Improved Efficacy of Topical Latanoprost 0.005% Demonstrated by Corneal Biomechanical Correcting Modified Goldmann Prism

Nathan Radcliffe, John Berdahl, Mitchel Ibach, Justin Schweitzer, Jason Levine, Sean McCafferty, Nathan Radcliffe, John Berdahl, Mitchel Ibach, Justin Schweitzer, Jason Levine, Sean McCafferty

Abstract

Purpose: To evaluate intraocular pressure (IOP) reduction measured by a Goldmann applanation tonometer (GAT) prism and a modified surface Goldmann (CATS) prism with the institution of a topical prostaglandin analog (PGA) or alternatively a topical beta blocker.

Design: Prospective, open-label, randomized, controlled, and reference device comparison.

Methods: Thirty-six (36) treatment naïve glaucoma patients (72 eyes) were randomized equally to treatment with latanoprost 0.005% or timolol maleate 0.5%. Each patient underwent IOP measurement with standard GAT and CATS prisms before and at 1, 3, and 6 months of treatment. Central corneal thickness (CCT) and corneal hysteresis (CH) were also measured. Medication response was defined as a 20% reduction in IOP from baseline.

Results: The CATS prism demonstrated the IOP reduction with topical latanoprost at a mean of 1.9 mmHg lower than the IOP measured with GAT (p=0.01). The CATS and GAT prisms detected no difference in IOP reduction with timolol (p=0.23). The number of latanoprost treatment non-responders was reduced from 36.1% measured with GAT to 13.8% when measured with the CATS prism (p=0.005). Timolol indicated no difference in the treatment non-response rate at 22.2% (p=0.999). CH increased significantly with latanoprost treatment by an average of 0.55 mmHg (p=0.014) and remained unchanged with timolol at -0.014 mmHg (p=0.68).

Discussion: IOP reduction and responder rates were increased when measured with a CATS prism in patients using latanoprost and not with timolol use. Latanoprost-induced alterations in corneal biomechanics may dampen the actual IOP reduction measured with a standard GAT prism.

Clinical trial registration: ClinicalTrials.gov NCT04178863.

Keywords: IOP; corneal biomechanics; glaucoma; latanoprost; prostaglandins; timolol; tonometer.

Conflict of interest statement

Sean McCafferty has an interest in Intuor Technologies (Tucson, AZ) which owns the technology being examined in this clinical trial. Additional grant support unrelated to this study has been provided by Abbott Medical Optics (Santa Ana, CA), and Alcon, Inc. (Ft. Worth, TX). He also reports grants from NIH/NEI, during the conduct of the study; non-financial support from Reichert, outside the submitted work. Sean McCafferty has a patent on prism owned by CATS Tonometer issued. Jason Levine has unrelated study grant support from Innfocus, Inc. John Berdahl is a consultant to and reports personal fees from Intuor. Justin Schweitzer reports personal fees from Reichert, during the conduct of the study. Mitchel Ibach reports personal fees from Aerie pharmaceuticals, outside the submitted work. Nathan Radcliffe reports personal fees from Reichert, CATS, LLC, Allergan, Alcon, Novartis, Glaukos, Ivantis, New World Medical, Bausch & Lomb, Omeros, Lumenis, and Ellex, outside the submitted work. The authors report no other conflicts of interest in this work.

© 2020 Radcliffe et al.

Figures

Figure 1
Figure 1
Applanating surface of the centrally concave and circumferentially convex (CATS) prism.
Figure 2
Figure 2
Timolol and latanoprost cohort IOP measurements at treatment times.
Figure 3
Figure 3
Non-response rates less than 20% reduction from baseline IOP in CATS and GAT measured IOP reduction using topical latanoprost 0.005% or alternatively timolol 0.5%.
https://www.ncbi.nlm.nih.gov/pmc/articles/instance/7434574/bin/OPTH-14-2245-g0001.jpg

References

    1. Heijl A, Leske MC, Hyman L, et al. Intraocular pressure reduction with a fixed treatment protocol in the Early Manifest Glaucoma Trial. Acta Ophthalmol. 2011;89:749–754. doi:10.1111/j.1755-3768.2009.01852.x
    1. Chan M, Broadway D, Khawaja A, et al. Glaucoma and Intraocular pressure in EPIC-Norfolk Eye Study: cross sectional study. BMJ. 2017;358:3889. doi:10.1136/bmj.j3889
    1. Ophthalmology AA. American academy of ophthalmology, preferred practice pattern; primary open-angle glaucoma. 2015. doi:10.1016/j.ophtha.2015.10.053
    1. Liu J, Roberts C. Influence of cornea biomechanical properties on intraocular pressure measurement: quantitative analysis. J Cat and Ref Surg. 2005;31:146–155. doi:10.1016/j.jcrs.2004.09.031
    1. Damji K, Muni R, Munger R. Influence of corneal variables on accuracy of intraocular pressure measurement. J Glaucoma. 2003;12:69–80. doi:10.1097/00061198-200302000-00015
    1. Park S, Soon A, Nicholas S, Wells A. The Effect of thin, thick and normal corneas on Goldmann intraocular pressure measurements and correction formulae in individual eyes. Ophthalmology. 2012;119:443–449. doi:10.1016/j.ophtha.2011.07.058
    1. Kass M, Heuer D, Higginbotham E, et al. The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol. 2002;120:701–713. doi:10.1001/archopht.120.6.701
    1. Iester M, Mete M, Figus M, Frezzotti P. Incorporating corneal Pachymetry into the management of glaucoma. J Cataract Refract Surg. 2009;35(9):1623–1628. doi:10.1016/j.jcrs.2009.05.015
    1. Kotecha A, Elsheikh A, Roberts C, Zhu H, Garway-Heath D. Corneal thickness- and age related biomechanical properties of the cornea measured with the ocular response analyzer. Invest Ophthalmol Vis Sci. 2006;47(12):5337–5347. doi:10.1167/iovs.06-0557
    1. Medeiros F, Weinreb R. Is corneal thickness an independent risk factor for glaucoma? Ophthalmology. 2012;119:435–436. doi:10.1016/j.ophtha.2012.01.018
    1. Costin B, Fleming G, Weber P, Mahmoud A, Roberts C. Corneal biomechanical properties affect Goldmann applanation tonometry in primary open-angle glaucoma. J Glaucoma. 2014;23:69–74. doi:10.1097/IJG.0b013e318269804b
    1. Deol M, Taylor D, Radcliffe N. Corneal hysteresis and its relevance to glaucoma. Curr Opin Ophthalmol. 2015;26:96–102. doi:10.1097/ICU.0000000000000130
    1. Medeiros F, Meira-Freitas D, Lisboa R, Kuang T, Zangwill L, Weinreb R. Corneal hysteresis as a risk factor for glaucoma progression: a prospective longitudinal study. Ophthalmology. 2013;120(8):1533–1540. doi:10.1016/j.ophtha.2013.01.032
    1. Touboul D, Roberts C, Kerautret J, et al. Correlations between corneal hysteresis, intraocular pressure, and corneal central pachymetry. J Cataract Refract Surg. 2008;34:616–622. doi:10.1016/j.jcrs.2007.11.051
    1. McCafferty S, Levine J, Schwiegerling J, Enikov E. Goldmann applanation tonometry error relative to true intracameral Intraocular pressure in vitro and in vivo. BMC Ophthalmol. 2017;17:215. doi:10.1186/s12886-017-0608-y
    1. Agarwal D, Ehrlich J, Shimmyo M. The relationship between corneal hysteresis and the magnitude of intraocular pressure reduction with topical prostaglandin therapy. Br J Ophthalmol. 2012;96:254–257. doi:10.1136/bjo.2010.196899
    1. Ferry S, Afshari H, Lee J, Dahners L, Weinhold P. Effect of prostaglandin E2 injection on the structural properties of the rat patellar tendon. Sports Med Arthrosc Rehabil Ther Technol. 2012;4:2. doi:10.1186/1758-2555-4-2
    1. Bolívar G, Sánchez-Barahona C, Teus M, et al. Effect of topical prostaglandin analogues on corneal hysteresis. Acta Ophthalmol. 2015;93:495–498. doi:10.1111/aos.12689
    1. Tsikripis P, Papaconstantinou D, Koutsandrea C, Apostolopoulos M, Georgalas I. The effect of prostaglandin analogs on the biomechanical properties and central thickness of the cornea of patients with open-angle glaucoma: a 3-year study on 108 eyes. Drug Des Devel Ther. 2013;7:1149–1156. doi:10.2147/DDDT.S50622
    1. Meda R, Wang Q, Paoloni D, Harasymowycz P, Brunette I. The impact of chronic use of prostaglandin analogues on the biomechanical properties of the cornea in patients with primary open-angle glaucoma. Br J Ophthalmol. 2017;101:120–125. doi:10.1136/bjophthalmol-2016-308432
    1. Amano S, Nejima R, Inoue K. Effect of topical prostaglandins on the biomechanics and shape of the cornea. Graefes Arch Clin Exp Ophthalmol. 2019;10:2213–2219.
    1. McCafferty S, Lim G, Duncan W, Enikov E, Schwiegerling J. Goldmann tonometer prism with an optimized error correcting applanation surface. Transl Vis Sci Technol. 2016;5:1–5. doi:10.1167/tvst.5.5.4
    1. Jóźwik A, Kasprzak H, Kozakiewicz A. Corneal buckling during applanation and its effect on the air pressure curve in ocular response analyzer. Int J Environ Res Public Health. 2019;16(15):2742. doi:10.3390/ijerph16152742
    1. Asejczyk-Widlicka M, Srodka W. Finite element simulation of Goldmann tonometry after refractive surgery. Clinical Biomechanics. 2019;71:24–28.
    1. McCafferty S, Tetrault K, McColgin A, Chue W, Levine J, Muller M. Modified Goldmann prism intraocular pressure measurement accuracy and correlation to corneal biomechanical metrics: multicentre randomised clinical trial. Br J Ophthal. 2019;103:1840–1844.
    1. McCafferty S, Tetrault K, McColgin A, Chue W, Levine J, Muller M. Intraocular pressure measurement accuracy and repeatability of a modified Goldmann prism: multi-center randomized clinical trial. Am J of Ophthal. 2018;196:145–153. doi:10.1016/j.ajo.2018.08.051
    1. McCafferty S, Lim G, Duncan W, Enikov E, Schwiegerling J. Goldmann tonometer error correcting prism: clinical evaluation. Clin Ophthalmol. 2017;11:835–840. doi:10.2147/OPTH.S135272
    1. McCafferty S, Levine J, Schwiegerling J, Enikov ET. Goldmann and error correcting tonometry prisms compared to intracameral pressure. BMC Ophthalmol. 2018;18:1–9.
    1. McCafferty S, Enikov E, Schwiegerling J, Ashley S. Goldmann tonometry tear-film error and partial correction with a shaped applanation surface. Clin Ophthal. 2018;12:71.
    1. Öhnell H, Bengtsson B, Heijl A. Making a correct diagnosis of glaucoma: data from the EMGT. J Glaucoma. 2019;28:859–864. doi:10.1097/IJG.0000000000001342
    1. Liu J, Kripke D, Weinreb R. Comparison of the nocturnal effects of once-daily timolol and latanoprost on intraocular pressure. Am J Ophthalmol. 2004;138:389–395. doi:10.1016/j.ajo.2004.04.022
    1. Pillunat K, Spoerl E, Terai N, Pillunat L. Effect of selective laser trabeculoplasty on corneal biomechanics. Acta Ophthalmol. 2016;94:501–504. doi:10.1111/aos.12947
    1. Detorakis E, Tsaglioti E, Kymionis G. Non-invasive ocular rigidity measurement: a differential tonometry approach. Acta Medica Cordoba. 2015;58:92–97. doi:10.14712/18059694.2015.99
    1. Iordanidou V, Hamard P, Gendron G, Labbé A, Raphael M, Baudouin C. Modifications in corneal biomechanics and intraocular pressure after deep sclerectomy. J Glaucoma. 2010;19:252–256. doi:10.1097/IJG.0b013e3181aff419
    1. Pakravan M, Afroozifar M, Yazdani S. Corneal biomechanical changes following trabeculectomy, phaco-trabeculectomy, ahmed glaucoma valve implantation and phacoemulsification. J Ophthalmic Vis Res. 2014;9:7–13.

Source: PubMed

3
Abonneren