on VEGF and bevacizumab. Expert Rev. Anticancer Ther. 9:503–509.
    1. Zhu, A. X. , Duda D. G., Sahani D. V., and Jain R. K.. 2011. HCC and angiogenesis: possible targets and future directions. Nat. Rev. Clin. Oncol. 8:292–301.
    1. Yang, Z. F. , and Poon R. T.. 2008. Vascular changes in hepatocellular carcinoma. Anat. Rec. (Hoboken) 291:721–734.
    1. Casanovas, O. , Hicklin D. J., Bergers G., and Hanahan D.. 2005. Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late‐stage pancreatic islet tumors. Cancer Cell 8:299–309.
    1. Wang, L. , Park H., Chhim S., Ding Y., Jiang W., Queen C., et al. 2012. A novel monoclonal antibody to fibroblast growth factor 2 effectively inhibits growth of hepatocellular carcinoma xenografts. Mol. Cancer Ther. 11:864–872.
    1. El‐Khoueiry, A. B. , Sangro B., Yau T., Crocenzi T. S., Kudo M., Hsu C., et al. 2017. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open‐label, non‐comparative, phase 1/2 dose escalation and expansion trial. Lancet 389:2492–2502.
    1. Courau, T. , Nehar‐Belaid D., Florez L., Levacher B., Vazquez T., Brimaud F., et al. 2016. TGF‐beta and VEGF cooperatively control the immunotolerant tumor environment and the efficacy of cancer immunotherapies. JCI Insight 1:e85974.
    1. Voron, T. , Colussi O., Marcheteau E., Pernot S., Nizard M., Pointet A. L., et al. 2015. VEGF‐A modulates expression of inhibitory checkpoints on CD8 + T cells in tumors. J. Exp. Med. 212:139–148.
    1. Sweis, R. F. , Spranger S., Bao R., Paner G. P., Stadler W. M., Steinberg G., et al. 2016. Molecular drivers of the non‐T‐cell‐inflamed tumor microenvironment in urothelial bladder cancer. Cancer Immunol. Res. 4:563–568.
    1. Welte, T. , Kim I. S., Tian L., Gao X., Wang H., Li J., et al. 2016. Oncogenic mTOR signalling recruits myeloid‐derived suppressor cells to promote tumour initiation. Nat. Cell Biol. 18:632–644.

Source: PubMed

3
Abonneren