Antimicrobial Use, Human Gut Microbiota and Clostridium difficile Colonization and Infection

Caroline Vincent, Amee R Manges, Caroline Vincent, Amee R Manges

Abstract

Clostridium difficile infection (CDI) is the most important cause of nosocomial diarrhea. Broad-spectrum antimicrobials have profound detrimental effects on the structure and diversity of the indigenous intestinal microbiota. These alterations often impair colonization resistance, allowing the establishment and proliferation of C. difficile in the gut. Studies involving animal models have begun to decipher the precise mechanisms by which the intestinal microbiota mediates colonization resistance against C. difficile and numerous investigations have described gut microbiota alterations associated with C. difficile colonization or infection in human subjects. Fecal microbiota transplantation (FMT) is a highly effective approach for the treatment of recurrent CDI that allows the restoration of a healthy intestinal ecosystem via infusion of fecal material from a healthy donor. The recovery of the intestinal microbiota after FMT has been examined in a few reports and work is being done to develop custom bacterial community preparations that could be used as a replacement for fecal material.

Keywords: Clostridium difficile infection; antimicrobials; colonization resistance; fecal microbiota transplantation; intestinal microbiota.

Figures

Figure 1
Figure 1
Metabolism of bile acids and their impact on the germination and growth of C. difficile. Primary bile acids are synthesized by the liver and excreted in the gastrointestinal tract but the majority are reabsorbed in the distal ileum and returned to the liver via enterohepatic circulation. The fraction of bile acids that escapes enterohepatic circulation passes into the colon where they are metabolized and transformed into secondary bile acids by the gut microbiota. Bile acids and their metabolites can either inhibit or enhance the germination of spores, as well as the growth of vegetative C. difficile. The overall proportions of bile acids may determine the clinical outcome of C. difficile infection. Figure adapted from [45].

References

    1. Lessa F.C., Mu Y., Bamberg W.M., Beldavs Z.G., Dumyati G.K., Dunn J.R., Farley M.M., Holzbauer S.M., Meek J.I., Phipps E.C., et al. Burden of Clostridium difficile infection in the united states. N. Engl. J. Med. 2015;372:825–834. doi: 10.1056/NEJMoa1408913.
    1. Surawicz C.M., Brandt L.J., Binion D.G., Ananthakrishnan A.N., Curry S.R., Gilligan P.H., McFarland L.V., Mellow M., Zuckerbraun B.S. Guidelines for diagnosis, treatment, and prevention of Clostridium difficile infections. Am. J. Gastroenterol. 2013;108:478–498; quiz 499. doi: 10.1038/ajg.2013.4.
    1. Vesteinsdottir I., Gudlaugsdottir S., Einarsdottir R., Kalaitzakis E., Sigurdardottir O., Bjornsson E.S. Risk factors for Clostridium difficile toxin-positive diarrhea: A population-based prospective case-control study. Eur. J. Clin. Microbiol. Infect. Dis. 2012;31:2601–2610. doi: 10.1007/s10096-012-1603-0.
    1. Dethlefsen L., Huse S., Sogin M.L., Relman D.A. The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16s rRNA sequencing. PLoS Biol. 2008;6:e280. doi: 10.1371/journal.pbio.0060280.
    1. Dethlefsen L., Relman D.A. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc. Natl. Acad. Sci. USA. 2011;108:4554–4561. doi: 10.1073/pnas.1000087107.
    1. Ananthakrishnan A.N. Clostridium difficile infection: Epidemiology, risk factors and management. Nat. Rev. Gastroenterol. Hepatol. 2011;8:17–26. doi: 10.1038/nrgastro.2010.190.
    1. Owens R.C., Jr., Donskey C.J., Gaynes R.P., Loo V.G., Muto C.A. Antimicrobial-associated risk factors for Clostridium difficile infection. Clin. Infect. Dis. 2008;4:S19–S31. doi: 10.1086/521859.
    1. Pepin J., Saheb N., Coulombe M.A., Alary M.E., Corriveau M.P., Authier S., Leblanc M., Rivard G., Bettez M., Primeau V., et al. Emergence of fluoroquinolones as the predominant risk factor for Clostridium difficile-associated diarrhea: A cohort study during an epidemic in Quebec. Clin. Infect. Dis. 2005;41:1254–1260. doi: 10.1086/496986.
    1. Johnson S., Gerding D.N. Clostridium difficile-associated diarrhea. Clin. Infect. Dis. 1998;26:1027–1034. doi: 10.1086/520276.
    1. Shim J.K., Johnson S., Samore M.H., Bliss D.Z., Gerding D.N. Primary symptomless colonisation by Clostridium difficile and decreased risk of subsequent diarrhoea. Lancet. 1998;351:633–636. doi: 10.1016/S0140-6736(97)08062-8.
    1. Zacharioudakis I.M., Zervou F.N., Pliakos E.E., Ziakas P.D., Mylonakis E. Colonization with toxinogenic C. difficile upon hospital admission, and risk of infection: A systematic review and meta-analysis. Am. J. Gastroenterol. 2015;110:381–390; quiz 391. doi: 10.1038/ajg.2015.22.
    1. Riggs M.M., Sethi A.K., Zabarsky T.F., Eckstein E.C., Jump R.L., Donskey C.J. Asymptomatic carriers are a potential source for transmission of epidemic and nonepidemic Clostridium difficile strains among long-term care facility residents. Clin. Infect. Dis. 2007;45:992–998. doi: 10.1086/521854.
    1. Eyre D.W., Cule M.L., Wilson D.J., Griffiths D., Vaughan A., O’Connor L., Ip C.L., Golubchik T., Batty E.M., Finney J.M., et al. Diverse sources of C. difficile infection identified on whole-genome sequencing. N. Engl. J. Med. 2013;369:1195–1205. doi: 10.1056/NEJMoa1216064.
    1. Brandt L.J., Aroniadis O.C., Mellow M., Kanatzar A., Kelly C., Park T., Stollman N., Rohlke F., Surawicz C. Long-term follow-up of colonoscopic fecal microbiota transplant for recurrent Clostridium difficile infection. Am. J. Gastroenterol. 2012;107:1079–1087. doi: 10.1038/ajg.2012.60.
    1. Kelly C.P., LaMont J.T. Clostridium difficile—More difficult than ever. N. Engl. J. Med. 2008;359:1932–1940. doi: 10.1056/NEJMra0707500.
    1. Bakken J.S., Borody T., Brandt L.J., Brill J.V., Demarco D.C., Franzos M.A., Kelly C., Khoruts A., Louie T., Martinelli L.P., et al. Treating Clostridium difficile infection with fecal microbiota transplantation. Clin. Gastroenterol. Hepatol. 2011;9:1044–1049. doi: 10.1016/j.cgh.2011.08.014.
    1. McFarland L.V., Elmer G.W., Surawicz C.M. Breaking the cycle: Treatment strategies for 163 cases of recurrent Clostridium difficile disease. Am. J. Gastroenterol. 2002;97:1769–1775. doi: 10.1111/j.1572-0241.2002.05839.x.
    1. Van Nood E., Vrieze A., Nieuwdorp M., Fuentes S., Zoetendal E.G., de Vos W.M., Visser C.E., Kuijper E.J., Bartelsman J.F., Tijssen J.G., et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N. Engl. J. Med. 2013;368:407–415. doi: 10.1056/NEJMoa1205037.
    1. Jernberg C., Lofmark S., Edlund C., Jansson J.K. Long-term impacts of antibiotic exposure on the human intestinal microbiota. Microbiology. 2010;156:3216–3223. doi: 10.1099/mic.0.040618-0.
    1. Britton R.A., Young V.B. Role of the intestinal microbiota in resistance to colonization by Clostridium difficile. Gastroenterology. 2014;146:1547–1553. doi: 10.1053/j.gastro.2014.01.059.
    1. Willing B.P., Russell S.L., Finlay B.B. Shifting the balance: Antibiotic effects on host-microbiota mutualism. Nat. Rev. Microbiol. 2011;9:233–243. doi: 10.1038/nrmicro2536.
    1. Sullivan A., Edlund C., Nord C.E. Effect of antimicrobial agents on the ecological balance of human microflora. Lancet Infect. Dis. 2001;1:101–114. doi: 10.1016/S1473-3099(01)00066-4.
    1. Rafii F., Sutherland J.B., Cerniglia C.E. Effects of treatment with antimicrobial agents on the human colonic microflora. Ther. Clin. Risk Manag. 2008;4:1343–1358.
    1. Dhawan V.K., Thadepalli H. Clindamycin: A review of fifteen years of experience. Rev. Infect. Dis. 1982;4:1133–1153. doi: 10.1093/clinids/4.6.1133.
    1. Orrhage K., Brismar B., Nord C.E. Effect of supplements with bifidobacteriurn longum and lactobacillus acidophilus on the intestinal microbiota during administration of clindamycin. Microb. Ecol. Health Dis. 1994;7:17–25. doi: 10.3109/08910609409141570.
    1. Kager L., Liljeqvist L., Malmborg A.S., Nord C.E. Effect of clindamycin prophylaxis on the colonic microflora in patients undergoing colorectal surgery. Antimicrob. Agents Chemother. 1981;20:736–740. doi: 10.1128/AAC.20.6.736.
    1. Jernberg C., Lofmark S., Edlund C., Jansson J.K. Long-term ecological impacts of antibiotic administration on the human intestinal microbiota. ISME J. 2007;1:56–66. doi: 10.1038/ismej.2007.3.
    1. Barc M.C., Bourlioux F., Rigottier-Gois L., Charrin-Sarnel C., Janoir C., Boureau H., Dore J., Collignon A. Effect of amoxicillin-clavulanic acid on human fecal flora in a gnotobiotic mouse model assessed with fluorescence hybridization using group-specific 16s rRNA probes in combination with flow cytometry. Antimicrob. Agents Chemother. 2004;48:1365–1368. doi: 10.1128/AAC.48.4.1365-1368.2004.
    1. Young V.B., Schmidt T.M. Antibiotic-associated diarrhea accompanied by large-scale alterations in the composition of the fecal microbiota. J. Clin. Microbiol. 2004;42:1203–1206. doi: 10.1128/JCM.42.3.1203-1206.2004.
    1. De La Cochetiere M.F., Durand T., Lepage P., Bourreille A., Galmiche J.P., Dore J. Resilience of the dominant human fecal microbiota upon short-course antibiotic challenge. J. Clin. Microbiol. 2005;43:5588–5592. doi: 10.1128/JCM.43.11.5588-5592.2005.
    1. Perez-Cobas A.E., Gosalbes M.J., Friedrichs A., Knecht H., Artacho A., Eismann K., Otto W., Rojo D., Bargiela R., von Bergen M., et al. Gut microbiota disturbance during antibiotic therapy: A multi-omic approach. Gut. 2013;62:1591–1601. doi: 10.1136/gutjnl-2012-303184.
    1. Vollaard E.J., Clasener H.A. Colonization resistance. Antimicrob. Agents Chemother. 1994;38:409–414. doi: 10.1128/AAC.38.3.409.
    1. Stecher B., Hardt W.D. Mechanisms controlling pathogen colonization of the gut. Curr. Opin. Microbiol. 2011;14:82–91. doi: 10.1016/j.mib.2010.10.003.
    1. Stecher B., Hardt W.D. The role of microbiota in infectious disease. Trends Microbiol. 2008;16:107–114. doi: 10.1016/j.tim.2007.12.008.
    1. Stecher B., Chaffron S., Kappeli R., Hapfelmeier S., Freedrich S., Weber T.C., Kirundi J., Suar M., McCoy K.D., von Mering C., et al. Like will to like: Abundances of closely related species can predict susceptibility to intestinal colonization by pathogenic and commensal bacteria. PLoS Pathog. 2010;6:e1000711. doi: 10.1371/journal.ppat.1000711.
    1. Guérard P. Metabolism of cholesterol and bile acids by the gut microbiota. Pathogens. 2014;3:14–24. doi: 10.3390/pathogens3010014.
    1. Ridlon J.M., Kang D.J., Hylemon P.B. Bile salt biotransformations by human intestinal bacteria. J. Lipid Res. 2006;47:241–259. doi: 10.1194/jlr.R500013-JLR200.
    1. Jones B.V., Begley M., Hill C., Gahan C.G., Marchesi J.R. Functional and comparative metagenomic analysis of bile salt hydrolase activity in the human gut microbiome. Proc. Natl. Acad. Sci. USA. 2008;105:13580–13585. doi: 10.1073/pnas.0804437105.
    1. Sorg J.A., Sonenshein A.L. Bile salts and glycine as cogerminants for Clostridium difficile spores. J. Bacteriol. 2008;190:2505–2512. doi: 10.1128/JB.01765-07.
    1. Sorg J.A., Sonenshein A.L. Chenodeoxycholate is an inhibitor of Clostridium difficile spore germination. J. Bacteriol. 2009;191:1115–1117. doi: 10.1128/JB.01260-08.
    1. Sorg J.A., Sonenshein A.L. Inhibiting the initiation of Clostridium difficile spore germination using analogs of chenodeoxycholic acid, a bile acid. J. Bacteriol. 2010;192:4983–4990. doi: 10.1128/JB.00610-10.
    1. Buffie C.G., Bucci V., Stein R.R., McKenney P.T., Ling L., Gobourne A., No D., Liu H., Kinnebrew M., Viale A., et al. Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature. 2015;517:205–208. doi: 10.1038/nature13828.
    1. Wilson K.H., Perini F. Role of competition for nutrients in suppression of Clostridium difficile by the colonic microflora. Infect. Immun. 1988;56:2610–2614.
    1. Ng K.M., Ferreyra J.A., Higginbottom S.K., Lynch J.B., Kashyap P.C., Gopinath S., Naidu N., Choudhury B., Weimer B.C., Monack D.M., et al. Microbiota-liberated host sugars facilitate post-antibiotic expansion of enteric pathogens. Nature. 2013;502:96–99. doi: 10.1038/nature12503.
    1. Britton R.A., Young V.B. Interaction between the intestinal microbiota and host in Clostridium difficile colonization resistance. Trends Microbiol. 2012;20:313–319. doi: 10.1016/j.tim.2012.04.001.
    1. Sambol S.P., Merrigan M.M., Tang J.K., Johnson S., Gerding D.N. Colonization for the prevention of Clostridium difficile disease in hamsters. J. Infect. Dis. 2002;186:1781–1789. doi: 10.1086/345676.
    1. Merrigan M.M., Sambol S.P., Johnson S., Gerding D.N. Prevention of fatal Clostridium difficile-associated disease during continuous administration of clindamycin in hamsters. J. Infect. Dis. 2003;188:1922–1927. doi: 10.1086/379836.
    1. Merrigan M.M., Sambol S.P., Johnson S., Gerding D.N. New approach to the management of Clostridium difficile infection: Colonisation with non-toxigenic C. difficile during daily ampicillin or ceftriaxone administration. Int. J. Antimicrob. Agents. 2009;33:S46–S50. doi: 10.1016/S0924-8579(09)70017-2.
    1. Gerding D.N., Meyer T., Lee C., Cohen S.H., Murthy U.K., Poirier A., van Schooneveld T.C., Pardi D.S., Ramos A., Barron M.A., et al. Administration of spores of nontoxigenic Clostridium difficile strain m3 for prevention of recurrent c difficile infection: A randomized clinical trial. JAMA. 2015;313:1719–1727. doi: 10.1001/jama.2015.3725.
    1. Theriot C.M., Young V.B. Microbial and metabolic interactions between the gastrointestinal tract and Clostridium difficile infection. Gut Microb. 2014;5:86–95. doi: 10.4161/gmic.27131.
    1. Chang J.Y., Antonopoulos D.A., Kalra A., Tonelli A., Khalife W.T., Schmidt T.M., Young V.B. Decreased diversity of the fecal microbiome in recurrent Clostridium difficile-associated diarrhea. J. Infect. Dis. 2008;197:435–438. doi: 10.1086/525047.
    1. Rea M.C., O’Sullivan O., Shanahan F., O’Toole P.W., Stanton C., Ross R.P., Hill C. Clostridium difficile carriage in elderly subjects and associated changes in the intestinal microbiota. J. Clin. Microbiol. 2012;50:867–875. doi: 10.1128/JCM.05176-11.
    1. Antharam V.C., Li E.C., Ishmael A., Sharma A., Mai V., Rand K.H., Wang G.P. Intestinal dysbiosis and depletion of butyrogenic bacteria in Clostridium difficile infection and nosocomial diarrhea. J. Clin. Microbiol. 2013;51:2884–2892. doi: 10.1128/JCM.00845-13.
    1. Vincent C., Stephens D.A., Loo V.G., Edens T.J., Behr M.A., Dewar K., Manges A.R. Reductions in intestinal clostridiales precede the development of nosocomial Clostridium difficile infection. Microbiome. 2013;1:1–11. doi: 10.1186/2049-2618-1-18.
    1. Knecht H., Neulinger S.C., Heinsen F.A., Knecht C., Schilhabel A., Schmitz R.A., Zimmermann A., dos Santos V.M., Ferrer M., Rosenstiel P.C., et al. Effects of beta-lactam antibiotics and fluoroquinolones on human gut microbiota in relation to Clostridium difficile associated diarrhea. PLoS ONE. 2014;9:e89417. doi: 10.1371/journal.pone.0089417.
    1. Schubert A.M., Rogers M.A., Ring C., Mogle J., Petrosino J.P., Young V.B., Aronoff D.M., Schloss P.D. Microbiome data distinguish patients with Clostridium difficile infection and non-C. difficile-associated diarrhea from healthy controls. MBIO. 2014;5:e01021-14. doi: 10.1128/mBio.01021-14.
    1. Perez-Cobas A.E., Artacho A., Ott S.J., Moya A., Gosalbes M.J., Latorre A. Structural and functional changes in the gut microbiota associated to Clostridium difficile infection. Front. microbiol. 2014;5 doi: 10.3389/fmicb.2014.00335.
    1. Zhang L., Dong D., Jiang C., Li Z., Wang X., Peng Y. Insight into alteration of gut microbiota in Clostridium difficile infection and asymptomatic C. difficile colonization. Anaerobe. 2015;34:1–7. doi: 10.1016/j.anaerobe.2015.03.008.
    1. Manges A.R., Labbe A., Loo V.G., Atherton J.K., Behr M.A., Masson L., Tellis P.A., Brousseau R. Comparative metagenomic study of alterations to the intestinal microbiota and risk of nosocomial Clostridum difficile-associated disease. J. Infect. Dis. 2010;202:1877–1884. doi: 10.1086/657319.
    1. De la Cochetière M.F., Durand T., Lalande V., Petit J.C., Potel G., Beaugerie L. Effect of antibiotic therapy on human fecal microbiota and the relation to the development of Clostridium difficile. Microb. Ecol. 2008;56:395–402. doi: 10.1007/s00248-007-9356-5.
    1. Skraban J., Dzeroski S., Zenko B., Mongus D., Gangl S., Rupnik M. Gut microbiota patterns associated with colonization of different Clostridium difficile ribotypes. PLoS ONE. 2013;8:e58005. doi: 10.1371/journal.pone.0058005.
    1. Hopkins M.J., Sharp R., Macfarlane G.T. Age and disease related changes in intestinal bacterial populations assessed by cell culture, 16s rrna abundance, and community cellular fatty acid profiles. Gut. 2001;48:198–205. doi: 10.1136/gut.48.2.198.
    1. Hopkins M.J., Macfarlane G.T. Changes in predominant bacterial populations in human faeces with age and with Clostridium difficile infection. J. Med. Microbiol. 2002;51:448–454.
    1. Hopkins M.J., Sharp R., Macfarlane G.T. Variation in human intestinal microbiota with age. Dig. Liver Dis. 2002;34:S12–S18. doi: 10.1016/S1590-8658(02)80157-8.
    1. Goldberg E., Amir I., Zafran M., Gophna U., Samra Z., Pitlik S., Bishara J. The correlation between Clostridium-difficile infection and human gut concentrations of bacteroidetes phylum and clostridial species. Eur. J. Clin. Microbiol. Infect. Dis. 2014;33:377–383. doi: 10.1007/s10096-013-1966-x.
    1. Donskey C.J., Chowdhry T.K., Hecker M.T., Hoyen C.K., Hanrahan J.A., Hujer A.M., Hutton-Thomas R.A., Whalen C.C., Bonomo R.A., Rice L.B. Effect of antibiotic therapy on the density of vancomycin-resistant enterococci in the stool of colonized patients. N. Engl. J. Med. 2000;343:1925–1932. doi: 10.1056/NEJM200012283432604.
    1. Ubeda C., Taur Y., Jenq R.R., Equinda M.J., Son T., Samstein M., Viale A., Socci N.D., van den Brink M.R., Kamboj M., et al. Vancomycin-resistant Enterococcus domination of intestinal microbiota is enabled by antibiotic treatment in mice and precedes bloodstream invasion in humans. J. Clin. Investig. 2010;120:4332–4341. doi: 10.1172/JCI43918.
    1. Lawley T.D., Clare S., Walker A.W., Goulding D., Stabler R.A., Croucher N., Mastroeni P., Scott P., Raisen C., Mottram L., et al. Antibiotic treatment of Clostridium difficile carrier mice triggers a supershedder state, spore-mediated transmission, and severe disease in immunocompromised hosts. Infect. Immun. 2009;77:3661–3669. doi: 10.1128/IAI.00558-09.
    1. Mazmanian S.K., Round J.L., Kasper D.L. A microbial symbiosis factor prevents intestinal inflammatory disease. Nature. 2008;453:620–625. doi: 10.1038/nature07008.
    1. Ferreira R.B., Gill N., Willing B.P., Antunes L.C., Russell S.L., Croxen M.A., Finlay B.B. The intestinal microbiota plays a role in Salmonella-induced colitis independent of pathogen colonization. PLoS ONE. 2011;6:e20338. doi: 10.1371/journal.pone.0020338.
    1. Pryde S.E., Duncan S.H., Hold G.L., Stewart C.S., Flint H.J. The microbiology of butyrate formation in the human colon. FEMS Microbiol. Lett. 2002;217:133–139. doi: 10.1111/j.1574-6968.2002.tb11467.x.
    1. Guilloteau P., Martin L., Eeckhaut V., Ducatelle R., Zabielski R., van Immerseel F. From the gut to the peripheral tissues: The multiple effects of butyrate. Nutr. Res. Rev. 2010;23:366–384. doi: 10.1017/S0954422410000247.
    1. Hamer H.M., Jonkers D., Venema K., Vanhoutvin S., Troost F.J., Brummer R.J. Review article: The role of butyrate on colonic function. Aliment. Pharmacol. Ther. 2008;27:104–119. doi: 10.1111/j.1365-2036.2007.03562.x.
    1. Rolfe R.D. Role of volatile fatty acids in colonization resistance to Clostridium difficile. Infect. Immun. 1984;45:185–191.
    1. May T., Mackie R.I., Fahey G.C., Jr., Cremin J.C., Garleb K.A. Effect of fiber source on short-chain fatty acid production and on the growth and toxin production by Clostridium difficile. Scand. J.Gastroenterol. 1994;29:916–922. doi: 10.3109/00365529409094863.
    1. Wong J.M., de Souza R., Kendall C.W., Emam A., Jenkins D.J. Colonic health: Fermentation and short chain fatty acids. J. Clin. Gastroenterol. 2006;40:235–243. doi: 10.1097/00004836-200603000-00015.
    1. Eiseman B., Silen W., Bascom G.S., Kauvar A.J. Fecal enema as an adjunct in the treatment of pseudomembranous enterocolitis. Surgery. 1958;44:854–859.
    1. Dodin M., Katz D.E. Faecal microbiota transplantation for Clostridium difficile infection. Int. J. Clin. Pract. 2014;68:363–368. doi: 10.1111/ijcp.12320.
    1. Gough E., Shaikh H., Manges A.R. Systematic review of intestinal microbiota transplantation (fecal bacteriotherapy) for recurrent Clostridium difficile infection. Clin. Infect. Dis. 2011;53:994–1002. doi: 10.1093/cid/cir632.
    1. Hamilton M.J., Weingarden A.R., Unno T., Khoruts A., Sadowsky M.J. High-throughput DNA sequence analysis reveals stable engraftment of gut microbiota following transplantation of previously frozen fecal bacteria. Gut Microb. 2013;4:125–135. doi: 10.4161/gmic.23571.
    1. Khoruts A., Dicksved J., Jansson J.K., Sadowsky M.J. Changes in the composition of the human fecal microbiome after bacteriotherapy for recurrent Clostridium difficile-associated diarrhea. J. Clin. Gastroenterol. 2010;44:354–360. doi: 10.1097/MCG.0b013e3181c87e02.
    1. Shahinas D., Silverman M., Sittler T., Chiu C., Kim P., Allen-Vercoe E., Weese S., Wong A., Low D.E., Pillai D.R. Toward an understanding of changes in diversity associated with fecal microbiome transplantation based on 16s rRNA gene deep sequencing. MBIO. 2012;3 doi: 10.1128/mBio.00338-12.
    1. Lawley T.D., Clare S., Walker A.W., Stares M.D., Connor T.R., Raisen C., Goulding D., Rad R., Schreiber F., Brandt C., et al. Targeted restoration of the intestinal microbiota with a simple, defined bacteriotherapy resolves relapsing Clostridium difficile disease in mice. PLoS Pathog. 2012;8:e1002995. doi: 10.1371/journal.ppat.1002995.
    1. Tvede M., Rask-Madsen J. Bacteriotherapy for chronic relapsing Clostridium difficile diarrhoea in six patients. Lancet. 1989;1:1156–1160. doi: 10.1016/S0140-6736(89)92749-9.
    1. Petrof E.O., Gloor G.B., Vanner S.J., Weese S.J., Carter D., Daigneault M.C., Brown E.M., Schroeter K., Allen-Vercoe E. Stool substitute transplant therapy for the eradication of Clostridium difficile infection: “Repoopulating” the gut. Microbiome. 2013 doi: 10.1186/2049-2618-1-3.

Source: PubMed

3
Abonneren