Ultra-early tranexamic acid after subarachnoid hemorrhage (ULTRA): study protocol for a randomized controlled trial

Menno R Germans, René Post, Bert A Coert, Gabriël J E Rinkel, W Peter Vandertop, Dagmar Verbaan, Menno R Germans, René Post, Bert A Coert, Gabriël J E Rinkel, W Peter Vandertop, Dagmar Verbaan

Abstract

Background: A frequent complication in patients with subarachnoid hemorrhage (SAH) is recurrent bleeding from the aneurysm. The risk is highest within the first 6 hours after the initial hemorrhage. Securing the aneurysm within this timeframe is difficult owing to logistical delays. The rate of recurrent bleeding can also be reduced by ultra-early administration of antifibrinolytics, which probably improves functional outcome. The aim of this study is to investigate whether ultra-early and short-term administration of the antifibrinolytic agent tranexamic acid (TXA), as add-on to standard SAH management, leads to better functional outcome.

Methods/design: This is a multicenter, prospective, randomized, open-label trial with blinded endpoint (PROBE) assessment. Adult patients with the diagnosis of non-traumatic SAH, as proven by computed tomography (CT) within 24 hours after the onset of headache, will be randomly assigned to the treatment group or the control group. Patients in the treatment group will receive standard treatment with the addition of a bolus of TXA (1 g intravenously) immediately after randomization, followed by continuous infusion of 1 g per 8 hours until the start of aneurysm treatment, or a maximum of 24 hours after the start of medication. Patients in the control group will receive standard treatment without TXA. The primary outcome measure is favorable functional outcome, defined as a score of 0 to 3 on the modified Rankin Scale (mRS), at 6 months after SAH. Primary outcome will be determined by a trial nurse blinded for treatment allocation. We aim to include 950 patients in 3 years.

Discussion: The strengths of this study are: 1. the ultra-early and short-term administration of TXA, resulting in a lower dose as compared to previous studies, which should reduce the risk for delayed cerebral ischemia (DCI), an important risk factor in the long-term treatment with antifibrinolytics; 2. the power calculation is based on functional outcome and calculated with use of recent study results of our own population, supported by data from prominent studies; and 3. the participation of several specialized SAH centers, and their referring hospitals, in the Netherlands with comparative treatment protocols.

Trial registration: Nederlands Trial Register (Dutch Trial Registry) number NTR3272.

Figures

Figure 1
Figure 1
Flow chart of procedures.

References

    1. de Rooij NK, Linn FH, van der Plas JA, Algra A, Rinkel GJ. Incidence of subarachnoid haemorrhage: a systematic review with emphasis on region, age, gender and time trends. J Neurol Neurosurg Psychiatry. 2007;78:1365–1372. doi: 10.1136/jnnp.2007.117655.
    1. Steiner T, Juvela S, Unterberg A, Jung C, Forsting M, Rinkel G. European stroke organization guidelines for the management of intracranial aneurysms and subarachnoid haemorrhage. Cerebrovasc Dis. 2013;35:93–112. doi: 10.1159/000346087.
    1. Wermer MJ, Kool H, Albrecht KW, Rinkel GJ. Subarachnoid hemorrhage treated with clipping: long-term effects on employment, relationships, personality, and mood. Neurosurgery. 2007;60:91–97.
    1. Beck J, Raabe A, Szelenyi A, Berkefeld J, Gerlach R, Setzer M, Seifert V. Sentinel headache and the risk of rebleeding after aneurysmal subarachnoid hemorrhage. Stroke. 2006;37:2733–2737. doi: 10.1161/01.STR.0000244762.51326.e7.
    1. Brisman JL, Song JK, Newell DW. Cerebral aneurysms. N Engl J Med. 2006;355:928–939. doi: 10.1056/NEJMra052760.
    1. Guo LM, Zhou HY, Xu JW, Wang Y, Qiu YM, Jiang JY. Risk factors related to aneurysmal rebleeding. World Neurosurg. 2011;76:292–298. doi: 10.1016/j.wneu.2011.03.025.
    1. Hillman J, Fridriksson S, Nilsson O, Yu Z, Saveland H, Jakobsson KE. Immediate administration of tranexamic acid and reduced incidence of early rebleeding after aneurysmal subarachnoid hemorrhage: a prospective randomized study. J Neurosurg. 2002;97:771–778. doi: 10.3171/jns.2002.97.4.0771.
    1. Starke RM, Kim GH, Fernandez A, Komotar RJ, Hickman ZL, Otten ML, Ducruet AF, Kellner CP, Hahn DK, Chwajol M, Mayer SA, Connolly ES Jr. Impact of a protocol for acute antifibrinolytic therapy on aneurysm rebleeding after subarachnoid hemorrhage. Stroke. 2008;39:2617–2621. doi: 10.1161/STROKEAHA.107.506097.
    1. Starke RM, Connolly ES Jr. Rebleeding after aneurysmal subarachnoid hemorrhage. Neurocrit Care. 2011;15:241–246. doi: 10.1007/s12028-011-9581-0.
    1. Roos YB, Beenen LF, Groen RJ, Albrecht KW, Vermeulen M. Timing of surgery in patients with aneurysmal subarachnoid haemorrhage: rebleeding is still the major cause of poor outcome in neurosurgical units that aim at early surgery. J Neurol Neurosurg Psychiatry. 1997;63:490–493. doi: 10.1136/jnnp.63.4.490.
    1. Laidlaw JD, Siu KH. Ultra-early surgery for aneurysmal subarachnoid hemorrhage: outcomes for a consecutive series of 391 patients not selected by grade or age. J Neurosurg. 2002;97:250–258. doi: 10.3171/jns.2002.97.2.0250.
    1. Phillips TJ, Dowling RJ, Yan B, Laidlaw JD, Mitchell PJ. Does treatment of ruptured intracranial aneurysms within 24 hours improve clinical outcome? Stroke. 2011;42:1936–1945. doi: 10.1161/STROKEAHA.110.602888.
    1. Lamb JN, Crocker M, Tait MJ, Anthony BB, Papadopoulos MC. Delays in treating patients with good grade subarachnoid haemorrhage in London. Br J Neurosurg. 2011;25:243–248. doi: 10.3109/02688697.2010.544787.
    1. Roos YB, Rinkel GJ, Vermeulen M, Algra A, Van GJ. Antifibrinolytic therapy for aneurysmal subarachnoid haemorrhage. Cochrane Database Syst Rev. 2003;2:CD001245.
    1. Gaberel T, Magheru C, Emery E, Derlon JM. Antifibrinolytic therapy in the management of aneurismal subarachnoid hemorrhage revisited. A meta-analysis. Acta Neurochir (Wien) 2012;154:1–9. doi: 10.1007/s00701-011-1179-y.
    1. Connolly ES Jr, Rabinstein AA, Carhuapoma JR, Derdeyn CP, Dion J, Higashida RT, Hoh BL, Kirkness CJ, Naidech AM, Ogilvy CS, Patel AB, Thompson BG, Vespa P. American Heart Association Stroke Council; Council on Cardiovascular Radiology and Intervention; Council on Cardiovascular Nursing; Council on Cardiovascular Surgery and Anesthesia; Council on Clinical Cardiology. Guidelines for the management of aneurysmal subarachnoid hemorrhage: a guideline for healthcare professionals from the American Heart Association/american Stroke Association. Stroke. 2012;43:1711–1737. doi: 10.1161/STR.0b013e3182587839.
    1. Rankin J. Cerebral vascular accidents in patients over the age of 60. II. Prognosis. Scott Med J. 1957;2:200–215.
    1. Janssen PM, Visser NA, DorhoutMees SM, Klijn CJ, Algra A, Rinkel GJ. Comparison of telephone and face-to-face assessment of the modified Rankin Scale. Cerebrovasc Dis. 2010;29:137–139. doi: 10.1159/000262309.
    1. Ronne-Engstrom E, Enblad P, Lundstrom E. Outcome after spontaneous subarachnoid hemorrhage measured with the EQ-5D. Stroke. 2011;42:3284–3286. doi: 10.1161/STROKEAHA.111.626283.
    1. Schulz KF, Grimes DA. Multiplicity in randomised trials II: subgroup and interim analyses. Lancet. 2005;365:1657–1661. doi: 10.1016/S0140-6736(05)66516-6.
    1. Roberts I, Perel P, Prieto-Merino D, Shakur H, Coats T, Hunt BJ, Lecky F, Brohi K, Willett K. Effect of tranexamic acid on mortality in patients with traumatic bleeding: prespecified analysis of data from randomised controlled trial. BMJ. 2012;345:e5839. doi: 10.1136/bmj.e5839.

Source: PubMed

3
Abonneren