Differentiation of the four major species of cinnamons (C. burmannii, C. verum, C. cassia, and C. loureiroi) using a flow injection mass spectrometric (FIMS) fingerprinting method

Pei Chen, Jianghao Sun, Paul Ford, Pei Chen, Jianghao Sun, Paul Ford

Abstract

A simple and efficient flow injection mass spectrometric (FIMS) method was developed to differentiate cinnamon (Cinnamomum) bark (CB) samples of the four major species (C. burmannii, C. verum, C. aromaticum, and C. loureiroi) of cinnamon. Fifty cinnamon samples collected from China, Vietnam, Indonesia, and Sri Lanka were studied using the developed FIMS fingerprinting method. The FIMS fingerprints of the cinnamon samples were analyzed using principal component analysis (PCA). The FIMS technique required only 1 min of analysis time per sample. The representative samples from each of the four major species of cinnamon were further examined using an ultrahigh-performance liquid chromatography-high-resolution mass spectrometry system, and the chemical differences between the four species were profiled. The results showed that the 1 min FIMS fingerprinting method successfully differentiated the four cinnamon species studied.

Figures

Figure 1
Figure 1
Typical FIMS spectra of the four species of cinnamon.
Figure 2
Figure 2
PCA score plot (for FIMS fingerprints) of the four species of cinnamon (▽, CB; ∗, CV; ■, CC; +, CL; ◇, unknown from McCormick; ●, unknown commercial, labeled CL).
Figure 3
Figure 3
PCA loading plot of PC1 for FIMS fingerprints.
Figure 4
Figure 4
PCA loading plot of PC2 for FIMS fingerprints.

References

    1. Killday K. B.; Davey M. H.; Glinski J. A.; Duan P.; Veluri R.; Proni G.; Daugherty F. J.; Tempesta M. S. Bioactive A-type proanthocyanidins from Cinnamomum cassia. J. Nat. Prod. 2011, 7491833–1841.
    1. Mancini-Filho J.; Van-Koiij A.; Mancini D. A.; Cozzolino F. F.; Torres R. P. Antioxidant activity of cinnamon (Cinnamomum zeylanicum, Breyne) extracts. Boll. Chim. Farm. 1998, 13711443–447.
    1. Mathew S.; Abraham T. E. Studies on the antioxidant activities of cinnamon (Cinnamomum verum) bark extracts, through various in vitro models. Food Chem. 2006, 944520–528.
    1. Shan B.; Cai Y. Z.; Brooks J. D.; Corke H. Antibacterial properties and major bioactive components of cinnamon stick (Cinnamomum burmannii): activity against foodborne pathogenic bacteria. J. Agric. Food Chem. 2007, 55145484–5490.
    1. Ooi L. S.; Li Y.; Kam S. L.; Wang H.; Wong E. Y.; Ooi V. E. Antimicrobial activities of cinnamon oil and cinnamaldehyde from the Chinese medicinal herb Cinnamomum cassia Blume. Am. J. Chin. Med. 2006, 343511–522.
    1. Baker W. L.; Kluger J.; Gutierrez-Williams G.; Coleman C. I.; White C. M. Effect of cinnamon on glucose control and lipid parameters. Diabetes Care 2008, 31141–43.
    1. Anderson R. A. Chromium and polyphenols from cinnamon improve insulin sensitivity. Proc. Nutr. Soc. 2008, 67148–53.
    1. Khan A.; Bryden N. A.; Polansky M. M.; Anderson R. A. Insulin potentiating factor and chromium content of selected foods and spices. Biol. Trace Elem. Res. 1990, 243183–188.
    1. Anderson R. A. Nutritional factors influencing the glucose/insulin system: chromium. J. Am. Coll. Nutr. 1997, 165404–410.
    1. Khan A.; Safdar M.; Khan M. M. A.; Khattak K. N.; Anderson R. A. Cinnamon improves glucose and lipids of people with type 2 diabetes. Diabetes Care 2003, 26123215–3218.
    1. Anderson R. A.; Broadhurst C. L.; Polansky M. M.; Schmidt W. F.; Khan A.; Flanagan V. P.; Schoene N. W.; Graves D. J. Isolation and characterization of polyphenol type-A polymers from cinnamon with insulin-like biological activity. J. Agric. Food Chem. 2004, 52165–70.
    1. Corder R.; Mullen W.; Khan N. Q.; Marks S. C.; Wood E. G.; Carrier M. J.; Crozier A. Oenology: red wine procyanidins and vascular health. Nature 2006, 4447119566.
    1. Lu Z. L.; Jia Q.; Wang R.; Wu X. M.; Wu Y. C.; Huang C. G.; Li Y. M. Hypoglycemic activities of A- and B-type procyanidin oligomer-rich extracts from different cinnamon barks. Phytomedicine 2011, 184298–302.
    1. Chen P.; Harnly J. M.; Lester G. E. Flow injection mass spectral fingerprints demonstrate chemical differences in Rio Red grapefruit with respect to year, harvest time, and conventional versus organic farming. J. Agric. Food Chem. 2010, 5884545–4553.
    1. Chen P.; Lin L. Z.; Harnly J. M. Mass spectroscopic fingerprinting method for differentiation between Scutellaria lateriflora and the germander (Teucrium canadense and T. chamaedrys) species. J. AOAC Int. 2010, 9341148–1154.
    1. Chen P.; Harnly J. M.; Harrington Pde B. Flow injection mass spectroscopic fingerprinting and multivariate analysis for differentiation of three Panax species. J. AOAC Int. 2011, 94190–99.
    1. Sun J.; Chen P. A flow-injection mass spectrometry fingerprinting method for authentication and quality assessment of Scutellaria lateriflora-based dietary supplements. Anal. Bioanal. Chem. 2011, 40151577–1584.
    1. Jayaprakasha G. K.; Ohnishi-Kameyama M.; Ono H.; Yoshida M.; Jaganmohan Rao L. Phenolic constituents in the fruits of Cinnamomum zeylanicum and their antioxidant activity. J. Agric. Food Chem. 2006, 5451672–1679.
    1. Gu L.; Kelm M. A.; Hammerstone J. F.; Zhang Z.; Beecher G.; Holden J.; Haytowitz D.; Prior R. L. Liquid chromatographic/electrospray ionization mass spectrometric studies of proanthocyanidins in foods. J. Mass Spectrom. 2003, 38121272–1280.
    1. Ding Y.; Wu E. Q.; Liang C.; Chen J.; Tran M. N.; Hong C. H.; Jang Y.; Park K. L.; Bae K.; Kim Y. H.; Kang J. S. Discrimination of cinnamon bark and cinnamon twig samples sourced from various countries using HPLC-based fingerprint analysis. Food Chem. 2011, 1272755–760.
    1. Vanschoonbeek K.; Thomassen B. J.; Senden J. M.; Wodzig W. K.; van Loon L. J. Cinnamon supplementation does not improve glycemic control in postmenopausal type 2 diabetes patients. J. Nutr. 2006, 136, 977–980.

Source: PubMed

3
Abonneren