Extreme Dysbiosis of the Microbiome in Critical Illness

Daniel McDonald, Gail Ackermann, Ludmila Khailova, Christine Baird, Daren Heyland, Rosemary Kozar, Margot Lemieux, Karrie Derenski, Judy King, Christine Vis-Kampen, Rob Knight, Paul E Wischmeyer, Daniel McDonald, Gail Ackermann, Ludmila Khailova, Christine Baird, Daren Heyland, Rosemary Kozar, Margot Lemieux, Karrie Derenski, Judy King, Christine Vis-Kampen, Rob Knight, Paul E Wischmeyer

Abstract

Critical illness is hypothesized to associate with loss of "health-promoting" commensal microbes and overgrowth of pathogenic bacteria (dysbiosis). This dysbiosis is believed to increase susceptibility to nosocomial infections, sepsis, and organ failure. A trial with prospective monitoring of the intensive care unit (ICU) patient microbiome using culture-independent techniques to confirm and characterize this dysbiosis is thus urgently needed. Characterizing ICU patient microbiome changes may provide first steps toward the development of diagnostic and therapeutic interventions using microbiome signatures. To characterize the ICU patient microbiome, we collected fecal, oral, and skin samples from 115 mixed ICU patients across four centers in the United States and Canada. Samples were collected at two time points: within 48 h of ICU admission, and at ICU discharge or on ICU day 10. Sample collection and processing were performed according to Earth Microbiome Project protocols. We applied SourceTracker to assess the source composition of ICU patient samples by using Qiita, including samples from the American Gut Project (AGP), mammalian corpse decomposition samples, childhood (Global Gut study), and house surfaces. Our results demonstrate that critical illness leads to significant and rapid dysbiosis. Many taxons significantly depleted from ICU patients versus AGP healthy controls are key "health-promoting" organisms, and overgrowth of known pathogens was frequent. Source compositions of ICU patient samples are largely uncharacteristic of the expected community type. Between time points and within a patient, the source composition changed dramatically. Our initial results show great promise for microbiome signatures as diagnostic markers and guides to therapeutic interventions in the ICU to repopulate the normal, "health-promoting" microbiome and thereby improve patient outcomes. IMPORTANCE Critical illness may be associated with the loss of normal, "health promoting" bacteria, allowing overgrowth of disease-promoting pathogenic bacteria (dysbiosis), which, in turn, makes patients susceptible to hospital-acquired infections, sepsis, and organ failure. This has significant world health implications, because sepsis is becoming a leading cause of death worldwide, and hospital-acquired infections contribute to significant illness and increased costs. Thus, a trial that monitors the ICU patient microbiome to confirm and characterize this hypothesis is urgently needed. Our study analyzed the microbiomes of 115 critically ill subjects and demonstrated rapid dysbiosis from unexpected environmental sources after ICU admission. These data may provide the first steps toward defining targeted therapies that correct potentially "illness-promoting" dysbiosis with probiotics or with targeted, multimicrobe synthetic "stool pills" that restore a healthy microbiome in the ICU setting to improve patient outcomes.

Keywords: 16S RNA; critical care; fecal organisms; human; microbial source tracking.

Figures

FIG 1
FIG 1
ICU stays result in drastic community changes. (A, B) SourceTracker proportions for ICU patients with samples obtained both at admission and at discharge in fecal (A) and oral (B) communities. The first row shows samples obtained at admission sorted by expected community type. The second shows samples obtained at discharge in patient order with the first row. Sources included samples from the healthy AGP subject subset, skin samples from decomposing bodies, soil samples from around decomposing bodies, fecal samples from healthy children in the Global Gut study, and dust samples from a house forensics study. A lack of color indicates an unknown source. For complete SourceTracker distribution plots, see Fig. S1 to 3 in the supplemental material. (C) Rarefaction curves using phylogenetic diversity of the ICU patient and healthy AGP subject samples. Error bars show standard errors. (D) Unweighted UniFrac distance distributions of within-time-point distances for fecal (P = 1.24e−28; Bonferroni corrected), oral (P = 1.75e−71; Bonferroni corrected), and skin (no significant difference) sites. The letters A and D on the x axis denote admission and discharge, respectively; whiskers are at 1.5 times the interquartile range. For a comparable weighted UniFrac analysis, see Fig. S4 in the supplemental material.
FIG 2
FIG 2
ICU patients differ markedly from healthy AGP subjects. (A, B) Principal-coordinate (PC) plots of unweighted UniFrac distances of both ICU patient and healthy AGP subject samples: A, fecal, skin, and oral samples with the ICU patient samples enlarged to aid in differentiation; B, oral samples in isolation. (C) Stacked taxonomy bar charts for fecal split by time point, showing a random subsample of healthy AGP subject samples. (D) Rank-abundance curves for all three body sites split by time point, showing random subsamples from the healthy AGP subject subset.

References

    1. Human Microbiome Project Consortium 2012. Structure, function and diversity of the healthy human microbiome. Nature 486:207–214. doi:10.1038/nature11234.
    1. Gevers D, Kugathasan S, Denson L, Vázquez-Baeza Y, Van Treuren W, Ren B, Schwager E, Knights D, Song S, Yassour M, Morgan X, Kostic A, Luo C, González A, McDonald D, Haberman Y, Walters T, Baker S, Rosh J, Stephens M, Heyman M, Markowitz J, Baldassano R, Griffiths A, Sylvester F, Mack D, Kim S, Crandall W, Hyams J, Huttenhower C, Knight R, Xavier RJ. 2014. The treatment-naive microbiome in new-onset Crohn’s disease. Cell Host Microbe 15:382–392. doi:10.1016/j.chom.2014.02.005.
    1. Weingarden A, González A, Vázquez-Baeza Y, Weiss S, Humphry G, Berg-Lyons D, Knights D, Unno T, Bobr A, Kang J, Khoruts A, Knight R, Sadowsky MJ. 2015. Dynamic changes in short- and long-term bacterial composition following fecal microbiota transplantation for recurrent Clostridium difficile infection. Microbiome 3:10. doi:10.1186/s40168-015-0070-0.
    1. Milbrandt EB, Kersten A, Rahim MT, Dremsizov TT, Clermont G, Cooper LM, Angus DC, Linde-Zwirble WT. 2008. Growth of intensive care unit resource use and its estimated cost in Medicare. Crit Care Med 36:2504–2510. doi:10.1097/CCM.0b013e318183ef84.
    1. Alverdy JC, Chang EB. 2008. The re-emerging role of the intestinal microflora in critical illness and inflammation: why the gut hypothesis of sepsis syndrome will not go away. J Leukoc Biol 83:461–466. doi:10.1189/jlb.0607372.
    1. Latorre M, Krishnareddy S, Freedberg D. 2015. Microbiome as mediator: does systemic infection start in the gut? World J Gastroenterol 21:10487–10492. doi:10.3748/wjg.v21.i37.10487.
    1. Klingensmith NJ, Coopersmith CM. 2016. The gut as the motor of multiple organ dysfunction in critical illness. Crit Care Clin 32:203–212. doi:10.1016/j.ccc.2015.11.004.
    1. Zaborin A, Smith D, Garfield K, Quensen J, Shakhsheer B, Kade M, Tirrell M, Tiedje J, Gilbert JA, Zaborina O, Alverdy JC. 2014. Membership and behavior of ultra-low-diversity pathogen communities present in the gut of humans during prolonged critical illness. mBio 5:e01361-14. doi:10.1128/mBio.01361-14.
    1. Ojima M, Motooka D, Shimizu K, Gotoh K, Shintani A, Yoshiya K, Nakamura S, Ogura H, Iida T, Shimazu T. 2016. Metagenomic analysis reveals dynamic changes of whole gut microbiota in the acute phase of intensive care unit patients. Dig Dis Sci 61:1628–1634. doi:10.1007/s10620-015-4011-3.
    1. Lyons JD, Ford ML, Coopersmith CM. 2016. The microbiome in critical illness: firm conclusions or bact to square one? Dig Dis Sci 61:1420–1421. doi:10.1007/s10620-016-4092-7.
    1. Knights D, Kuczynski J, Charlson ES, Zaneveld J, Mozer MC, Collman RG, Bushman FD, Knight R, Kelley ST. 2011. Bayesian community-wide culture-independent microbial source tracking. Nat Methods 8:761–763. doi:10.1038/nmeth.1650.
    1. Mandal S, Van Treuren W, White RA, Eggesbø M, Knight R, Peddada SD. 2015. Analysis of composition of microbiomes: a novel method for studying microbial composition. Microb Ecol Health Dis 26:27663. doi:10.3402/mehd.v26.27663.
    1. Friedman J, Alm EJ. 2012. Inferring correlation networks from genomic survey data. PLoS Comput Biol 8:e1002687. doi:10.1371/journal.pcbi.1002687.
    1. Qiita Development Team 2015. Qiita: spot patterns. .
    1. American Gut Project 2015. Human food project: anthropology of microbes. .
    1. Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, Magris M, Hidalgo G, Baldassano RN, Anokhin AP, Heath AC, Warner B, Reeder J, Kuczynski J, Caporaso JG, Lozupone CA, Lauber C, Clemente JC, Knights D, Knight R, Gordon JI. 2012. Human gut microbiome viewed across age and geography. Nature 486:222–227. doi:10.1038/nature11053.
    1. Lax S, Smith DP, Hampton-Marcell J, Owens SM, Handley KM, Scott NM, Gibbons SM, Larsen P, Shogan BD, Weiss S, Metcalf JL, Ursell LK, Vazquez-Baeza Y, Van Treuren W, Hasan NA, Gibson MK, Colwell R, Dantas G, Knight R, Gilbert JA. 2014. Longitudinal analysis of microbial interaction between humans and the indoor environment. Science 345:1048–1052. doi:10.1126/science.1254529.
    1. Metcalf JL, Xu ZZ, Weiss S, Lax S, Van Treuren W, Hyde ER, Song SJ, Amir A, Larsen P, Sangwan N, Haarmann D, Humphrey GC, Ackermann G, Thompson LR, Lauber C, Bibat A, Nicholas C, Gebert MJ, Petrosino JF, Reed SC, Gilbert JA, Lynne AM, Bucheli SR, Carter DO, Knight R. 2016. Microbial community assembly and metabolic function during mammalian corpse decomposition. Science 351:158–162. doi:10.1126/science.aad2646.
    1. Faith DP. 1992. Conservation evaluation and phylogenetic diversity. Biol Conserv 61:1–10. doi:10.1016/0006-3207(92)91201-3.
    1. Lozupone C, Knight R. 2005. UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 71:8228–8235. doi:10.1128/AEM.71.12.8228-8235.2005.
    1. Sokol H, Pigneur B, Watterlot L, Lakhdari O, Bermudez-Humaran LG, Gratadoux JJ, Blugeon S, Bridonneau C, Furet JP, Corthier G, Grangette C, Vasquez N, Pochart P, Trugnan G, Thomas G, Blottiere HM, Dore J, Marteau P, Seksik P, Langella P. 2008. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci U S A 105:16731–16736. doi:10.1073/pnas.0804812105.
    1. Weiss S, Van Treuren W, Lozupone C, Faust K, Friedman J, Deng Y, Xia LC, Xu ZZ, Ursell L, Alm EJ, Birmingham A, Cram JA, Fuhrman JA, Raes J, Sun F, Zhou J, Knight R. 2016. Correlation detection strategies in microbial data sets vary widely in sensitivity and precision. ISME J 10:1669–1681. doi:10.1038/ismej.2015.235.
    1. Vincent J, Marshall J, Anzueto A, Martin CD, Gomersall C. 2009. International study of the prevalence and outcomes of infection in intensive care units. JAMA 302:2323–2329. doi:10.1001/jama.2009.1754.
    1. Luyer MD, Buurman WA, Hadfoune M, Speelmans G, Knol J, Jacobs JA, Dejong CHC, Vriesema AJM, Greve JWM. 2005. Strain-specific effects of probiotics on gut barrier integrity following hemorrhagic shock. Infect Immun 73:3686–3692. doi:10.1128/IAI.73.6.3686-3692.2005.
    1. Tok D, Ilkgul O, Bengmark S, Aydede H, Erhan Y, Taneli F, Ulman C, Vatansever S, Kose C, Ok G. 2007. Pretreatment with pro- and synbiotics reduces peritonitis-induced acute lung injury in rats. J Trauma 62:880–885. doi:10.1097/01.ta.0000236019.00650.00.
    1. Corr SC, Li Y, Riedel CU, O’Toole PW, Hill C, Gahan CGM. 2007. Bacteriocin production as a mechanism for the antiinfective activity of Lactobacillus salivarius UCC118. Proc Natl Acad Sci U S A 104:7617–7621. doi:10.1073/pnas.0700440104.
    1. Mittal R, Coopersmith CM. 2014. Redefining the gut as the motor of critical illness. Trends Mol Med 20:214–223. doi:10.1016/j.molmed.2013.08.004.
    1. Li Q, Wang C, Tang C, He Q, Zhao X, Li N, Li J. 2015. Successful treatment of severe sepsis and diarrhea after vagotomy utilizing fecal microbiota transplantation: a case report. Crit Care 19:37. doi:10.1186/s13054-015-0738-7.
    1. Gilbert JA, Jansson JK, Knight R. 2014. The Earth Microbiome Project: successes and aspirations. BMC Biol 12:69. doi:10.1186/s12915-014-0069-1.
    1. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, Owens SM, Betley J, Fraser L, Bauer M, Gormley N, Gilbert JA, Smith G, Knight R. 2012. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 6:1621–1624. doi:10.1038/ismej.2012.8.
    1. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R. 2010. QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336. doi:10.1038/nmeth.f.303.
    1. McDonald D, Price MN, Goodrich J, Nawrocki EP, DeSantis TZ, Probst A, Andersen GL, Knight R, Hugenholtz P. 2012. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J 6:610–618. doi:10.1038/ismej.2011.139.

Source: PubMed

3
Abonneren